Меню

Как выбрать направление тока в ветвях цепи



Порядок расчета. 1. Произвольно выбираем направление токов в ветвях

date image2014-02-04
views image772

facebook icon vkontakte icon twitter icon odnoklasniki icon

1. Произвольно выбираем направление токов в ветвях. Количество токов равно количеству ветвей. Если в результате расчета ток окажется отрицательным, то направление тока выбрано неверно.

2. Составляем уравнение по 1 и 2 правилу Кирхгофа. Количество уравнений должно быть равно количеству неизвестных токов.

3. Число уравнений, составленных по 1 закону Кирхгофа, должно быть равно , где количество узловых точек.

Остальные недостающие уравнения составляют по 2-му закону Кирхгофа. При этом произвольно выбирают положительное направление обхода контура. Если оно совпадает с направлением ЭДС, то его берут со знаком «+» и наоборот.

Если направление тока контура совпадает с направлением тока через резистор, то падение напряжения на резисторе берут со знаком «+» и наоборот.

Источник

Метод контурных токов.Решение задач

Один из методов анализа электрической цепи является метод контурных токов. Основой для него служит второй закон Кирхгофа. Главное его преимущество это уменьшение количества уравнений до m – n +1, напоминаем что m — количество ветвей, а n — количество узлов в цепи. На практике такое уменьшение существенно упрощает расчет.

Основные понятия

Контурный ток — это величина, которая одинакова во всех ветвях данного контура. Обычно в расчетах они обозначаются двойными индексами, например I11, I22 и тд.

Действительный ток в определенной ветви определяется алгебраической суммой контурных токов, в которую эта ветвь входит. Нахождение действительных токов и есть первоочередная задача метода контурных токов.

Контурная ЭДС — это сумма всех ЭДС входящих в этот контур.

Собственным сопротивлением контура называется сумма сопротивлений всех ветвей, которые в него входят.

Общим сопротивлением контура называется сопротивление ветви, смежное двум контурам.

Общий план составления уравнений

1 – Выбор направления действительных токов.

2 – Выбор независимых контуров и направления контурных токов в них.

3 – Определение собственных и общих сопротивлений контуров

4 – Составление уравнений и нахождение контурных токов

5 – Нахождение действительных токов

Итак, после ознакомления с теорией предлагаем приступить к практике! Рассмотрим пример.

Выполняем все поэтапно.

1. Произвольно выбираем направления действительных токов I1-I6.

2. Выделяем три контура, а затем указываем направление контурных токов I11,I22,I33. Мы выберем направление по часовой стрелке.

3. Определяем собственные сопротивления контуров. Для этого складываем сопротивления в каждом контуре.

Затем определяем общие сопротивления, общие сопротивления легко обнаружить, они принадлежат сразу нескольким контурам, например сопротивление R4 принадлежит контуру 1 и контуру 2. Поэтому для удобства обозначим такие сопротивления номерами контуров к которым они принадлежат.

4. Приступаем к основному этапу – составлению системы уравнений контурных токов. В левой части уравнений входят падения напряжений в контуре, а в правой ЭДС источников данного контура.

Так как контура у нас три, следовательно, система будет состоять из трех уравнений. Для первого контура уравнение будет выглядеть следующим образом:

Ток первого контура I11, умножаем на собственное сопротивление R11 этого же контура, а затем вычитаем ток I22, помноженный на общее сопротивление первого и второго контуров R21 и ток I33, помноженный на общее сопротивление первого и третьего контура R31. Данное выражение будет равняться ЭДС E1 этого контура. Значение ЭДС берем со знаком плюс, так как направление обхода (по часовой стрелке) совпадает с направление ЭДС, в противном случае нужно было бы брать со знаком минус.

Те же действия проделываем с двумя другими контурами и в итоге получаем систему:

В полученную систему подставляем уже известные значения сопротивлений и решаем её любым известным способом.

5. Последним этапом находим действительные токи, для этого нужно записать для них выражения.

Контурный ток равен действительному току, который принадлежит только этому контуру. То есть другими словами, если ток протекает только в одном контуре, то он равен контурному.

Но, нужно учитывать направление обхода, например, в нашем случае ток I2 не совпадает с направлением, поэтому берем его со знаком минус.

Токи, протекающие через общие сопротивления определяем как алгебраическую сумму контурных, учитывая направление обхода.

Например, через резистор R4 протекает ток I4, его направление совпадает с направлением обхода первого контура и противоположно направлению второго контура. Значит, для него выражение будет выглядеть

А для остальных

Так решаются задачи методом контурных токов. Надеемся что вам пригодится данный материал, удачи!

Источник

Метод контурных токов

Все расчеты электрических схем базируются на простых формулах. Сложность и громоздкость вычислений зависят от сложности схем. Для упрощения расчетов без ущерба качеству разработано несколько методик, позволяющих сократить число вычислений до разумных пределов.

Основные формулы электротехники

Основные принципы

Любая электротехническая цепь состоит из участков (ветвей), образующих узлы и контуры. Для определения значений тока через любой элемент используют два закона Кирхгофа. Прямое составление уравнений дает систему с их максимальным количеством, равным количеству ветвей. В результате, если множество узлов цепи равно У, а число ветвей Р, то уравнения распределяются следующим образом:

  • Для узлов У-1 по закону Кирхгофа для токов;
  • Для ветвей Р-У+1 по закону Кирхгофа для напряжений.

Данное количество избыточно и приводит к образованию громоздкой системы уравнений большой размерности.

Для упрощения расчетов разработаны методики, которые позволяют сократить количество уравнений до приемлемых значений без снижения точности результатов. Наиболее простым является метод контурных токов.

Определение и суть метода контурных токов

По данному методу в исследуемой цепи выделяются независимые плоские замкнутые контуры, включающие все, без исключения, элементы. Предполагается, что в каждом контуре может протекать некоторый контурный ток. В том случае, если цепь с элементом принадлежит только одному контуру, то ток через входящие в нее элементы равен контурному. Если элемент охватывается несколькими контурами, то он в ней равен алгебраической (с учетом направления) сумме контурных токов.

Разбиение цепи на контуры

Важно! Суммирование должно производиться строго с учетом направления движения при обходе контура. Знак «плюс» – при совпадении направления, «минус» – при противоположном.

При составлении уравнений учитываются входящие в схему источники ЭДС и тока.

На практике удобнее преобразовать идеальный источник тока в идеальный источник ЭДС. Преобразование выполняется согласно закона Ома:

U=I∙r, где r – внутреннее сопротивление источника тока (напряжения).

Методика расчета используется как в цепях постоянного, так и переменного напряжения. При расчетах цепей переменного напряжения с реактивными элементами используются комплексные величины, затем вычисляются мгновенные и амплитудные величины токов и напряжений и углы сдвига фаз между ними.

Цепь с реактивными элементами

Построение системы контуров

Основная сложность заключается в правильном выделении контуров. Количество контурных токов будет равняться числу выбранных контуров.

Важно! Каждый элемент схемы должен входить хотя бы в один контур.

Распространены две методики выбора контуров.

Читайте также:  Элементы преобразователя напряжение ток

Использование планарных графов

Метод планарных графов применяется при ручном расчете, поскольку он наиболее прост и нагляден. Для построения плоского графа схему рисуют таким образом, чтобы не было взаимного пересечения ветвей. Получается, что схему можно разбить на несколько ограниченных участков, которые образуют контуры.

Рассматриваемая методика неприменима без дополнительных преобразований, если невозможно выразить схему в виде планарного графа.

Метод выделения максимального дерева

Метод выделения максимального дерева более абстрактный и используется при автоматизированных расчетах и наличия специализированных программ. Суть метода заключается в исключении из цепи некоторых ветвей в соответствии со строгими правилами, которые таковы:

  • При каждом шаге исключается только одна ветвь;
  • Исключение ветви не должно приводить к разбиению графа на несколько частей или к «висячим узлам»;
  • Количество удаленных звеньев равняется числу независимых контуров;
  • Подключение удаленной ветви образует соответствующий контур.

Построение системы уравнений

Построение системы уравнений по рассматриваемой методике выполняется по следующим правилам:

  • Для каждого выбранного контура задается направление обхода;
  • С левой стороны равенств записывается сумма всех произведений искомых токов в ветвях на сопротивление веток. В правую часть записывается сумма источников напряжений, присутствующих в контуре;
  • Если направление искомой величины или источника напряжения такое же, как у заданного направления обхода, то слагаемые пишутся со знаком «плюс», в ином случае они имеют отрицательное значение;
  • Значение токов в ветвях заменяют на их выражение через токи контура.

После выполнения арифметических действий (раскрытие скобок, приведение подобных слагаемых) получается система уравнений, в которых неизвестными величинами являются виртуальные контурные токи.

Решая систему уравнений, получают значения контурных, а затем искомых величин.

Оптимизированная процедура составления системы

По упрощенной методике поступают следующим образом:

  • В уравнениях в левой части записывают произведение суммы всех входящих в контур сопротивлений на контурный ток;
  • От полученного выражения вычитаются умноженные на сумму сопротивлений общей ветви соседние контурные токи;
  • Справа записывается сумма источников ЭДС контура.

Формальный подход

Формальный подход предполагает матричную форму записи системы уравнений. Для расчетов исходные данные записывают в матричной форме. Используются такие матрицы:

  • C – в которой i строк, соответствующих количеству контуров, и j столбцов по количеству ветвей;
  • Z – диагональная матрица сопротивлений, количество строк и столбцов которой соответствуют числу веток;
  • Ct – транспонированная матрица С;
  • I – матрица контурных величин;
  • J – матрица источников тока;
  • Е – матрица ЭДС.

При составлении матрицы С каждый элемент Сij:

  • 0, если ветвь j не входит в контур;
  • -1, если ветвь входит в контур, направление тока противоположно контурному;
  • 1 – то же самое, но направление тока совпадает с контурным.

В матрице Z диагональные элементы равняются сопротивлению участков, остальные приравниваются нулю.

Итоговая формула для расчетов имеет вид:

Такая форма записи решения в матричной форме показывает, каким образом выполняются действия над составленными матрицами.

Пример системы уравнений

Ниже рассмотрен пример расчета конкретной схемы без учета номиналов элементов.

Пример решения

В заданной цепи выделяют три контура. Как выразить токи в ветвях через контурные:

  • i1=I1;
  • i2=I2;
  • i3=I3;
  • i4=I2+I3;
  • i5=I1+I2;
  • i6=I1-I3.

Как составить систему уравнений:

  • i1R1+i5R5+i6R6=E1;
  • i2R2+i4R4+i5R5=E2;
  • i3R3+i4R4-i6R6=0

Как подставить контурные значения:

  • I1R1+( I1+I2)R5+( I1-I3)R6=E1;
  • I2R2+( I2+I3)R4+( I1+I2)R5=E2;
  • I3R3+( I2+I3)R4-( I1-I3)R6=0

После преобразования получается необходимая система уравнений:

  • (R1+R5+R6)I1+R5I2+R6I3=E1;
  • R5I1+(R2+R4+R5)I2+R4I3=E2;
  • -R6I1+R4I2+(R3+R4+R6)I3=0.

Система из трех уравнений легко решается после подстановки известных параметров. Из полученных значений контурных токов затем можно найти искомые величины.

Данный пример решения задач по методу контурных токов показывает, что любую достаточно сложную схему можно существенно упростить для решения, руководствуясь указаниями.

Важно! Метод неприменим, если нет возможности преобразовать цепь без взаимного пересечения ветвей.

В некоторых случаях упростить схему можно путем преобразования ветвей, соединенных по схеме «звезда» в треугольник.

Точно такие же результаты получаются при использовании метода узловых потенциалов. В основе расчетов – поиск потенциала каждого узла (так называемый узловой потенциал). Существуют программы, позволяющие произвести онлайн расчет параметров по рассмотренным методам.

Видео

Источник

Метод контурных токов

В каждой электрической цепи имеются так называемые Р – ребра (они же ветви, звенья, участки) и У – узлы. Для ее описания существует система уравнений, в которых используются два правила Кирхгофа. В них, в качестве независимых переменных, выступают токи ребер. Поэтому количество независимых переменных будет равно количеству уравнений, что дает возможность нормального разрешения данной системы. На практике используются методы, направленные на сокращение числа уравнений. Среди них очень часто используется метод контурных токов, позволяющий выполнять расчеты и получать точные результаты.

Суть метода контурных токов

Метод контурных токов

Основные принципы данного метода основываются на том факте, что протекающие в ребрах цепи токи, не все считаются независимыми. Присутствующие в системе У-1 уравнения для узлов, четко показывают зависимость от них У-1 токов. При выделении в электрической цепи независимого тока Р-У+1, вся система может быть сокращена до уравнений Р-У+1. Таким образом, метод контурных токов представляет собой очень простое и удобное выделение в цепи независимых токов Р-У+1.

Использование данного способа расчетов допускает, что в каждом независимом контуре Р-У+1 осуществляется циркуляция определенного виртуального контурного тока. Если какое-либо ребро относится лишь к одному конкретному контуру, то значение протекающего в нем реального тока будет равно контурному. В том случае, когда ребро входит в состав сразу нескольких контуров, ток, протекающий в нем, будет представлять собой сумму, включающую в себя соответствующие контурные токи. В этом случае обязательно учитывается направление обхода контуров. Независимыми контурами перекрывается практически вся схема, поэтому ток, протекающий в каком угодно ребре может быть выражен путем контурных токов, составляющих полную систему всех токов.

Для того чтобы построить систему независимых контуров, используется простой и наглядный метод создания планарных графов. На данной схеме ветви и узлы цепи размещаются на плоскости таким образом, что взаимное пересечение ребер полностью исключается. С помощью этого метода плоскость разбивается на области, ограниченные замкнутыми цепочками ребер. Именно они и составляют систему независимых контуров. Данный метод более всего подходит для ручных расчетов схем. Однако его применение может стать затруднительным или вовсе невозможным, если рассматриваемая схема не укладывается в рамки планарного графа.

Другим способом расчетов служит метод выделения максимального дерева. Само дерево представлено в виде подмножества звеньев электрической цепи и является односвязным графом, в котором отсутствуют замкнутые контуры. Для того чтобы оно появилось, из цепи постепенно исключаются некоторые звенья. Дерево становится максимальным, когда к нему добавляется любое исключенное звено, в результате чего образуется контур.

Применение метода выделения максимального дерева представляет собой последовательное исключение из цепи заранее установленных звеньев в соответствии с определенными правилами. Каждый шаг в цепи предполагает произвольное исключение одного звена. Если такое исключение нарушает односвязность графа, разбивая его на две отдельные части, в этом случае звено может возвратиться обратно в цепь. Если граф остается односвязным, то и звено остается исключенным. В конечном итоге, количество звеньев, исключенных из цепи, оказывается равным количеству независимых контуров, расположенных в схеме. Получение каждого нового независимого контура связано с присоединением к электрической цепи конкретного исключенного звена.

Читайте также:  Работа с токами высокой частоты

Применение метода контурных токов для расчета цепи

В соответствии с этой методикой, неизвестными величинами являются расчетные или контурные токи, предположительно протекающие во всех независимых контурах. В связи с этим, все неизвестные токи и уравнения в системе, равны количеству независимых контуров электрической цепи.

Токи ветвей в соответствии с данным методом рассчитываются следующим образом:

  • В первую очередь вычерчивается схема цепи с обозначением всех ее элементов.
  • Далее определяется расположение всех независимых контуров.
  • Направления протекания контурных токов задаются произвольно по часовой или против часовой стрелки в каждом независимом контуре. Они обозначаются с использованием цифровых или комбинированных символов.
  • В соответствии со вторым законом Кирхгофа, затрагивающего контурные токи, составляются уравнения для всех независимых контуров. В записанном равенстве направления обхода контура и контурного тока этого же контура совпадают. Необходимо учитывать и то обстоятельство, что в ветвях, расположенных рядом, протекают собственные контурные токи. Падение напряжения потребителей берется отдельно от каждого тока.
  • Следующим этапом является решение полученной системы любым удобным методом, и окончательное определение контурных токов.
  • Нужно задать направление реальных токов во всех ветвях и обозначить их отдельной маркировкой, чтобы не перепутать с контурными.
  • Далее нужно от контурных токов перейти к реальным, исходя из того, что значение реального тока конкретной ветви составляет алгебраическую сумму контурных токов, протекающих по этой ветви.

Если направление контурного тока совпадает с направлением реального тока, то при выполнении алгебраического суммирования математический знак не меняется. В противном случае значение контурного тока нужно умножить на -1.

Метод контурных токов очень часто применяется для расчетов сложных цепей. В качестве примера для приведенной схемы нужно задать следующие параметры: Е1 = 24В, Е2 = 12В, r1 = r2 = 4 Ом, r3 = 1 Ом, r4 = 3 Ом.

Для решения этой сложной задачи составляются два уравнения, соответствующие двум независимым контурам. Направление контурных токов будет по часовой стрелке и обозначается I11 и I22. На основании второго закона Кирхгофа составляются следующие уравнения:

После решения системы получаются контурные токи со значением I11 = I22 = 3 А. Далее произвольно обозначается направление реальных токов, как I1, I2, I3. Все они имеют одинаковое направление – вверх по вертикали. После этого выполняется переход от контурных к реальным. В первой ветви имеется течение только одного контурного тока т I11. Его направление совпадает с реальным током, поэтому I1 + I11 = 3 А.

Формирование реального тока во второй ветке осуществляется за счет двух контурных токов I11 и I22. Направление тока I22 совпадает с реальным, а направление I11 будет строго противоположно реальному. Таким образом, I2 = I22 – I11 = 3 – 3 = 0 А. В третьей ветке I3 наблюдается течение лишь контурного тока I22. Его направление будет противоположным направлению реального тока, поэтому в данном случае расчеты выглядят следующим образом: I3 = -I22 = -3А.

Основным положительным качеством метода контурных токов по сравнению с вычислениями по законам Кирхгофа, является значительно меньшее количество уравнений, используемых для вычислений. Тем не менее, здесь присутствуют определенные сложности. Например, реальные токи ветвей не всегда удается определить быстро и с высокой точностью.

Источник

Разветвленные цепи. Правила Кирхгофа.

Законы Кирхгофа для разветвленной цепи (разветвленная цепь – электрическая цепь, содержащая узлы – места, где сходятся не менее трех проводников):

а) По первому закону Кирхгофаалгебраическая сумма токов, сходящихся в узле, равна нулю . Токи, приходящие к узлу, считаются положительными, а токи, отходящие от узла, отрицательными.

б)Второй закон Кирхгофа: в замкнутом контуре алгебраическая сумма произведений токов в участках на сопротивление этих участков равна алгебраической сумме электродвижущих сил, включенных в данный контур

,

где – алгебраическая сумма сил токов, сходящихся в узле; – алгебраическая сумма произведений сил токов на сопротивления замкнутых участков; – алгебраическая сумма ЭДС источников тока на замкнутом участке цепи.

При расчете сложных цепей постоянного тока с применением правил Кирхгофа необходимо:

1. Выбрать произвольное направление токов на всех участках цепи.

2. Выбрать направление обхода контура; произведение положительно, если ток на участке совпадает с направлением обхода, и, наоборот; ЭДС, действующие по выбранному направлению обхода (перемещение происходит внутри источника тока от катода к аноду), считаются положительными.

3. Составить столько уравнений, чтобы их число было равно числу неизвестных электрических величин; каждый рассматриваемый контур должен содержать хотя бы один элемент, не содержавшийся в предыдущих контурах.

Первое правило Кирхгофа: алгебраическая сумма токов, сходящихся в узле, равна нулю:

Например, для рис. 148 первое правило Кирхгофа запишется так:

Первое правило Кирхгофа вытекает из закона сохранения электрического заряда. Действительно, в случае установившегося постоянного тока ни в одной точке проводника и ни на одном его участке не должны накапливаться электрические заряды. В противном случае токи не могли бы оставаться постоянными.

Второе правило Кирхгофа получается из обобщенного закона Ома для разветвлен­ных цепей. Рассмотрим контур, состоящий из трех участков (рис. 149). Направление обхода по часовой стрелке примем за положительное, отметив, что выбор этого направления совершенно произволен. Все токи, совпадающие по направлению с напра­влением обхода контура, считаются положительными, не совпадающие с направлением обхода — отрицательными. Источники тока считаются положительными, если они создают ток, направленный в сторону обхода контура. Применяя к участкам закон Ома (100.3), можно записать:

Складывая почленно эти уравнения, получим

(101.1)

Уравнение (101.1) выражает второе правило Кирхгофа: в любом замкнутом контуре, произвольно выбранном в разветвленной электрической цепи, алгебраическая сумма произведений сил токов Ii на сопротивления Ri соответствующих участков этого контура равна алгебраической сумме э.д.с. , встречающихся в этом контуре:

(101.2)

При расчете сложных цепей постоянного тока с применением правил Кирхгофа необходимо:

1. Выбрать произвольное направление токов на всех участках цепи; действительное направление токов определяется при решении задачи: если искомый ток получится положительным, то его направление было выбрано правильно, отрицательным — его истинное направление противоположно выбранному.

2. Выбрать направление обхода контура и строго его придерживаться; произведе­ние IR положительно, если ток на данном участке совпадает с направлением обхода, и, наоборот, э.д.с., действующие по выбранному направлению обхода, считаются поло­жительными, против — отрицательными.

Читайте также:  Нисходящий ток веществ что это

3. Составить столько уравнений, чтобы их число было равно числу искомых величин (в систему уравнений должны входить все сопротивления и э.д.с. рассматриваемой цепи); каждый рассматриваемый контур должен содержать хотя бы один элемент, не содержащийся в предыдущих контурах, иначе получатся уравнения, являющиеся простой комбинацией уже составленных.

В качестве примера использования правил Кирхгофа рассмотрим схему (рис. 150) измеритель­ногомоста Уитстона.* Сопротивления R1, R2, R3и R4 образуют его «плечи». Между точками А и В моста включена батарея с э.д.с. и сопротивлением r, между точками С и D включен гальванометр с сопротивлением RG.Для узлов А, В и С, применяя первое правило Кирхгофа, получим

(10 1.3)

Для контуров АСВA, ACDA и CBDC, согласно второму правилу Кирхгофа, можно записать:

(101.4)

* Ч. Уитстон (1802—1875) — английский физик.

Если известны все сопротивления и э.д.с., то, решая полученные шесть уравнений, можно найти неизвестные токи. Изменяя известные сопротивления R2, R3 иR4, можно добиться того, чтобы ток через гальванометр был равен нулю (IG = 0). Тогда из (101.3) найдем

(101.5)

а из (101.4) получим

(101.6)

Из (101.5) и (101.6) вытекает, что

(101.7)

Таким образом, в случае равновесного моста (IG = 0) при определении искомого сопротивления R1 э.д.с. батареи, сопротивления батареи и гальванометра роли не играют.

На практике обычно используетсяреохордный мост Уитстона (рис. 151), где сопротивле­ния R3и R4 представляют собой длинную однородную проволоку (реохорд) с большим удельным сопротивлением, так что отношение R3/R4 можно заменить отношением l3/l4. Тогда, используя выражение (101.7), можно записать

(101. 8)

Длины l3 и l4 легко измеряются по шкале, a R2 всегда известно. Поэтому уравнение (101.8) позволяет определить неизвестное сопротивление R1.

Параллельное соединение приемников. Вначале рассмотрим графоаналитический метод расчета цепи с параллельным соединением потребителей (рис. 2.16, а). Для такой цепи характерно то, что напряжения на каждой ветви одинаковы, общий ток равен сумме токов ветвей.

Ток в каждой ветви определяется по закону Ома:

I1 = U ; I2 = U ; I3 = U (xL3 > xC3).
r1 2 + xL1 2 r2 2 + xC2 2 r3 2 + (xL3xC3) 2

Угол сдвига φ между током каждой ветви и напряжением определяют с помощью cos φ:

cos φ1 = r1 ; cos φ2 = r2 ; cos φ3 = r3 .
r1 2 + xL1 2 r2 2 + xC2 2 r3 2 + (xL3xC3) 2
Рис. 2.16. Цепь с параллельным соединением потребителей (а) и ее векторная диаграмма (б)

Общий ток в цепи, как следует из первого закона Кирхгофа, равен геометрической сумме токов всех ветвей:

Значение общего тока определяют графически по векторной диаграмме рис. 2.16, б.

Активная мощность цепи равна арифметической сумме активных мощностей всех ветвей:

Реактивная мощность цепи равна алгебраической сумме реактивных мощностей всех ветвей:

n
Q = Qk .

причем реактивную мощность ветви с индуктивностью берут со знаком плюс, ветви с емкостью — со знаком минус. Для цепи рис. 2.16 реактивная мощность равна

Полная мощность цепи

S = √P 2 + Q 2 .

Угол сдвига φ между общим током и напряжением определяют из векторной диаграммы или из выражения:

Графоаналитический метод не удобен для расчета разветвленных цепей: он отличается громоздкостью и невысокой степенью точности.

Для анализа и расчета разветвленных цепей переменного тока используют проводимости, с помощью которых разветвленную цепь можно преобразовать в простейшую цепь и аналитически рассчитать токи и напряжения всех ее участков.

В цепях постоянного тока проводимостью называется величина, обратная сопротивлению участка цепи:

g = 1/r

и ток в цепи выражается как произведение напряжения на проводимость:

Рис. 2.17. Электрическая цепь (а), ее векторная диаграмма (б) и эквивалентная схема (в); векторная диаграмма цепи при резонансе

В цепях переменного тока существуют три проводимости — полная,

активная и реактивная, причем только полная проводимость является величиной, обратной полному сопротивлению последовательного участка цепи.

Выражения проводимостей в цепях переменного тока можно получить следующим образом.

Ток в каждом неразветвленном участке цепи раскладывают на две составляющие, одна из которых есть проекция на вектор напряжения (активная составляющая тока Ia ), а другая — на линию, перпендикулярную вектору напряжения (реактивная составляющая тока Iр ).

Активная составляющая тока определяет активную мощность

P = UI cos φ = UIa ;

реактивная составляющая тока — реактивную мощность

Q = UI sin φ = UIр.

Из векторной диаграммы цепи рис. 2.17, а, изображенной на рис. 2.17, б, следует, что активная составляющая тока I1 равна

I1a = I1 cos φ1 = U r = Ur1/z1 2 = Ug1.
z1 z1

называется активной проводимостью ветви. Реактивная составляющая тока I1 равна

Ilp = I1 sin φ1 = U xL = UxL/z1 2 = Ub1.
z1 z1

называется реактивной проводимостью ветви цепи с индуктивностью и в общем случае обозначается bL.

Аналогично определяют активную g2 и реактивную b2 проводимости второй ветви цепи:

Реактивная проводимость ветви с емкостью в общем случае обозначается bC.

Вектор тока первой ветви равен геометрической сумме векторов активной и реактивной составляющих тока

а значение тока

Выразив составляющие тока через напряжение и проводимости, получим

где у1 = 1/z1 =g1 2 + bL1 2 — полная проводимость ветви.

Аналогично определяют и полную проводимость второй ветви:

Эквивалентные активную, реактивную и полную проводимости цепи получают следующим образом.

Вектор общего тока цепи равен геометрической сумме векторов токов Ī1 и Ī2:

и может быть выражен через активную и реактивную составляющие тока и эквивалентные проводимости всей цепи:

Активная составляющая общего тока (см. рис. 2.17, б) равна арифметической сумме активных составляющих токов ветвей:

а реактивная составляющая — арифметической разности реактивных составляющих этих токов:

Рис. 2.18. К расчету разветвлен- ной цепи с использова- нием проводимостей

Из выражений (2.24) и (2.25) следует, что эквивалентная активная проводимость цепи равна арифметической сумме активных проводимостей параллельно включенных ветвей:

а эквивалентная реактивная проводимость — алгебраической сумме реактивных проводимостей параллельно включенных ветвей:

При этом проводимости ветвей с индуктивным характером нагрузки берут со знаком плюс, ветвей с емкостным характером нагрузки — со знаком минус. Полная эквивалентам проводимость цепи

По эквивалентным активной, реактивной и полной проводимостям можно определить параметры эквивалентной схемы (рис. 2.17, в) цепи.

Эквивалентные активное, реактивное и полное сопротивления цепи определяют с помощью выражений

Необходимо отметить, что если ΣbL > ΣbC, то эквивалентное сопротивление хэ будет индуктивным, если ΣbC > ΣbLемкостным.

Смешанное соединение потребителей.Расчет цепи при смешанном соединении потребителей (рис. 2.18, а) может быть произведен путем замены ее простейшей эквивалентной цепью. Для этого вначале определяют активные, реактивные и полные проводимости параллельно включенных ветвей: g1, g2, b1, b2, у1, у2.

Затем находят эквивалентные активную, реактивную и полную проводимости параллельного участка цепи:

Далее определяют эквивалентные активное, реактивное и полное сопротивления параллельного участка цепи:

В результате расчетов цепь может быть заменена эквивалентной цепью (рис. 2.18, б), где все сопротивления включены последовательно. Общие активное, реактивное и полное сопротивления цепи равны

Цепь приобретает простейший вид, изображенный на рис. 2.18, в. Общий ток цепи определяют по закону Ома:

Источник