Как сделать защиту для блока питания по току

Как сделать защиту для блока питания по току

Надёжная токовая защита для БП и ЗУ на IR2153 и электронном трансформаторе.

Автор: Blaze, cornage@bk.ru
Опубликовано 09.02.2016
Создано при помощи КотоРед.

На создание данной статьи меня спровоцировал опыт создания блоков питания и зарядных устройств на основе простых импульсных блоков питания, которыми являются как иип на IR2153, так и переделанный различными способами под блок питания электронный трансформатор. Данные источники питания являются простыми, нестабилизированными импульсными блоками питания без каких-либо защит. Не смотря на данные недостатки, такие источники питания довольно просты в изготовлении,не требуют сложной настройки, времени на создание такого блока питания требуется меньше чем на полный ШИМ БП с узлами стабилизации и защиты.

Обьединив такой блок питания и простейший ШИМ- регулятор на NE555, получам регулируемый блок питания как для экспирементов, так и для зарядки АКБ. Радости нашей нет предела до того момента, пока данный девайс не попробовать на искру, или по ошибке, размышляя над созданием очередного аппарата перепутать полярность заряжаемого АКБ. Окрикивая громким хлопком и орошая едким дымом помещение,в котором произошол данный конфуз, изобретение сообщает нам, что простой импульсный блок питания, который собран по упрощённо-ознакомительной схеме не может быть надёжным.

Тут пришла мысль о том, чтобы найти не просто ввести тот или инной узел защиты в конкретный экземпляр блока питания, а найти или создать универсальную быстродействующую схему, которую можно внедрять в любой вторичный источник питания.

Требования к узлу защиты:

-плата защиты должна занимать мало места

-работоспособной при больших токах нагрузки

-высокая скорость срабатывания

Одним из заинтересовавших вариантов была такая схема, найденная в интерете:

При замыкании выхода данной схемы, разряжается ёмкость затвора VT1 через диод VD1, что приводит к закрытию VT1 и ток через транзистор не протекает, блок питания остаётся целым и невредимым. Но что же произойдёт если на выход данной схемы подключить нагрузку, в 300вт, когда наш иип может выдать всего 200вт? Не смотря на то что у нас присутствует схема защиты, замученный блок питания снова взрывается.

Недостатки данной схемы:

1. Необходимо точно подбирать сопротивление шунта, чтобы максимально допустимый ток блока питания создал такое падение напряжения на выбранном шунте, при котором VT2, открываясь полностью закроет VT1.

2. В данной схеме может наступить момент, когда ток проходящий через шунт, приоткроет VT2, вследствии чего VT1 начнёт закрываться и останется в таком состоянии, что будет недозакрыт, а учитывая что через VT1 протекает немалый ток, то данный линейный режим вызовет его сильный перегрев, врезультате которого VT1 будет пробит.

В блоке питания на IR2153 однажды применял триггерную защиту, остался доволен её работой. Прицепим к схеме триггерной защёлки на комплиментарной паре транзисторов шунт в качестве датчика тока и n-канальный транзистор в роли ключевого элемента получаем такую схему:

После подачи питания на схему, транзистор Q3, через светодиод и R4 открывается, стабилитрон D3 ограничивает напряжение на затворе полевого транзистора. D4 защищает Q3 от выбросов высокого напряжения, при подключении индуктивной нагрузки (электродвигатель). На паре транзисторов Q1, Q2 собран аналог тиристора. Ток, протекающий через шунт R1, вызывает падение напряжения, которое с движка переменного резистора R10, и цепочку R2, С2, поступает на базу транзистора Q2. Величину напряжения с шунта, которое пропорционально току, протекающему через этот шунт можно регулировать прерменным резистором R10. В момент, когда напряжение на базе Q2 станет больше 0.5-0.7в транзистор Q2 начнёт открываться, тем самым открывая Q1, в свою очередь транзистор Q1открываясь, будет открывать Q2. Данный процесс происходит очень быстро, за доли секунды транзисторы откроют друг друга и останутся в таком устойчивом состоянии. Через открытый аналог тиристора затвро Q3, а также резистор R4 окажутся подключены к общему проводнику схемы, что приведёт к закрытию Q3 и свечение светодиода D1 сообщит о том что сработала защита. Снять защиту можно как отключив кратковременно питание, так и кратковременным нажатием на кнопку S1.

Универсальная схема защиты была создана и проверена в работе, шунт R1 был составлен из двух резисторов 0.22 Ом 5Вт. Остался последний шаг — вводим в нвшу схему защиту от переполюсовки клемм АКБ.

Схема с защитой от переполюсовки :

Наша схема дополнилась диодом D2, резисторами R6, R5. Кнопка S1 была убрана из схемы по причине того, что при срабатывании защиты она не выводила схему из защиты, после доработки.

Токовая защита осталась без изменений, снять защиту можно отключив питание на 2-3 секунды. При подключении к выходу схемы АКБ, перепутав полярность, напряжение с АКБ через диод D2, резистор R6 поступает на базу Q2, срабатывает защита Q3 закрывается, светодиод D1 сигнализирует о срабатывании защиты.

На этой волне я заканчиваю поиски защиты для своих простых иип. Работой своих схем доволен, надеюсь они пригодятся и вам.

Источник

Лабораторный блок питания с защитой по току

Доброго дня, радиолюбители-самоделкины!

Никому не открою Америку, если скажу, что на рабочем столе любого уважающего себя радиолюбителя должен стоять полноценный лабораторный блок питания. В начале своего радиолюбительского пути я питал самодельные электронные самоделки от каких угодно бытовых блоков питания, даже от телефонных зарядок. Это мало того, что дико неудобно, так ещё и несколько раз приводило к фееричной пиротехнике — неправильно собранная схема давала КЗ, в итоге фонтан искр, сгоревшая схема и испорченное настроение. В один момент мне это надоело и я решил с нуля создать свой, полноценный и функциональный лабораторный блок питания в большом просторном корпусе, с лицевой панелью в духе лабораторных приборов прошлого века. Особенностью моего блока питания будет применение стрелочных индикаторов напряжения и тока. Казалось бы, они ещё давно отошли на второй план после появления цифровых, но практика показывает, что наблюдать показания вольтметра и амперметра куда удобнее и нагляднее на стрелочных головках. К тому же они смотрятся антуражно, в отличие от ширпотребских цифровых показометров. Блок питания должен отвечать следующим требованиям:

Читайте также:  Чем регулировать силу тока зарядки

Далее рассмотрим подробно каждую составляю часть блока питания. Итак, первым делом идёт регулятор напряжения — буквально основа всего блока питания. Его схема представлена ниже.

Регулятор напряжения построен на микросхеме LM338, данная микросхема является очень удачным линейным регулятором напряжения, представляет собой более мощный аналог известной LM317. Способна без проблем пропустить через себя ток в 5А, и это при наличии запаса — ведь в характеристиках максимальный ток заявлен в 8А. Особенностью линейных регуляторов напряжения является то, что всё «неиспользуемое» напряжение они рассеивают на себе. Поэтому микросхема будет рассеивать на себе большое количество тепла, особенно когда напряжение на выходе маленькое, а ток большой (на микросхеме мощность придётся бОльшая, чем на саму нагрузку). Справится с нагревом в дальнейшем поможет радиатор от компьютерного процессора и вентилятором, но зато уровень пульсаций напряжения на выходе будет минимальным. На схеме показан конденсатор ёмкостью 8 800 мкФ на входе, он представляет собой четыре конденсатора по 2 200 мкФ, включенные параллельно. Переменный резистор Р2 регулирует напряжение на выходе, сюда очень кстати будет поставить многооборотный для более точной настройки напряжения на выходе, но подойдёт и обычный. Характеристика потенциометра обязательно должна быть линейной.

Неотъемлемой часть блока питания является вентилятор, а значит, не лишним будет предусмотреть его автономную работу, чтоб включался он только тогда, когда температура радиатора превысит определённый уровень. Есть много схем подобных регуляторов всего на 1-2 транзисторах, но я решил разработать свой вариант на компараторе, так как он позволяет точно задавать порог срабатывания и достаточно надёжен. Схема представлена ниже.

Операционный усилитель работает в роли компаратора, сравнивая напряжение на своих входах. Подстроечным резистором Р1 задаёт порог срабатывания по температуре, оптимально установить включения вентилятора при 50-60 градусах, радиатор быстро остынет. Транзистор Т1 коммутирует вентилятор, сюда желательно поставить NPN транзистор помощней, например, КТ819, особенно если используемый вентилятор достаточно мощный. Светодиод LED1 указывает на то, что вентилятор работает, для наглядности можно будет в дальнейшем вывести этот светодиод на переднюю панель. Особенно хочу обратить внимание на терморезистор. Сюда подойдёт практически любой NTC терморезистор сопротивлением около 100 кОм. Его необходимо надёжно установить на радиатор LM338, обеспечив полное прилегание. Как только терморезистор нагреется от радиатора, произойдёт срабатывание компаратора, включится вентилятор и остудит радиатор. Гистерезис срабатываний задаётся резистором обратной связи R5.

Следующий модуль блока питания — схема, обеспечивающая защиту по току. Как видно из этой схемы, напряжение на неё подаётся с выхода регулятора. И если плюс просто напрямую проходит через всю схему, то вот минус идёт через шунт — низкоомный резистор R3, его сопротивление должно быть 0,1 Ома. Такое низкое сопротивление не нарушает работу блока питания, зато позволяет детектировать превышение потребляемого тока. Полевой транзистор Т2 разрывает цепь питания нагрузки по минусу, если схема срабатывает. Также на схеме виден галетный переключатель на 4 положения и также 4 подстроечных резистора — с их помощью можно выбирать и вручную настраивать значения токов, при которых будет срабатывать защита. На мой взгляд, оптимальными значениями будут 50 мА, 300 мА, 1 А, 5 А. Подстроечные резисторы Р1 и Р2 отвечают за чувствительность и гистерезис срабатывания защиты соответственно. В большинстве случаев достаточно просто оставить их в среднем положении. Кнопка без фиксации S1 нужна для сброса защиты. Данная схема хорошо себя зарекомендовала именно высокой чувствительностью. Например, если подключить к выходам блока питания микроконтроллер обратной полярностью и установить режим защиты по току на 50 мА, то микроконтроллер останется жив, защита сработает моментально.

Стрелочные индикаторы хороши тем, что представляют информацию в наглядном виде, нет необходимости следить за прыгающими цифрами на электронном экране. Для того, чтобы использовать стрелочную головку в качестве вольтметра достаточно просто подключить её параллельно выходу, поставив последовательно с ним подстроечный резистор на 1-2МОм. После сборки нужно будет откалибровать вольтметр этим подстроечным резистором с помощью точного мультиметра.

А вот с подключением второй стрелочной головки в качестве амперметра не всё так просто. Конечно, можно подключить её просто последовательно с выходном блока питания, подобрав соответствующий шунт. Но тогда получится суммарно два шунта (помните, первый в схеме защиты по току), что уже много. Поэтому будем использовать шунт из предыдущей схемы на 0,1 Ома и соберём простую схему усилителя шунта, на выход которой подключим стрелочную головку. Галетный переключатель на три положения позволит выбирать разные пределы измерения вольтметра. Амперметр также, как и вольтметр, нужно будет откалибровать после сборки всего блока блока питания.

Со схемами разобрались, самое сложное позади. Теперь осталось только собрать всё воедино, все схемы собираются на одной печатной плате, она прилагается к статье. Плата выполняется ЛУТом, процесс создания виден на фото ниже.

Теперь запаиваем детали, рекомендую проверять всё перед запайкой, ведь делаем блок питания, как говорится «на века». Все органы управления, а также микросхема LM338 выводятся на проводах, они припаиваются в последнюю очередь. Ниже представлены подробные фотографии процесса сборки.

Читайте также:  Блуждающие токи подземных сооружений от коррозии

Последний этап — изготовление корпуса. Чтобы на передней панели уместились все многочисленные ручки, светодиоды и массивные стрелочные приборы, панель должна быть большой, соответственно и размеры корпуса получатся солидные. Это хорошо, ведь внутрь как раз может поместится трансформатор, либо импульсный сетевой блок питания. Либо питание можно подвести от внешнего трансформатора, через разъём, я так и сделал. Фотографии изготовления корпуса ниже.





Для вентилятора нужно выпилить круглое окошко на задней стенке, не лишним будет поставить туда же решётку. При этом стоит учитывать, что если корпус блока питания поставить вплотную к стене, то вентилятор закроется, поэтому зазор до задней стенки должен быть как минимум 1 см. Корпус большой и просторный, поэтому размещать внутри него заранее собранную электронику одно удовольствие. Множество фотографий с разных ракурсов ниже.



Таким образом, получится красивый, функциональный и полезный блок питания, который станет верным другом и помощником любого радиолюбителя. Внутри много свободного места, а значит, есть возможность для доработок и усовершенствования. Чего, на ваш взгляд, не хватает в этом устройстве? Жду ваших вариантов в комментариях.


Расположение органов управления на передней панели одновременно компактное и эргономичное. Светодиоды показывают, если ли напряжение на входе, включено ли напряжение на выходе, состояние защиты по току и состояние вентилятора охлаждение. Не стоит также забывать про такой важный элемент, как тумблер включения-выключения нагрузки на выходе — он должен выдерживать ток в 5А и находится в удобном месте. Питать такой лабораторный блок питания можно, например, от ноутбучного блока питания на 19В, либо сетевого трансформатора на 24В. Удачной сборки! Все вопросы, замечания и дополнения пишите в комментарии.

Источник

Защита от КЗ для блока питания своими руками

Иногда при наладке самодельных электронных устройств получается короткое замыкание, из за которого может выйти из строя блок питания. Поэтому у блока питания должна быть надежная защита от короткого замыкания, способная в нужный момент быстро отключить замкнувшую нагрузку и уберечь блок питания от поломки.

На этом рисунке изображена схема простого устройства предназначенного для надежной защиты блока питания от короткого замыкания.

Схема защиты блока питания от короткого замыкания

Схема защиты блока питания от короткого замыкания

Принцип работы релейной защиты довольно простой. При подаче напряжения на схему в режиме ожидания загорается красный светодиод. После нажатии кнопки S1 ток поступает на обмотку реле, контакты переключаются и блокируют обмотку реле, таким образом схема переходит в рабочий режим, об этом сигнализирует загоревшийся зеленый светодиод, ток поступает на нагрузку. При возникновении короткого замыкания пропадает напряжение на обмотке реле, контакты его размыкаются, нагрузка автоматически отключается, загорается красный светодиод сигнализируя о срабатывании релейной защиты.

Схема предназначена для работы с постоянным выходным напряжением от 8 до 15 вольт, поэтому будет отлично работать с зарядным устройством из компьютерного блока питания, а также с любыми другими трансформаторными или импульсными блоками питания имеющими выходное напряжение в указанном диапазоне.

Данную схему можно считать универсальной, потому что её легко переделать под любое напряжение, достаточно всего лишь заменить реле под нужное вам напряжение, ну и конечно при необходимости подобрать резисторы R1 и R2 под установленные в схему светодиоды.

Печатная плата устройства защиты блока питания от короткого замыкания.

Печатная плата защиты блока питания от короткого замыкания

Печатная плата защиты блока питания от короткого замыкания

Посмотрим, как работает готовое устройство защиты блока питания от короткого замыкания. В дежурном состоянии после подачи питания, горит красный светодиод, нагрузка отключена.

Защита от КЗ для блока питания

Нажимаем кнопку и устройство перейдет в рабочий режим.

Защита от КЗ для блока питания

Загорелся зеленый светодиод, сигнализируя о подаче питания на нагрузку, в качестве нагрузки я использую обыкновенную 12 вольтовую лампочку.

Защита от КЗ для блока питания

С помощью отвертки замыкаю между собой центральный контакт с цоколем лампочки, получается короткое замыкание, мгновенно срабатывает защита от КЗ, нагрузка отключается, загорается красный светодиод своим светом сообщая о коротком замыкании.

Радиодетали для сборки

  • Реле SRD-12VDC-SL-C, можно использовать аналогичное на другое напряжение
  • Резисторы R1, R2 1K сопротивление подбирайте для каждого светодиода
  • Светодиоды 5 мм 2 шт. красный и зеленый
  • Кнопка любая без фиксации с нормально разомкнутыми контактами

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать защиту от короткого замыкания для блока питания

Источник

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

  • Вычислительная техника
    • Микроконтроллеры микропроцессоры
    • ПЛИС
    • Мини-ПК
  • Силовая электроника
  • Датчики
  • Интерфейсы
  • Теория
    • Программирование
    • ТАУ и ЦОС
  • Перспективные технологии
    • 3D печать
    • Робототехника
    • Искусственный интеллект
    • Криптовалюты

Чтение RSS

Простая схема защиты от превышения тока на основе операционного усилителя

Схемы защиты жизненно важны для любого электронного прибора. Защита от перенапряжения, защита от короткого замыкания, защита от обратной полярности и т.д. – все это очень важно в электронике. В этой статье вы узнаете, как спроектировать и собрать простую схему защиты от перегрузки по току с использованием операционного усилителя.

Простая схема защиты от превышения тока на основе операционного усилителя

Защита от превышения тока или перегрузки по току часто используется в цепях электропитания для ограничения выходного тока блока питания. Термин «Перегрузка по току» – это состояние, когда нагрузка потребляет большой ток, чем указанные возможности блока питания. Это может быть опасной ситуацией, поскольку состояние перегрузки по току может повредить источник питания. Поэтому инженеры обычно используют схему защиты от превышения тока для отключения нагрузки от источника питания во время таких случаев неисправности, таким образом защищая нагрузку и источник питания.

Существует много типов цепей защиты от перегрузки по току. Сложность схемы зависит от того, как быстро защитная цепь должна реагировать в ситуации перегрузки по току. В этом проекте мы создадим простую схему защиты от перегрузки по току с использованием операционного усилителя, который очень часто используется и может быть легко адаптирован для ваших проектов.

Читайте также:  Сварочные инверторы ограничение тока

Схема, которую мы собираемся спроектировать, будет иметь настраиваемое пороговое значение максимального тока, а также функцию автоматического перезапуска при сбое. Поскольку это схема защиты от перегрузки по току на основе операционного усилителя, в качестве приводного устройства будет использоваться операционный усилитель. Для этого проекта используется ОУ общего назначения LM358. На рисунке ниже показана схема контактов LM358.

LM358

Как видно на изображении выше, внутри одного корпуса у нас будет два канала операционного усилителя. Однако для этого проекта используется только один канал. Операционный усилитель будет переключать (отключать) выходную нагрузку с помощью полевого транзистора (MOSFET). Для этого проекта используется N-канальный MOSFET IRF540N. Рекомендуется использовать надлежащий радиатор для MOSFET, если ток нагрузки превышает 500 мА. Однако для этого проекта MOSFET используется без радиатора. На изображении ниже представлена схема распиновки IRF540N.

IRF540N

Для питания операционного усилителя и схемы используется линейный стабилизатор напряжения LM7809. Это линейный стабилизатор напряжения на 9 В 1 А с широким номинальным входным напряжением. Распиновку можно увидеть на следующем изображении.

LM7809

Простая схема защиты от превышения тока может быть разработана с использованием операционного усилителя для определения перегрузки по току, и на основании полученного результата мы можем управлять полевым транзистором для отключения / подключения нагрузки к источнику питания. Принципиальная схема этого проекта проста, и ее можно увидеть на следующем рисунке.

Простая схема защиты от превышения тока на основе операционного усилителя

Как видно из принципиальной схемы, MOSFET IRF540N используется для управления нагрузкой как ВКЛ или ВЫКЛ во время нормального состояния и состояния перегрузки. Но прежде чем отключить нагрузку, важно определить ток нагрузки. Это делается с помощью резистора R1, который представляет собой шунтирующий резистор 1 Ом с номинальной мощностью 2 Вт. Этот метод измерения тока называется измерением тока с помощью шунтирующего резистора.

Во время включенного состояния MOSFET ток нагрузки протекает через сток MOSFET к истоку и, наконец, к GND через шунтирующий резистор. В зависимости от тока нагрузки шунтирующий резистор создает падение напряжения, которое можно рассчитать по закону Ома. Поэтому предположим, что для 1 А тока (тока нагрузки) падение напряжения на шунтирующем резисторе составляет 1 В при V = I x R (V = 1 A x 1 Ом). Таким образом, если это падение напряжения сравнивать с предварительно определенным напряжением с помощью операционного усилителя, мы можем обнаружить ток перегрузки и изменить состояние полевого транзистора, чтобы отключить нагрузку.

Операционный усилитель обычно используется для выполнения математических операций с напряжением, таких как сложение, вычитание, умножение и т. д. Поэтому в этой схеме операционный усилитель LM358 сконфигурирован как компаратор. Согласно схеме, компаратор сравнивает два значения. Первый из них является падение напряжения через шунт, а другой представляет собой предопределенное напряжение (опорное напряжение), используя переменный резистор или потенциометр RV1. RV1 действует как делитель напряжения. Падение напряжения на шунтирующем резисторе определяется инвертирующим выводом компаратора и сравнивается с опорным напряжением, которое подключено к неинвертирующему выводу операционного усилителя.

В связи с этим, если считанное напряжение меньше, чем опорное напряжение, компаратор будет производить положительное напряжение на выходе, которое близко к напряжению питания VCC компаратора. Но, если считанное напряжение больше, чем опорное напряжение, компаратор будет выдавать отрицательное напряжение питания на выходе (отрицательное питание подключено через GND, поэтому 0 В в данном случае). Это напряжение достаточно для включения или выключения MOSFET.

Но когда высокая нагрузка будет отключена от источника питания, переходные изменения создадут линейную область характеристики компаратора, и это создаст петлю (гистерезис), в которой компаратор не сможет правильно включить или выключить нагрузку, и операционный усилитель станет нестабильным. Например, предположим, 1 А устанавливается с помощью потенциометра для перевода полевого транзистора в состояние ВЫКЛ. Поэтому переменный резистор настроен на выход 1 В. В ситуации, когда компаратор обнаруживает, что падение напряжения на шунтирующем резисторе составляет 1,01 В (это напряжение зависит от точности операционного усилителя или компаратора и других факторов), компаратор отключит нагрузку. Переходные изменения происходят, когда высокая нагрузка внезапно отключена от блока питания, и это кратковременное повышение опорного напряжения, которое заставляет его работать в линейной области.

Лучший способ для решения этой проблемы заключается в использовании стабильного питания через компаратор, где переходные изменения не влияют на входном напряжение компаратора и источник опорного напряжения. В этой схеме это выполняется с помощью линейного стабилизатора LM7809 и с использованием гистерезисного резистора R4, резистора на 100 кОм. LM7809 обеспечивает надлежащее напряжение на компараторе, так что переходные изменения на линии электропередачи не влияют на компаратор. Конденсатор C1 на 100 мкФ используется для фильтрации выходного напряжения.

Гистерезисный резистор R4 подает небольшую часть входного сигнала на выход операционного усилителя, который создает разрыв напряжения между низким порогом (0,99 В) и высоким порогом (1,01 В), когда компаратор изменяет свое состояние выхода. Компаратор не изменяет состояние немедленно, если достигается пороговая точка, вместо этого, чтобы изменить состояние с высокого на низкое, уровень измеряемого напряжения должен быть ниже, чем нижний порог (например, 0,97 В вместо 0,99 В). или чтобы изменить состояние с низкого на высокое, измеренное напряжение должно быть выше верхнего порога (1,03 вместо 1,01). Это повысит стабильность компаратора и уменьшит ложные срабатывания. Кроме этого резистора, R2 и R3 используются для управления затвором. R3 – резистор затвора полевого транзистора.

Схема собрана на макетной плате и протестирована с использованием настольного источника питания и переменной нагрузки постоянного тока.

Простая схема защиты от превышения тока на основе операционного усилителя

Схема была протестировано, в результате испытаний выход успешно отключался при различных значениях, установленных переменным резистором.

Источник

Поделиться с друзьями
Блог электрика
Adblock
detector