Меню

Как провести ток по воздуху



Беспроводная передача электричества по теории Тесла

Многие годы ученые бьются над вопросом минимизации электрических расходов. Есть разные способы и предложения, но все, же самой известной теорией является беспроводная передача электричества. Предлагаем рассмотреть, как она выполняется, кто является её изобретателем и почему пока что её не воплотили в жизнь.

Теория

Беспроводное электричество – это буквально передача электрической энергии без проводов. Люди часто сравнивают беспроводную передачу электрической энергии с передачей информации, например, радио, сотовые телефоны, или Wi-Fi доступ в Интернет. Основное различие заключается в том, что с радио-или СВЧ-передач – это технология, направленная на восстановление и транспортировку именно информации, а не энергии, которая изначально была затрачена на передачу.

Беспроводной электроэнергии является относительно новой областью технологии, но достаточно динамично развивающейся. Сейчас разрабатываются методы, как эффективно и безопасно передавать энергию на расстоянии без перебоев.

Как работает беспроводное электричество

Основная работа основана именно на магнетизме и электромагнетизме, как и в случае с радиовещанием. Беспроводная зарядка, также известна как индуктивная зарядка, основана на нескольких простых принципах работы, в частности технология требует наличия двух катушек. Передатчика и приемника, которые вместе генерируют переменное магнитное поле непостоянного тока. В свою очередь это поле вызывает напряжение в катушке приемника; это может быть использовано для питания мобильного устройства или зарядки аккумулятора.

Если направить электрический ток через провод, то вокруг кабеля создается круговое магнитное поле. Несмотря на то, что магнитное поле воздействует и на петлю, и на катушку сильнее всего оно проявляется именно на кабеле. Когда возьмете второй моток проволоки, на который не поступает электрический ток, проходящий через него, и место, в которое мы установим катушку в магнитном поле первой катушки, электрический ток от первой катушки будет передаваться через магнитное поле и через вторую катушку, создавая индуктивную связь.

Как пример возьмем электрическую зубную щетку. В ней зарядное устройство подключено к розетке, которая отправляет электрический ток на витой провод внутри зарядного устройства, создающего магнитное поле. Существует вторая катушка внутри зубной щетки, когда ток начинает поступать и на неё, благодаря образовавшемуся МП, начинается заряд щетки без её непосредственного подключения к сети питания 220 В.

История

Беспроводная передача энергии в качестве альтернативы передачи и распределения электрических линий, впервые была предложена и продемонстрирована Никола Тесла. В 1899 году Тесла презентовал беспроводную передачу на питание поля люминесцентных ламп, расположенных в двадцати пяти милях от источника питания без использования проводов. Но в то время было дешевле сделать проводку из медных проводов на 25 миль, а не строить специальные электрогенераторы, которых требует опыт Тесла. Патент ему так и не выдали, а изобретение осталось в закромах науки.

В то время как Тесла был первым человеком, который смог продемонстрировать практические возможности беспроводной связи еще в 1899 году, сегодня, в продаже есть совсем немного приборов, это беспроводные щетки наушники, зарядки для телефонов и прочее.

Технология беспроводной связи

Беспроводной передачи энергии включает в себя передачу электрической энергии или мощности на расстоянии без проводов. Таким образом, основная технология лежит на концепции электроэнергии, магнетизма и электромагнетизма.

Магнетизм

Это фундаментальная сила природы, которая провоцирует определенные типы материала притягивать или отталкивать друг друга. Единственными постоянными магнитами считаются полюса Земли. Ток потока в контуре генерирует магнитные поля, которые отличаются от осциллирующих магнитных полей скоростью и временем, потребным для генерации переменного тока (AC). Силы, которые при этом появляются, изображает схема ниже.

Так появляется магнетизм

Электромагнетизм – это взаимозависимость переменных электрических и магнитных полей.

Магнитная индукция

Если проводящий контур подключен к источнику питания переменного тока, он будет генерировать колебательное магнитное поле внутри и вокруг петли. Если второй проводящий контур расположен достаточно близко, он захватит часть этого колеблющегося магнитного поля, которое в свою очередь порождает или индуцирует электрический ток во второй катушке.

Видео: как происходит беспроводная передача электричества

Таким образом, происходит электрическая передача мощности от одного цикла или катушки к другой, что известно как магнитная индукция. Примеры такого явления используются в электрических трансформаторах и генератора. Это понятие основано на законах электромагнитной индукции Фарадея. Там, он утверждает, что, когда есть изменение магнитного потока, соединяющегося с катушкой ЭДС, индуцированного в катушке, то величина равна произведению числа витков катушки и скорости изменения потока.

Электрический трансформатор

Электрический трансформатор

Мощностная муфта

Эта деталь необходима, когда одно устройство не может передавать энергию на другой прибор.

Магнитная связь генерируется, когда магнитное поле объекта способно индуцировать электрический ток с другими устройствами в поле его досягаемости.

Два устройства, как говорят, взаимно индуктивно-связанной или магнитную связь, когда они выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода посредством электромагнитной индукции. Это связано с взаимной индуктивности

Технология

принцип индуктивной связи

Принцип индуктивной связи

Два устройства, взаимно индуктивно-связанные или имеющие магнитную связь, выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода, производится посредством электромагнитной индукции. Это связано с взаимной индуктивностью.
Индуктивная связь является предпочтительной из-за её способности работать без проводов, а также устойчивости к ударам.

Резонансная индуктивная связь является сочетанием индуктивной связи и резонанса. Используя понятие резонанса можно заставить два объекта работать зависимо от сигналов друг друга.

Концепция резонанса индуктивной связи

Как видно из схемы выше, резонанс обеспечивает индуктивность катушки. Конденсатор подключен параллельно к обмотке. Энергия будет перемещаться назад и вперед между магнитным полем, окружающим катушку и электрическим полем вокруг конденсатора. Здесь потери на излучение будет минимальными.

Существует также концепция беспроводной ионизированной связи.

Она тоже воплотима в жизнь, но здесь необходимо приложить немного больше усилий. Эта техника уже существует в природе, но вряд ли есть целесообразность ее реализации, поскольку она нуждается в высоком магнитном поле, от 2,11 М /м [10] . Её разработал гениальный ученый Ричард Волрас, разработчик вихревого генератора, который посылает и передает энергию тепла на огромные расстояния, в частности при помощи специальных коллекторов. Самой простой пример такой связи – это молния.

Плюсы и минусы

Конечно, у этого изобретения есть свои преимущества перед проводными методиками, и недостатки. Предлагаем их рассмотреть.

К достоинствам относятся:

  1. Полное отсутствие проводов;
  2. Не нужны источники питания;
  3. Необходимость батареи упраздняется;
  4. Более эффективно передается энергия;
  5. Значительно меньше нужно технического обслуживания.

К недостаткам же можно отнести следующее:

  • Расстояние ограничено;
  • магнитные поля не так уж и безопасны для человека;
  • беспроводная передача электричества, с помощью микроволн или прочих теорий практически неосуществима в домашних условиях и своими руками;
  • высокая стоимость монтажа.

Источник

Способы беспроводной передачи электричества на расстояние

Способы передачи энергии без проводов

При своем появлении переменный электрический ток казался фантастикой. Его изобретатель, гениальный физик Никола Тесла, еще на рубеже XIX и XX столетий исследовал проблему беспроводной передачи электричества на большие расстояния. Пока что эта проблема решена не до конца, но полученные результаты обнадеживают.

  • Ультразвук для передачи энергии
  • Применение электромагнитной индукции
  • Использование различных микроволн
  • Перспективы солнечной энергетики
  • Наиболее эффективный метод
  • Перспективы беспроводной передачи электричества
Читайте также:  Батарея аккумулятора имеет эдс 12 в сила тока в цепи 4 а 11

Ультразвук для передачи энергии

Любая волна переносит энергию, в том числе и звуковые волны высокой частоты. Существует три подхода к беспроводной передаче электричества:

  • передача электрической энергии через преобразование в другой вид энергии в источнике и обратное преобразование в электричество в приемном устройстве;
  • создание и использование альтернативных проводников электричества (плазменных каналов, столбов ионизированного воздуха и т. д. );
  • использование токопроводящих свойств литосферы Земли.

Беспроводное электричество

Метод применения ультразвука относится к первому подходу. В источнике ультразвука особого вида при подаче электропитания возникает направленный пучок звуковых волн высокой частоты. При их попадании на приемник энергия звуковых волн преобразуется в электрический ток.

Максимальное расстояние передачи электроэнергии без проводов составляет 10 метров. Результат получен в 2011 году представителями университета Пенсильвании во время презентации в рамках выставки «The All Things Digital». Этот метод не считается перспективным из-за нескольких его недостатков: низкий КПД, малое получаемое напряжение и ограничение на силу излучения ультразвука санитарными нормами.

Применение электромагнитной индукции

Хотя большинство людей даже и не подозревает об этом, этот метод используется уже очень давно, практически с самого начала использования переменного тока. Самый обычный трансформатор переменного тока является простейшим устройством беспроводной передачи электроэнергии, только расстояние передачи при этом очень маленькое.

Первичная и вторичная обмотки трансформатора не соединены в одну цепь, а при протекании переменного тока в первичной обмотке возникает электроток во вторичной. Перенос энергии при этом происходит посредством электромагнитного поля. Поэтому этот метод беспроводной передачи электроэнергии использует преобразование энергии из одного вида в другой.

Передача электроэнергии без проводов

Уже разработаны и успешно используются в быту ряд приборов, работа которых основана на этом методе. Это и беспроводные зарядные устройства для мобильных телефонов и других гаджетов, и бытовые электроприборы с низким потреблением электроэнергии при работе (компактные камеры видеонаблюдения, всевозможные датчики и даже телевизоры с жидкокристаллическими экранами).

Многие специалисты утверждают, что электротранспорт будущего будет использовать беспроводные технологии зарядки аккумуляторов или получения электроэнергии для движения. В дороги будут вмонтированы индукционные катушки (аналоги первичной обмотки трансформатора). Они будут создавать переменное электромагнитное поле, которое при проезде транспорта над ним вызовет течение электротока во встроенной приемной катушке. Первые эксперименты уже проведены и полученные результаты вызывают сдержанный оптимизм.

Из достоинств такого способа можно отметить:

  • высокий КПД для небольших расстояний (порядка нескольких метров);
  • простота конструкции и освоенная технология применения;
  • относительная безопасность для здоровья людей.

Недостаток метода — малое расстояние, на котором передача энергии эффективна — существенно снижает область применения беспроводного электричества на основе электромагнитной индукции.

Использование различных микроволн

Вариант беспроводной передачи энергии

Этот метод также основан на преобразовании разных видов энергии. В роли переносчика энергии служат электромагнитные волны сверхвысокой частоты. Впервые этот метод описал и практически реализовал в своей установке японский физик и радиотехник Хидэцугу Яги в двадцатых годах прошлого века. Частота радиоволн для передачи электроэнергии без проводов находится в диапазоне от 2,4 до 5,8 ГГц. Уже протестирована и получила положительные отзывы экспериментальная установка, которая одновременно раздает Wi-Fi и запитывает слабомощные бытовые электроприборы.

Лазерный луч также является электромагнитным излучением, но с особым свойством — когерентностью. Оно уменьшает потери энергии при передаче и тем самым повышает КПД. Из достоинств можно отметить следующие:

  • возможность передачи на большие расстояния (десятки километров в атмосфере Земли);
  • удобство и простота установки для маломощных приборов;
  • наличие визуального контроля процесса передачи — лазерный луч виден невооруженным глазом.

Лазерный метод имеет и недостатки, а именно: сравнительно низкий КПД (45−50%), потери энергии из-за атмосферных явлений (дождь, туман, пылевые тучи) и необходимость нахождения передатчика и приемника в поле видимости.

Перспективы солнечной энергетики

Перспективы солнечной энергетики

Интенсивность солнечного света за пределами земной атмосферы в несколько десятков раз выше, чем на поверхности Земли. Поэтому в перспективе, как считают футурологи, солнечные электростанции будут располагаться на околоземной орбите. А передача накопленной электроэнергии, по их мнению, будет производиться без токоведущих проводов. Будет разработан и применен способ передачи, копирующий разряды молний, тем или иным способом планируется производить ионизацию воздуха. И первые опыты в этом направлении уже проведены. Этот метод основан на создании альтернативных беспроводных проводников электротока.

Полученное таким способом с околоземной орбиты беспроводное электричество носит импульсивный характер. Поэтому для его практического применения нужны мощные и недорогие конденсаторы, а также необходимо будет разработать способ их постепенной разрядки.

Наиболее эффективный метод

Перспективы беспроводной энергетики

Планета Земля является огромным конденсатором. Литосфера, в основном, проводит электричество за исключением небольших ее участков. Существует теория, что беспроводная передача энергии может осуществляться через земную кору. Суть такова: источник тока надежно контактирует с поверхностью земли, переменный ток определенной частоты перетекает с источника в кору и распространяется во всех направлениях, через определенные промежутки в земле размещаются приемники электротока, с которых он передается потребителям.

Суть теории в том, чтобы принимать и использовать ток только одной заданной частоты. Как в радиоприемнике настраивается частота приема радиоволн, так и в таких электроприемниках будет регулироваться частота принимаемого тока. Теоретически таким методом возможно будет передавать электроэнергию на очень большие расстояния, если частота переменного тока будет низкой, порядка нескольких Гц.

Перспективы беспроводной передачи электричества

Теория беспроводной энергетики

В близкой перспективе ожидается массовое внедрение в быт системы PoWiFi, состоящей из роутеров с функцией передачи электроэнергии на несколько десятков метров, и бытовых приборов, питание которых осуществляется за счет приема электричества из радиоволн. Такая система в данный момент активно тестируется и готовится к широкому использованию. Детали не разглашаются, но по имеющейся информации «изюминка» заключается в том, что используется синхронизация электромагнитных полей источника и приемника беспроводного электричества.

В очень отдаленной перспективе рассматривается вариант отказа от использования традиционных электростанций в глобальном масштабе — будут использоваться солнечные станции на околоземной орбите, преобразующие энергию солнечного света в электрическую. На поверхность планеты электричество предположительно передаваться будет через ионизированный воздух или плазменные каналы. А на самой земной поверхности исчезнут обычные линии электропередачи, их место займут более компактные и эффективные системы передачи электричества через литосферу.

Фотография Валерия Александровича

Ладыжин Валерий

Источник

Беспроводная передача электроэнергии

Решить проблему беспроводной передачи электрической энергии на большие расстояния – давнишняя мечта человечества. Можно представить, насколько бы подешевела электроэнергия без затрат на токопроводную продукцию. Научно-техническая революция не стоит на месте. Есть надежда, что эта мечта сбудется в недалёком будущем. Тому свидетельствуют новые разработки в данной сфере.

Мечта человечества – беспроводная передача электроэнергии

История беспроводной передачи энергии

Великий французский физик Ампер в 1820 году путём многочисленных опытов пришёл к выводу о том, что магнитное поле может возбуждать в теле металла электрический ток. Так появился основополагающий закон Ампера.

Майкл Фарадей в 1831 открыл закон индукции, который стал базой для развития такой науки, как электромагнетизм.

Джеймс Максвелл после долгих экспериментов систематизировал свои наблюдения, квинтэссенцией которых в 1864 году стало уравнение Максвелла. Формула объясняла поведение электромагнитного поля.

Никола Тесла усовершенствовал аппарат для генерации электромагнитного поля, изобретённый Генрихом Герцем в 1888 году. На Всемирной выставке в 1893 г., состоявшейся в Чикаго, Тесла продемонстрировал свечение фосфорных лампочек без проводов.

Читайте также:  Определите силу тока в электрической лампе если через нее нить накала за 5 мин проходит

Никола Тесла

Свой вклад в развитие беспроводной передачи энергии сделал русский учёный Александр Попов. В 1895 г. на заседании Русского физико-химического общества он показал изобретённый им детекторный радиоприёмник.

Далее вплоть до наших дней происходило патентование новых изобретений в области беспроводной передачи электрической энергии. Были произведены масса экспериментов, совершенно большое количество открытий. Последнее достижение в этой сфере – это передача электричества на большие расстояния без проводов с помощью технологии Wi-Fi. В 2017 году изобретён мобильный телефон без батареи.

Как это работает

Беспроводное электричество базируется на таком явлении, как электромагнетизм. В работе участвуют две катушки из металлических проводов. Одна из них подключена к источнику тока, вокруг которой создаётся магнитное поле. Вторая катушка, воспринимая это поле, индуцирует в своей обмотке вторичный электрический ток.

Схема передачи электричества без проводов

Принципы передачи

В последних разработках учёных из США и Южной Кореи применялись магнитно-резонансные системы CMRS и DCRS. Корейская технология оказалась более совершенной. Удалось передать электроэнергию на 5 метров. Благодаря компактным дипольным катушкам DCRS, можно запитать всех потребителей в помещении средних размеров без проводов.

Важно! Несовершенство современной аппаратуры существенно ограничивает длину пути электричества по воздуху.

Несмотря на это, учёные всего мира заняты получением новых технологий, задача которых – передача энергии на расстоянии в десятки и сотни километров. Уже сегодня развиваются и претворяются в жизнь новые достижения науки в области доставки электроэнергии без проводных линий электропередач.

Технологии

Наиболее перспективными направлениями в разработке новых методов и способов транспортировки электричества без материального контакта являются:

  • ультразвуковой способ;
  • метод электромагнитной индукции;
  • электростатическая индукция;
  • микроволновое излучение;
  • лазерный метод;
  • электропроводность Земли.

Ультразвуковой способ

Студентами Пенсильванского университета (США) на недавней выставке в 2011 году был продемонстрирован способ передачи электротока с помощью ультразвука. Передатчик генерировал акустические волны в ультразвуковом диапазоне, приёмник преобразовывал их в электрический ток. В качестве носителя энергии ультразвук был выбран не случайно. Его воздействие на организм человека абсолютно безвредно.

Несовершенство этого способа заключается в том, что КПД передачи очень низкий, нужны прямая видимость между абонентами и ограниченность расстояния (7-10 метров).

Метод электромагнитной индукции

Работа обыкновенного трансформатора даёт представление о том, как осуществляется передача электричества без проводов методом электромагнитной индукции. В процессе участвуют две катушки. Магнитное поле, возбуждаемое протекающим током по виткам первичной обмотки, индуцирует электрический поток во вторичной обмотке трансформатора.

Примерами использования эффекта электромагнитной индукции могут быть зарядные устройства смартфонов и электрические зубные щётки. Недостатком такого способа передачи энергии является непременная близость катушек. Даже при небольшом увеличении промежутка между обмотками большая часть энергии начинает распыляться в пространстве.

Один из видов электромагнитной индукции – это использование резонанса. Суть способа заключается в том, что приёмник и передатчик функционируют в одном частотном диапазоне. Передающее и приёмное устройства представляют собой соленоид с одним слоем витков. Генерирующий прибор оснащён конденсаторной схемой, с помощью которой он настраивается на частоту приёмника.

Демонстрация метода электромагнитной индукции

Электростатическая индукция

В основе метода заложен принцип прохождения энергии через тело диэлектрика. Способ называют ёмкостной связью. Генератор создаёт в ёмкости электрическое поле, которое возбуждает разницу потенциалов между двумя электродами потребителя.

Никола Тесла для демонстрации беспроводной лампы освещения использовал именно метод электростатической индукции. Лампа получала питание от переменного электрического поля высокой частоты. Она светилась ровно, независимо от её перемещения в пространстве комнаты.

Микроволновое излучение

Специалисты космотехники разработали способ передачи электроэнергии от орбитальных солнечных батарей на космические корабли с помощью радиосигнала микроволнового диапазона. Проблема этого метода состоит в том, что для приёма и передачи пучкового излучения требуются антенны с очень большой диафрагмой.

Учёные НАСА в 1978 году пришли к выводу, что для передачи микроволнового луча частотой 2,45 ГГц излучающая антенна должна иметь диаметр отражающей поверхности 1 км. Приёмная ректенна должна быть диаметром 10 км. Уменьшить эти размеры возможно путём использования сверхкоротких волн. Однако сигналы такого диапазона быстро поглощаются атмосферой или блокируются дождевыми осадками.

Обратите внимание! Безопасная плотность мощности излучаемой энергии равняется 1 мВт/см2. Этой норме отвечает антенна диаметром 10 км с передающей мощностью потенциала 750 МВт.

Лазерный метод

Передачу электроэнергии на большие расстояния без проводов с помощью лазера стали осуществлять сосем недавно. Идея состоит в том, что лазерный луч, несущий в себе энергетический потенциал, попадает на фотоэлемент приёмного устройства, где высокочастотное электромагнитное излучение преобразуется в электрический ток.

Лазерная технология передачи энергии, ранее применяемая в военной области, успешно внедряется в гражданскую сферу деятельности человека. Разработки американских учёных привели к изобретению беспилотного летательного аппарата, получающего энергетическое питание от лазерного луча. В 2006 году был продемонстрирован беспилотник, который мог летать в беспосадочном режиме, питаясь от лазерной установки.

В 2009 году был успешно осуществлён эксперимент в космосе по передаче энергии на один километр мощностью 500Вт.

Электропроводность Земли

Существует теория использования недр и океанов Земли для беспроводной передачи энергии. Электропроводимость гидросферы, залежей металлических руд может быть использована для передачи низкочастотного переменного тока. Электростатическая индукция диэлектрических тел может возникать в огромных залежах кварцевого песка и тому подобных минералов.

Передача электрического тока возможна также через воздушное пространство методом электростатической индукции. Никола Тесла в своё время выдвинул предположение, что в будущем появятся технологии, которые для передачи электроэнергии будут использовать землю, океанические воды и атмосферу планеты.

Всемирная беспроводная система

Впервые о Всемирной беспроводной системе передачи электроэнергии стало известно от великого учёного Теслы. В 1904 году он заявил, что создание ВБС, используя высокую электрическую проводимость плазмы и Земли, вполне осуществимо.

Реальные проекты в наши дни

Из всего того, что на сегодня предлагает рынок электротехники, относятся к беспроводной передаче электроэнергии зарядные устройства для смартфонов, электрические зубные щётки. В них используется принцип электромагнитной индукции.

Бесконтактная зарядка смартфона

В авиастроении началось серийное производство летательных беспилотных аппаратов, питающихся за счёт беспроводной передачи электричества. Небольшой микроволновый вертолёт с ректенной может подниматься на высоту до 15 метров над землёй. Появились беспилотники, которые могут летать в зоне видимости лазерного луча.

Китайский производитель бытовой техники Haier Group с 2010 года выпускает беспроводные LCD телевизоры.

Перспективы беспроводной передачи электричества

Сейчас ведутся исследовательские работы, и разрабатываются проекты создания электромобилей, которые будут передвигаться по дорожному покрытию с токопроводом, который индуцирует электрический ток в моторе транспорта.

Питание электромобиля

Ряд передовых фирм заняты разработкой беспроводных источников питания, которые смогут снабжать электроэнергией всех потребителей в пределах одного помещения.

В перспективе появление трасс, состоящих из ряда беспроводных источников электричества, которые смогут обеспечить перемещение летательных аппаратов на большие расстояния.

С появлением новых материалов, усовершенствованных приборов и изобретений беспроводная передача электроэнергии в недалёком будущем охватит все сферы деятельности человека.

Видео

Источник

Беспроводная передача энергии

Со времен открытия электричества человеком многие ученые пытаются изучить удивительное явление токов и повысить полезный коэффициент действия, проводя многочисленные опыты и изобретая более современные материалы, обладающие улучшенными свойствами передачи энергии с нулевым сопротивлением. Наиболее перспективным направлением в подобном научном труде является беспроводная передача электроэнергии на большие расстояния и с минимальными затратами на транспортировку. В данной статье рассмотрены способы передачи энергии на расстояние, а также виды устройств для подобных действий.

Читайте также:  Энергетический ток от человека

Беспроводная передача энергии

Беспроводная передача энергии

Беспроводная передача энергии – это способ транспортировки, при котором не используются какие-либо проводники или сети кабелей, а ток передается на значительное расстояние до потребителя с максимальным коэффициентом полезной мощности по воздуху. Для этого применяются устройства для генерации электричества, а также передатчик, который накапливает в себе ток и рассеивает его во всех направлениях, а также приемник с потребляющим прибором. Приемник улавливает электромагнитные волны и поля и путем их концентрации на коротком участке проводника передает энергию на лампу или любой другой прибор определенной мощности.

Существует множество способов для беспроводной передачи электричества, которые изобретались в процессе изучения токов многими учеными, но наибольших результатов в практическом плане добился Никола Тесла. Он сумел изготовить передатчик и приемник, которые были отдалены друг от друга на расстояние, равное 48 километрам. Но в то время не существовало технологий, которые смогли бы передать электричество на такую дистанцию с коэффициентом выше 50%. В связи с этим ученый выражал большую перспективу не для передачи готовой сгенерированной энергии, а для вырабатывания тока из магнитного поля земли и использования его в бытовых нуждах. Транспортировка подобного электричества должна была осуществляться беспроводным способом, путем передачи по магнитным полям.

Способы беспроводной передачи электричества

Схема магнитной индукции полей

Схема магнитной индукции полей

Большинство теоретиков и практиков, изучающих работу электрического тока, предлагали свои методы передачи его на расстояние без использования проводников. В начале подобных исследований многие ученые пытались заимствовать практику из принципа работы радиоприемников, которые используются для передачи азбуки Морзе или коротковолнового радио. Но такие технологии не оправдали себя, так как рассеивание тока было слишком малым и не могло покрыть большие расстояния, к тому же транспортировка электричества по радиоволнам была возможна только при работе с малыми мощностями, не способными приводить в действие даже самый простейший механизм.

В результате экспериментов было выявлено, что для передачи электричества без провода наиболее приемлемы СВЧ волны, которые имеют более устойчивую конфигурацию и напряжение, а также при рассеивании теряют гораздо меньше энергии, чем любой другой метод.

Впервые успешно применить данный способ смог изобретатель и конструктор Вильям Браун, который смоделировал летающую платформу, состоящую из металлической площадки с двигателем, мощностью около 0,1 лошадиной силы. Платформа была выполнена в виде принимающей антенны с сеткой, улавливающей СВЧ волны, которые передавались специально сконструированным генератором. Через всего четырнадцать лет тот же конструктор представил летательный аппарат малой мощности, который принимал энергию от передатчика на расстоянии 1,6 километра, ток передавался сконцентрированным пучком по СВЧ волнам. К сожалению, широкого распространения данный труд не получил, так как на тот момент не существовало технологий, которые могли бы обеспечить транспортировку таким методом тока с высоким напряжением, хотя коэффициент полезного действия приемника и генератора был равен более 80%.

Энергия из космоса

Энергия из космоса

В 1968 году американские ученые разработали проект, подкрепленный научным трудом, в котором предлагалось размещение больших солнечных батарей на околоземной орбите. Приемники энергии должны были быть направлены на солнце, а в их основании размещались накопители тока. После поглощения солнечной радиации и трансформации ее в СВЧ или магнитные волны через специальное устройство ток направлялся на землю. Прием должен был осуществляться специальной антенной большой площади, настроенной на определенную волну и преобразующей волны в постоянный или переменный ток. Такая система была высоко оценена во многих странах как перспективная альтернатива современным источникам электричества.

Питание электрокара беспроводным способом

Многие производители автомобилей, работающих на электрическом токе, проводят разработки альтернативной подзарядки авто без его подключения к сети. Больших успехов в этой области добилась технология зарядки транспорта от специального дорожного полотна, когда машина принимала энергию от покрытия, заряженного магнитным полем или СВЧ волнами. Но подобная подпитка была возможна только при условии, когда расстояние между дорогой и приемным устройством было не более 15 сантиметров, что в современных условиях не всегда исполнимо.

Зарядка автомобиля

Данная система находится на стадии разработок, поэтому можно предполагать, что подобный тип передачи питания без проводника еще получит свое развитие и, возможно, будет внедряться в современную транспортную индустрию.

Современные разработки передачи энергии

В современных реалиях беспроводное электричество вновь становится актуальным направлением изучения и конструирования приборов. Существуют наиболее перспективные пути развития беспроводной передачи энергии, к которым относятся:

  1. Использование электричества в горной местности, в случаях, когда нет возможности проложить несущие кабеля до потребителя. Несмотря на изученность вопроса электричества, на земле имеются места, в которых нет электроэнергии, и проживающие там люди не могут пользоваться таким благом цивилизации. Конечно, часто там применяются автономные источники питания, такие как солнечные батареи или генераторы, но данный ресурс ограничен и не может восполнить потребности в полном объеме;
  2. Некоторые производители современной бытовой техники уже внедряют в свою продукцию устройства для передачи энергии без проводов. Например, на рынке предлагается специальный блок, который подключается к сетевому питанию и путем преобразования постоянного тока в СВЧ волны передает их окружающим приборам. Единственное условие использования данного прибора – это наличие у бытовой техники принимающего устройства, преобразующего данные волны в постоянный ток. В продаже имеются телевизоры, которые полностью работают от принимаемой от передатчика беспроводной энергии;
  3. В военных целях, в большинстве случаев в оборонной сфере, существуют разработки приборов связи и других вспомогательных устройств.

Большой прорыв в данной сфере технологий произошел в 2014 году, когда группа ученых разработала устройство для генерации и приема энергии на расстояние без проводов, используя при этом систему линз, размещенных между передающей и приемной катушками. Ранее считалось, что передача тока без проводника возможна на дистанцию, не превышающую размер приборов, поэтому для транспортировки электричества на большое расстояние требовалось огромное сооружение. Но современные конструкторы изменили принцип работы данного устройства и создали передатчик, направляющий не СВЧ волны, а магнитные поля с низкими частотами. Электроны в данном случае не теряют мощность и передаются на расстояние сконцентрированным пучком, к тому же потребление энергии возможно, не только подключившись к приемной детали, но и просто находясь в зоне действия полей.

Модель бытового прибора

Модель бытового прибора

К сведению. Первым прибором, который будет принимать беспроводную энергию, технологи планируют сделать мобильный телефон или планшетный компьютер, разработки такой системы уже ведутся.

Наиболее перспективные направления

Беспроводное электричество постоянно изучается многими физиками, рассматриваются наиболее перспективные направления в данной сфере, к которым относятся:

  1. Подзарядка мобильных устройств без подключения к кабелю;
  2. Осуществление питания для беспилотных летательных аппаратов – это направление, которое будет пользоваться большим спросом и в гражданской, и в военной индустрии, так как подобные устройства в последнее время стали часто использоваться для различных целей.

Сама процедура передачи данных на расстояние без использования проводов некоторое время назад считалась прорывом в исследованиях физики и энергетики, сейчас это уже никого не удивляет и стало доступным для любого человека. Благодаря современному развитию технологий и разработкам, транспортировка электроэнергии таким методом становится реальностью и вполне может быть воплощена в жизнь.

Видео

Источник