Меню

Как составить закон изменения тока



Законы изменения тока и напряжения для участков цепи содержащих элементы: резистор, катушка индуктивности, конденсатор.

Кафедра Физики и математики, информационных технологий

Отчет по лабораторной работе №2.2

Цепи переменного тока. Реактивные сопротивления

Выполнила ст. группы СБ-13-15

ст. преподаватель Соболева В.В.

Дата Подпись
Допуск
Результат
Отчет

Цель работы: Ознакомиться с основными элементами электрических цепей синусоидального тока. Освоить методы электрических измерений в цепях синусоидального тока. Получить экспериментальное подтверждение закона Ома для цепей переменного тока.

Требуемое оборудование:

Модульный учебный комплекс: МУК-ЭМ1(2).

1. Генератор звуковых частот ЗГ1 1 шт.

2. Амперметр-вольтметр АВ1 1 шт.

3. Стенд с объектами исследования С3-ЭМ01 1 шт.

4. Комплект проводников 1 шт.

Ответы на контрольные вопросы:

Переменный ток. Мгновенное значение тока. Периодические токи. Период, частота.

Переменным током называют ток, изменяющийся во времени. Значение тока i(t) в любой момент времени называют мгновенным. Токи, мгновенные значения которых повторяются через равные промежутки времени в той же самой последовательности, называют периодическими, а наименьший промежуток времени T, через который эти повторения наблюдаются, — периодом. Величина, обратная периоду, называется частотой ν=1/T. Частота измеряется в герцах [Гц]. Постоянный ток можно рассматривать как частный случай периодического тока, период изменения которого бесконечно велик, т. е. частота равна нулю.

Уравнения мгновенного значения силы тока и напряжения, определение величин, входящих в данные уравнения.

Пусть на некотором участке цепи мгновенные значения тока и напряжения меняются гармонически, т. е по синусоидальному закону (рис. 1)

где Im – максимальное или амплитудное значение тока;

ψI – начальная фаза колебаний тока

ψU – начальная фаза колебаний напряжения.

Начальная фаза отсчитывается всегда от момента, соответствующего началу синусоиды (нулевое значение синусоидальной величины при переходе ее от отрицательных к положительным значениям), до момента начала отсчета времени t=0 (начало координат). Если начало синусоиды сдвинуто влево, то начальная фаза имеет положительное значение, а если вправо – отрицательное.

Найти численное значение начальной фазы, например тока (рис. 1), можно путем определения величины ΔtI :

Поскольку начало синусоиды смещено влево, то начальная фаза ψI имеет положительное значение.

Сдвиг фаз.

Если у нескольких синусоидальных функций, изменяющихся с одной частотой, начальные фазы не совпадают, то говорят, что они имеют сдвиг фаз (или разность фаз). Сдвиг фаз определяется как разность начальных фаз. Так, например, под разностью фаз ϕ напряжения и тока понимают разность начальных фаз напряжения ψU и тока ψI

Физические процессы, протекающие в цепях переменного тока, отличаются от процессов, протекающих в цепях постоянного тока. При переменном токе электрические и магнитные поля изменяются во времени. Изменяющееся магнитное поле наводит ЭДС, изменение электрического поля сопровождается изменением зарядов на проводниках.

Законы изменения тока и напряжения для участков цепи содержащих элементы: резистор, катушка индуктивности, конденсатор.

Основными элементами схем цепей переменного тока являются резисторы, конденсаторы и индуктивности. Рассмотрим законы изменения тока и напряжения для участков цепи содержащих эти элементы.

В резистивном элементе с сопротивлением R электромагнитная энергия преобразуется в тепло. Мгновенная мощность, с которой происходит преобразование энергии, определяется соотношением: . Резистивные (или их ещё называют активные) сопротивления вводятся в схемы замещения также для учета необратимого преобразования электромагнитной энергии в другие виды (например, механическую, энергию излучения и т. п.).

В резистивном элементе (рис. 2,а) напряжение связано с током законом Ома: . Если ток в резисторе , то и напряжение

имеет синусоидальную форму и такую же фазу, что и ток в резисторе (т. е. ψIU). Говорят, что ток и напряжение совпадают по фазе или синфазны, т. е. ϕ=0 (рис. 2,б).

Если через катушку индуктивности (рис. 3,а) пропустить переменный синусоидальный ток , то он создаст переменный магнитный поток, пронизывающий витки катушки. По закону электромагнитной индукции на зажимах катушки этот переменный поток наведёт синусоидальное напряжение:

где n – число витков катушки;

Ψ=wФ – потокосцепление;

L=dΨ/di — индуктивность;

xL=Lω= — реактивное индуктивное сопротивление.

В системе единиц СИ индуктивность L имеет размерность Генри (Гн), а индуктивное сопротивление – (Ом).

Индуктивность L учитывает энергию магнитного поля катушки

Из соотношения (4) видно, что ток через индуктивность i(t) отстаёт от напряжения на угол (рис. 4).

Переменный ток, протекая по виткам катушки, создаёт в проводниках тепловые потери мощности , где — активное сопротивление обмотки. На рис. 3,б показана низкочастотная схема замещения катушки индуктивности, состоящая из индуктивности L и активного сопротивления обмотки . Если сопротивлением обмотки можно пренебречь, то такую катушку считают идеальной индуктивностью (рис. 3,в). Для высоких частот в схеме замещения необходимо учитывать межвитковую ёмкость катушки.

Из (4) следует, что при заданном напряжении можно найти по соотношению

Конденсатор

Конденсатор является элементом электрической цепи, имеющим две проводящие обкладки, между которыми находится слой диэлектрика (рис. 5,а). Если к зажимам конденсатора (рис. 5,а) подключить источник синусоидального напряжения то на его обкладках возникнет изменяющийся во времени электрический заряд q(t), т. е. через конденсатор будет протекать электрический ток

В (2) ёмкость конденсатора, которая определяет зависимость изменения величины заряда на обкладках конденсатора от изменения напряжения, приложенного к его обкладкам — реактивное ёмкостное сопротивление.

Читайте также:  Определите работу силы тока за 5 минут в электрической лампе при напряжении 100

В системе единиц СИ ёмкость C имеет размерность Фарада (Ф), а ёмкостное сопротивление – (Ом).

Из соотношения (4) видно, что ток через конденсатор i(t) опережает напряжение на угол 90 (рис. 6).

Основной особенностью конденсатора является его способность запасать энергию электрического поля . Кроме того, в конденсаторе имеют место тепловые потери энергии в диэлектрике и обкладках, а также происходит запас энергии в магнитном поле. На рис. 5,б показана низкочастотная схема замещения конденсатора, состоящая из параллельного соединения ёмкости C и активного сопротивления с проводимостью – RД, учитывающей потери в диэлектрике и обкладках. Если потерями можно пренебречь, то конденсатор будет представлять собой идеальную ёмкость (рис. 5,в).

Источник

Большая Энциклопедия Нефти и Газа

Закон — изменение — ток

Закон изменения тока / 0 может быть определен на основании следующего рассуждения. [2]

Закон изменения тока на интервале нарастания зависит от характера нагрузки. [3]

Закон изменения токов в схеме удобно в данном случае определить, используя метод мгновенных значений ( см. § 1 — 2), так как ток нагрузки в момент коммутации не изменяет своего значения. [4]

Закон изменения токов in, и in, во время перекрытия фаз рассмотрен ниже. [5]

Закон изменения тока вдоль линии ( на рис. 11.6 6 показан штрих-пунктиром) такой же, как и напряжения ( сплошные контуры), ибо во всех сечениях двухпроводной линии волна тока встречает одно и то же сопротивление — активное, равное волновому. [6]

Закон изменения тока при выключении катушки ( как и при ее включении) определяется параметрами R и L. Еще до подробного анализа уравнения тока, который приведен далее, можно отметить обстоятельства, позволяющие судить о характере уменьшения тока в катушке. [8]

Закон изменения тока внутри каждого интервала или импульса можно определить, решив систему дифференциальных уравнений, описывающих выпрямитель, и подставив в решение начальные для данного интервала ( импульса) значения этих токов. Но трансформатор серьезно осложняет эту задачу, потому что трансформаторный выпрямитель без перекрытия описывается минимум четырьмя независимыми уравнениями токов — одно для контура выпрямленного тока и три для контуров первичных токов. [9]

Определим закон изменения тока в коммутируемой секции. На рис. 24.10 показаны три этапа коммутации. [10]

Найти закон изменения тока в цепи, полагая, что зависимость потокосцепле-ния от тока приближенно задана уравнением г3 27.2, где i в амперах, F в вебе-рах. [11]

Установим закон изменения тока в секции в период коммутации, полагая для простоты, что ширина щетки равна ширине коллекторной пластины. Рассмотрим три основных этапа коммутации. [13]

Найти закон изменения токов /, it, i3 при заданных L 9 мгн и С 1000 пф для трех значений сопротивления: г104ож, / — 1 5.10 Э ом, г 0 5 — 103 ом. [14]

Источник

Закон Ома

Дата публикации: 28 марта 2013 .
Категория: Статьи.

Закон Ома для участка цепи

Соберем электрическую цепь (рисунок 1, а), состоящую из аккумулятора 1 напряжением в 2 В, рычажного реостата 2, двух измерительных приборов – вольтметра 3 и амперметра 4 и соединительных проводов 5. Установим в цепи при помощи реостата сопротивление, равное 2 Ом. Тогда вольтметр, включенный на зажимы аккумулятора, покажет напряжение в 2 В, а амперметр, включенный последовательно в цепь, покажет ток, равный 1 А. Увеличим напряжение до 4 В путем включения другого аккумулятора (рисунок 1, б). При том же сопротивлении в цепи – 2 Ом – амперметр покажет уже ток 2 А. Аккумулятор напряжением 6 В изменит показание амперметра до 3 А (рисунок 1, в). Сведем наши наблюдения в таблицу 1.

Рисунок 1. Изменение тока в электрической цепи путем изменения напряжения при неизменном сопротивлении

Зависимость тока в цепи от напряжения при неизменном сопротивлении

Напряжение цепи в В Сопротивление цепи в Ом Ток цепи в А
2
4
6
2
2
2
1
2
3

Отсюда можно сделать вывод, что ток в цепи при постоянном сопротивлении тем больше, чем больше напряжение этой цепи, причем ток будет увеличиваться во столько раз, во сколько раз увеличивается напряжение.

Теперь в такой же цепи поставим аккумулятор с напряжением 2 В и установим при помощи реостата сопротивление в цепи, равное 1 Ом (рисунок 2, а). Тогда амперметр покажет 2 А. Увеличим реостатом сопротивление до 2 Ом (рисунок 2, б). Показание амперметра (при том же напряжении цепи) будет уже 1 А.

Рисунок 2. Изменение тока в электрической цепи путем изменения сопротивления при неизменном напряжении

При сопротивлении в цепи 3 Ом (рисунок 2, в) показание амперметра будет 2/3 А.

Результат опыта сведем в таблицу 2.

Зависимость тока в цепи от сопротивления при неизменном напряжении

Напряжение цепи в В Сопротивление цепи в Ом Ток цепи в А
2
2
2
1
2
3
2
1
2/3

Отсюда следует вывод, что при постоянном напряжении ток в цепи будет тем больше, чем меньше сопротивление этой цепи, причем ток в цепи увеличивается во столько раз, во сколько раз уменьшается сопротивление цепи.

Как показывают опыты, ток на участке цепи прямо пропорционален напряжению на этом участке и обратно пропорционален сопротивлению того же участка. Эта зависимость известна под названием закон Ома.

Читайте также:  Если бы ты умел бить током

Если обозначим: I – ток в амперах; U – напряжение в вольтах; r – сопротивление в омах, то закон Ома можно представить формулой:

то есть ток на данном участке цепи равен напряжению на этом участке, деленному на сопротивление того же участка.

Видео 1. Закон Ома для участка цепи

Пример 1. Определить ток, который будет проходить по нити лампы накаливания, если нить имеет неизменное сопротивление 240 Ом, а лампа включена в сеть с напряжением 120 В.

Пользуясь формулой закона Ома, можно определить также напряжение и сопротивление цепи.

то есть напряжение цепи равно произведению тока на сопротивление этой цепи и

то есть сопротивление цепи равно напряжению, деленному на ток цепи.

Пример 2. Какое нужно напряжение, чтобы в цепи с сопротивлением 6 Ом протекал ток 20 А?

Пример 3. По спирали электрической плитки протекает ток в 5 А. Плитка включена в сеть с напряжением 220 В. Определить сопротивление спирали электрической плитки.

Если в формуле U = I × r ток равен 1 А, а сопротивление 1 Ом, то напряжение будет равно 1 В:

Отсюда заключаем: напряжение в 1 В действует в цепи с сопротивлением 1 Ом при токе в 1 А.

Потеря напряжения

Потеря напряжения
Рисунок 3. Потеря напряжения вдоль электрической цепи

На рисунке 3 приведена электрическая цепь, состоящая из аккумулятора, сопротивления r и длинных соединительных проводов, имеющих свое определенное сопротивление.

Как видно из рисунка 3, вольтметр, присоединенный к зажимам аккумулятора, показывает 2 В. Уже в середине линии вольтметр показывает только 1,9 В, а около сопротивления r напряжение равно всего 1,8 В. Такое уменьшение напряжения вдоль цепи между отдельными точками этой цепи называется потерей (падением) напряжения.

Потеря напряжения вдоль электрической цепи происходит потому, что часть приложенного напряжения расходуется на преодоление сопротивления цепи. При этом потеря напряжения на участке цепи будет тем больше, чем больше ток и чем больше сопротивление этого участка цепи. Из закона Ома для участка цепи следует, что потеря напряжения в вольтах на участке цепи равно току в амперах, протекающему по этому участку, умноженному на сопротивление в омах того же участка:

Пример 4. От генератора, напряжение на зажимах которого 115 В, электроэнергия передается электродвигателю по проводам, сопротивление которых 0,1 Ом. Определить напряжение на зажимах двигателя, если он потребляет ток в 50 А.

Очевидно, что на зажимах двигателя напряжение будет меньше, чем на зажимах генератора, так как в линии будет потеря напряжения. По формуле определяем, что потеря напряжения равна:

Если в линии потеря напряжения равна 5 В, то напряжение у электродвигателя будет 115 – 5 = 110 В.

Пример 5. Генератор дает напряжение 240 В. Электроэнергия по линии из двух медных проводов длиной по 350 м, сечением 10 мм² передается к электродвигателю, потребляющему ток в 15 А. Требуется узнать напряжение на зажимах двигателя.

Напряжение на зажимах двигателя будет меньше напряжения генератора на величину потери напряжения в линии. Потеря напряжения в линии U = I × r.

Так как сопротивление r проводов неизвестно, определяем его по формуле:

где ρ – удельное сопротивление меди (таблица 1, в статье «Электрическое сопротивление и проводимость»); длина l равна 700 м, так как току приходится идти от генератора к двигателю и оттуда обратно к генератору.

Подставляя r в формулу, получим:

Следовательно, напряжение на зажимах двигателя будет 240 – 18,3 = 221,7 В

Пример 6. Определить поперечное сечение алюминиевых проводов, которое необходимо применить, чтобы подвести электрическую энергию к двигателю, работающему при напряжении в 120 В и токе в 20 А. Энергия к двигателю будет подаваться от генератора напряжением 127 В по линии длиной 150 м.

Находим допустимую потерю напряжения:

Сопротивление проводов линии должно быть равно:

определим сечение провода:

где ρ – удельное сопротивление алюминия (таблица 1, в статье «Электрическое сопротивление и проводимость»).

По справочнику выбираем имеющееся сечение 25 мм².
Если ту же линию выполнить медным проводом, то сечение его будет равно:

где ρ – удельное сопротивление меди (таблица 1, в статье «Электрическое сопротивление и проводимость»).

Выбираем сечение 16 мм².

Отметим еще, что иногда приходится умышленно добиваться потери напряжения, чтобы уменьшить величину приложенного напряжения.

Пример 7. Для устойчивого горения электрической дуги требуется ток 10 А при напряжении 40 В. Определить величину добавочного сопротивления, которое нужно включить последовательно с дуговой установкой, чтобы питать ее от сети с напряжением 120 В.

Потеря напряжения в добавочном сопротивлении составит:

Зная потерю напряжения в добавочном сопротивлении и ток, протекающий через него, можно по закону Ома для участка цепи определить величину этого сопротивления:

Закон Ома для полной цепи

При рассмотрении электрической цепи мы до сих пор не принимали в расчет того, что путь тока проходит не только по внешней части цепи, но также и по внутренней части цепи, внутри самого элемента, аккумулятора или другого источника напряжения.

Электрический ток, проходя по внутренней части цепи, преодолевает ее внутреннее сопротивление и потому внутри источника напряжения также происходит падение напряжения.

Читайте также:  Возникновение индукционных токов в проводнике при изменении магнитного поля

Следовательно, электродвижущая сила (э. д. с.) источника электрической энергии идет на покрытие внутренних и внешних потерь напряжения в цепи.

Если обозначить E – электродвижущую силу в вольтах, I – ток в амперах, r – сопротивление внешней цепи в омах, r – сопротивление внутренней цепи в омах, U – внутреннее падение напряжения и U – внешнее падение напряжения цепи, то получим, что

Это и есть формула закона Ома для всей (полной) цепи. Словами она читается так: ток в электрической цепи равен электродвижущей силе, деленной на сопротивление всей цепи (сумму внутреннего и внешнего сопротивлений).

Видео 2. Закон Ома для полной цепи

Пример 8. Электродвижущая сила E элемента равна 1,5 В, его внутреннее сопротивление r = 0,3 Ом. Элемент замкнут на сопротивление r = 2,7 Ом. Определить ток в цепи.

Пример 9. Определить э. д. с. элемента E, замкнутого на сопротивление r = 2 Ом, если ток в цепи I = 0,6 А. Внутреннее сопротивление элемента r = 0,5 Ом.

Вольтметр, включенный на зажимы элемента, покажет напряжение на них, равное напряжению сети или падению напряжения во внешней цепи.

Следовательно, часть э. д. с. элемента идет на покрытие внутренних потерь, а остальная часть – 1,2 В отдается в сеть.

Внутреннее падение напряжения

Тот же ответ можно получить, если воспользоваться формулой закона Ома для полной цепи:

Вольтметр, включенный на зажимы любого источника э. д. с. во время его работы, показывает напряжение на них или напряжение сети. При размыкании электрической цепи ток по ней проходить не будет. Ток не будет проходить также и внутри источника э. д. с., а следовательно, не будет и внутреннего падения напряжения. Поэтому вольтметр при разомкнутой цепи покажет э. д. с. источника электрической энергии.

Таким образом, вольтметр, включенный на зажимы источника э. д. с. показывает:
а) при замкнутой электрической цепи – напряжение сети;
б) при разомкнутой электрической цепи – э. д. с. источника электрической энергии.

Пример 10. Электродвижущая сила элемента 1,8 В. Он замкнут на сопротивление r =2,7 Ом. Ток в цепи равен 0,5 А. Определить внутреннее сопротивление r элемента и внутреннее падение напряжения U.

Так как r = 2,7 Ом, то

Из решенных примеров видно, что показание вольтметра, включенного на зажимы источника э. д. с., не остается постоянным при различных условиях работы электрической цепи. При увеличении тока в цепи увеличивается также внутреннее падение напряжения. Поэтому при неизменной э. д. с. на долю внешней сети будет приходиться все меньшее и меньшее напряжение.

В таблице 3 показано, как меняется напряжение электрической цепи (U) в зависимости от изменения внешнего сопротивления (r) при неизменных э. д. с. (E) и внутреннем сопротивлении (r) источника энергии.

Зависимость напряжения цепи от сопротивления r при неизменных э. д. с. и внутреннем сопротивлении r

E r r U = I × r U = I × r
2
2
2
0,5
0,5
0,5
2
1
0,5
0,8
1,33
2
0,4
0,67
1
1,6
1,33
1

Источник: Кузнецов М.И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560с.

Источник

Большая Энциклопедия Нефти и Газа

Закон — изменение — ток

Закон изменения тока / 0 может быть определен на основании следующего рассуждения. [2]

Закон изменения тока на интервале нарастания зависит от характера нагрузки. [3]

Закон изменения токов в схеме удобно в данном случае определить, используя метод мгновенных значений ( см. § 1 — 2), так как ток нагрузки в момент коммутации не изменяет своего значения. [4]

Закон изменения токов in, и in, во время перекрытия фаз рассмотрен ниже. [5]

Закон изменения тока вдоль линии ( на рис. 11.6 6 показан штрих-пунктиром) такой же, как и напряжения ( сплошные контуры), ибо во всех сечениях двухпроводной линии волна тока встречает одно и то же сопротивление — активное, равное волновому. [6]

Закон изменения тока при выключении катушки ( как и при ее включении) определяется параметрами R и L. Еще до подробного анализа уравнения тока, который приведен далее, можно отметить обстоятельства, позволяющие судить о характере уменьшения тока в катушке. [8]

Закон изменения тока внутри каждого интервала или импульса можно определить, решив систему дифференциальных уравнений, описывающих выпрямитель, и подставив в решение начальные для данного интервала ( импульса) значения этих токов. Но трансформатор серьезно осложняет эту задачу, потому что трансформаторный выпрямитель без перекрытия описывается минимум четырьмя независимыми уравнениями токов — одно для контура выпрямленного тока и три для контуров первичных токов. [9]

Определим закон изменения тока в коммутируемой секции. На рис. 24.10 показаны три этапа коммутации. [10]

Найти закон изменения тока в цепи, полагая, что зависимость потокосцепле-ния от тока приближенно задана уравнением г3 27.2, где i в амперах, F в вебе-рах. [11]

Установим закон изменения тока в секции в период коммутации, полагая для простоты, что ширина щетки равна ширине коллекторной пластины. Рассмотрим три основных этапа коммутации. [13]

Найти закон изменения токов /, it, i3 при заданных L 9 мгн и С 1000 пф для трех значений сопротивления: г104ож, / — 1 5.10 Э ом, г 0 5 — 103 ом. [14]

Источник