Меню

Как проверить ток в сварке



Как измерить ток инвертора

Как измерить ток инвертора простым и доступным способом

Как измерить ток инвертора простым и доступным способом

Начинающие сварщики очень часто задаются вопросом о том, как измерить ток инвертора. Казалось бы, зачем замерять ток на выходе сварочного аппарата?

На самом же деле, большинство проблем при сварке электродом как раз и приходится на то, что инвертор выдаёт неправильные значения тока. В таком случае, вроде бы все выставил правильно, напряжение в сети нормальное, а инвертор не хочет варить.

Давайте разберёмся, так как же самым простым способом измерить ток инвертора, чтобы узнать, сколько он выдаёт на выходе ампер.

Как измерить ток инвертора

Ни для кого не секрет что дешевые инверторы очень часто грешат регулировкой сварочного тока. Зачастую красивая и аккуратная рукоятка регулятора служит лишь для красоты, но никак не для регулировки сварочного тока.

Например, очень частой проблемой многих сварочных аппаратов является погрешность с выдачей желаемых ампер. То есть, сварочный аппарат на 250 Ампер, ну никак не выдаёт столько же. В таком случае и возникают различного рода проблемы при сваривании металлов.

Как измерить ток инвертора

Самый простой способ измерить ток сварочного аппарата, это использовать специальные клещи для замеров. Принцип работы данных клещей основан на действии катушек индуктивности. Однако такой способ измерить ампераж аппарата для сварки подходит только в том случае, если он выдаёт «переменку».

Для измерения сварочного тока в инверторах необходимо использовать амперметр, который подключается через шунт. При этом очень важно не подключать амперметр напрямую к инвертору, а делать это надо именно через шунт. Таким образом, получится узнать всю правду, и сколько максимум получится выжать из инвертора ампер сварочного тока.

Чтобы измерить ток инвертора на 250 Ампер, вполне хватит 250 Амперного шунта. Шунт необходим для сброса напряжения, так как в противном случае амперметр может сгореть. Шунт подключается параллельно с амперметром в разрыв сварочных кабелей.

Почему так важно знать, сколько ампер выдаёт инвертор

Следует заметить, что данная схема проверки ампеража, подходит только для сварочных инверторов. То есть, аппаратов для сварки, которые выдают «постоянку».

Почему так важно знать, сколько ампер выдаёт инвертор

На самом деле это очень важно, поскольку если инвертор не выдаст желаемые амперы, то не получится использовать электроды определённого диаметра. Также могут возникнуть различного рода проблемы при сварке, когда электрод начнёт прилипать к металлу.

Почему так важно знать, сколько ампер выдаёт инвертор

И здесь можно сколько угодно будет грешить на некачественную электроэнергию или на то, что электроды плохие. Знать, а сколько же реально выдаёт ампер сварочный инвертор очень важно, чтобы нормально и качественно варить.

Как измерить ток инвертора простым и доступным способом

Таким образом, вы знаете, как измерить ток инвертора. Подписывайтесь на канал ММА Сварка в Дзен, и получайте новую порцию полезной информации. Всем удачи.

Источник

Измерение, контроль и регистрация результатов при сварке

Измерение – процесс определения значений переменной, выраженных соответствующей физической величиной. Переменными процесса сварки являются: электрические параметры (напряжение дуги, ток сварки, мощность дуги, электрическое сопротивление дуги, …), скорость подачи электродной проволоки, скорость сварки, температура в заданной точке основного металла, и др. Могут определяться средние значения параметров или их эффективные значения, а также пиковые значения параметра, его частотные характеристики и т.п.

Контроль – сравнение измеряемого значения искомого параметра сварки с заданными пределами (верхним и нижним).

Измерение основных параметров сварки

Из всех параметров режима сварки только напряжение дуги не требует использования специальных датчиков и может быть определено прямым измерением с использованием вольтметра. Для того, чтобы измерить скорость подачи электродной проволоки, ток сварки, температуру основного металла, расход защитного газа и т.п. требуется применение соответствующих датчиков.

Измерение тока сварки

Имеется большое разнообразие датчиков тока: трансформаторы тока, токовые шунты и датчики тока на основе преобразователей Холла.

Трансформатор тока – это измерительный трансформатор, ток во вторичной обмотке которого пропорционален току в первичной обмотке. Этим измерительным прибором можно измерять значения только переменного тока.

Первичная обмотка трансформатора тока включается в электрическую цепь последовательно с потребителем, ток которого необходимо определить. К выводам вторичной обмотки подключается амперметр с диапазоном измерения тока 1 – 5 ампер (таким образом, трансформатор тока работает в режиме короткого замыкания).

Трансформатор токаТрансформатор тока

Внешний вид некоторых типов трансформаторов тока

Трансформаторы тока выпускаются на разные диапазоны измерения тока (0 – 300 А, 0 – 600 А и т.д.). Причем диапазон тока во вторичной обмотке сохраняется постоянным: 1 – 5 ампер.

При измерении сварочных токов роль первичной обмотки выполняет сам сварочный кабель, пропущенный в центральное отверстие трансформатора тока. При этом необходимо помнить простое правило: сколько раз сварочный кабель пропущен через центральное отверстие трансформатора тока, во столько раз уменьшается диапазон измерения тока, а также снижается погрешность измерения, что является желательным при измерении малых сварочных токов.

Принцип измерения тока сварки с помощью трансформатора тока

Принцип измерения тока сварки с помощью трансформатора тока.

Для удобства пользования, а именно, для подключения трансформатора тока без разрыва сварочной цепи, трансформаторы тока изготавливают в виде измерительных клещей.

Измерительные клещи

Внешний вид трансформатора тока, выполненного в виде измерительных клещей

Токовым шунтом является низкое активное сопротивление, которое устанавливается в разрыв цепи. Значение тока определяется через падение напряжения на шунте, которое он вызывает.

Токовый шунт Токовый шунт
Внешний вид токовых шунтов (на переднем плане — на 500 А; на заднем — на 300 А) Схема подключения токовых шунтов в измерительную (сварочную) цепь.

Электрическое сопротивление токовых шунтов подбирается таким образом, чтобы при его номинальном токе (например, 300 или 500 А) на нём падало строго определённое напряжение. Обычно оно составляет 75 мВ, но может быть и другим (например, 45 или 60 мВ). Падение напряжения на шунте измеряется милливольтметром. Для удобства пользования шкала милливольтметров, предназначенных для подключения к токовому шунту, градуируется в амперах, что исключает необходимость пересчета показаний пользователем.

Милливольтметр
Милливольтметр с диапазоном измерения

Токовый шунт не рекомендуется использовать для измерения переменного тока, так как собственная индуктивность шунта может влиять на скорость изменения тока и искажать форму его кривой. Однако уместно заметить, что такое влияние шунта проявляется только при частотах переменного тока выше 10 кГц. Таким образом, токовый шунт вполне может быть использован в условиях дуговой сварки переменным током при использовании тока промышленной частоты (50 или 60 Гц). Основным недостатком токовых шунтов является необходимость разрыва цепи, в которой измеряется ток.

В настоящее время вместо токовых шунтов всё чаще используются датчики тока на основе преобразователей Холла. Их основным компонентом является полупроводниковый элемент, который реагирует на магнитное поле, создаваемое током в цепи, т.е. током, значение которого требуется определить. Выходным сигналом такого датчика является напряжение, причём довольно высокое (обычно от 1 до 10 В в зависимости от модели датчика).

Датчики Холла по сравнению с токовыми шунтами имеют следующие важные достоинства:

Выходной сигнал датчика Холла примерно в 100 раз выше, чем у токового шунта. Более мощный выходной сигнал датчика Холла менее подвержен влиянию шумов. Поэтому датчик Холла обеспечивает более низкую погрешность измерения.

Датчик Холла относится к измерительным устройствам, которые не оказывают влияние на измеряемый сигнал. В то время как электрическое сопротивление токового шунта, пусть даже и незначительное, влияет на параметры сварочной цепи.

Токовый шунт, будучи включённым непосредственно в разрыв сварочной цепи, находится под напряжением, что требует особого внимания для исключения случайных контактов с другими электрическими цепями. Кроме этого, при одновременном измерении тока сварки и напряжения дуги возможно ошибочное подключение измерительных кабелей таким образом, что произойдёт короткое замыкание сварочного источника питания. Датчик Холла в этом смысле обладает очень важным преимуществом, так как не имеет прямого электрического контакта с компонентами сварочной цепи.

Токовый шунт требует больше затрат времени на установку, так как для этого необходимо разорвать цепь. Датчик Холла, выполненный в виде клещей, устанавливается в считанные секунды.

Датчик ХоллаДатчик Холла
Внешний вид измерительных клещей, в которых используется датчик Холла и принцип его действия.

Читайте также:  Задача цепь переменного тока содержит активные сопротивления

Для того, чтобы проведенное сравнение этих двух типов датчиков было полным необходимо также указать, что токовый шунт в 2 – 3 раза дешевле датчика Холла, и значительно более долговечнее и надёжнее последнего.

Измерение напряжения дуги

Определение значения напряжения дуги производится непосредственно вольтметром без применения каких-либо датчиков. Однако и в этом случае необходимо учитывать некоторые особенности измерения этого параметра процесса сварки для того, чтобы выполнить его должным образом. Главная из них заключается в том, что для снижения погрешности измерения напряжения дуги необходимо избегать включения в цепь измерения падений напряжения на сварочных кабелях и на электрических контактах в сварочной цепи. Справедливости ради следует сказать, что падение напряжения на переходном контакте мундштук – проволока не велико и не превышает 0,1…0,2 В при токах сварки 100 … 300 А.

Cхема подключения вольтметра при определении напряжения на дуге
Наиболее часто используемая схема подключения вольтметра при определении напряжения на дуге в условиях сварки МИГ/МАГ

Измерение скорости подачи электродной проволоки

Для измерения скорости подачи электродной проволоки обычно используется два типа тахогенераторов; оптический тахогенератор и тахогенератор электромагнитной системы.

Параметры выходного сигнала тахогенератора первого типа позволяют использовать его с измерительными устройствами с цифровым входом, в то время как тахогенератор второго типа должен подключаться к аналоговому входу измерительного устройства.

При отсутствии соответствующих тахогенераторов скорость подачи электродной проволоки можно измерить при настройке сварочной установки путем замера длины куска проволоки и времени, в течение которого он был подан подающим механизмом.

Внешний вид одного из тахогенераторов для измерения скорости подачи электродной проволоки

Измерение скорости сварки

Скорость сварки, как правило, определяют по длине выполненного сварного шва и времени, затраченного на его выполнение.

Измерение расхода газа

В сварочных установках используют расходомеры газа поплавкового и дроссельного типа.

Регистрирующие устройства

Для измерения параметров сварки и, в первую очередь, для регистрации результатов измерений используются самопишущие приборы измерения различных типов, а также системы на базе персональных компьютеров и другие электронные измерительные системы.

Систем для измерения и регистрации параметров сварки

Одна из портативных систем для измерения и регистрации (на бумажном носителе) параметров сварки

Источник

Основные неисправности сварочных инверторов и методы их устранения

Оборудование

Множество домашних мастерских укомплектовано сварочным оборудованием на основе инверторного блока питания. Такие изделия обладают множеством преимуществ. Однако, время от времени любая техника ломается и может потребоваться ремонт сварочных инверторов.

Подобная операция легко выполнима в домашних условиях, поскольку внутренняя компоновка инверторной установки для розжига дуги хорошо поддается диагностике и обслуживанию. Успешность исправления неисправностей инверторной сварки зависит, прежде всего, от навыков и знаний мастера-ремонтника.

  1. Особенности сварочных инверторов и их ремонт
  2. Диагностика неисправностей инверторов
  3. Основные виды поломок и их устранение
  4. Рекомендации по самостоятельному ремонту
  5. Заключение

Особенности сварочных инверторов и их ремонт

Большинство пользователей подобных сварочных устройств отмечают:

  • высокую мощность установки;
  • мобильность аппарата;
  • простоту обслуживания;
  • надежность конструкции инвертора;
  • минимальное потребление электрической энергии при выполнении работ по свариванию металлических изделий.

Характерной особенностью инверторных устройств для сварки служит более сложная электротехническая схема, по сравнению с трансформаторными или выпрямительными сварками.

инвертор

Инвертор для сварочных работ.

Ремонт инверторных сварочных аппаратов следует начинать с проверки следующих элементов:

  • транзисторы;
  • диодный мост;
  • система охлаждения.

Перед тем, как отремонтировать сварочные аппараты своими руками необходимо провести диагностику основных компонентов. Как правило, неисправные детали, например, транзисторы или диоды, можно легко определить по существенном изменении геометрии.

Если такие детали удается выявить визуально, то восстановление аппарата для сварки своими руками сведется к банальной замене неисправных электротехнических элементов при помощи паяльника и припоя.

[box type=”info”]Ремонт сварочных полуавтоматов своими руками должен производится мастерами, имеющими хотя бы базовые познания в электронике и умеющими пользоваться такими устройствами, как мультиметр, вольтметр и осциллограф.[/box]

Большинство моделей инверторных аппаратов для сварки комплектуются инструкциями. Проводить обслуживание данных устройств проще по схемам, имеющимся в соответствующем разделе документации.

Диагностика неисправностей инверторов

Непосредственно перед выполнением восстановления работоспособности инверторного оборудования для сварки следует ознакомиться с типовыми неисправностями и наиболее эффективными методами диагностики.

В большинстве случаев, ремонт полуавтоматов для сварки следует производить по такому алгоритму:

схема работы инвертора

  1. Визуальный осмотр всех узлов инвертора.
  2. Зачистка окислившихся контактов при помощи растворителя и щетки.
  3. Изучение конструкции инвертора по идущей в комплекте документации.
  4. Диагностика неисправности.
  5. Замена нерабочих электронных компонентов.
  6. Пробный запуск.

Функциональная схема сварочного инвертора.

Все неисправности, при которых может потребоваться ремонт своими руками сварочных аппаратов делятся на три вида:

  • возникшие из-за неправильного выбора режима сварки;
  • возникшие из-за нарушения в работе одного из элементов электронной схемы прибора;
  • возникшие из-за попадания пыли или сторонних предметов в корпус инверторного блока питания.

Перед тем, как проверить сварочный аппарат на предмет неисправных радиодеталей, следует провести полную чистку от пыли и грязи. Засорение элементов охлаждения системы поддержания дуги может пагубно сказаться на работоспособности многих электронных компонентов.

Если при предварительной визуальной проверке не выявлены неисправности, то следует переходить к более глубокой диагностике.

Типичные причины выхода из строя инвертора представлены:

  • попаданием жидкости внутрь корпуса инвертора, повлекшим за собой окисление токопроводящих дорожек и коррозию основных радиоэлементов;
  • обилием пыли и грязи внутри корпуса, вследствие которых существенно ухудшилось охлаждение и произошел перегрев силовых микросхем;
  • перегревом работы инвертора из-за выбора неправильного режима работы, вследствие которого может потребоваться ремонт сварочных выпрямителей.

Ремонт сварочного трансформатора, в отличие от инвертора, может выполняться без существенных навыков и умений. В трансформаторных сборках используются радиоэлементы, которые обладают невероятно длительным жизненным циклом.

Методика ремонта преобразователя и других ключевых узлов инверторного источника тока будут показаны в следующем разделе.

Основные виды поломок и их устранение

Прежде чем рассмотреть основные виды неисправностей инверторных устройств следует ознакомиться с устройством инвертора.

Электрическая схема сварочного инвертора.

Большинство популярных моделей состоит из:

  • блока питания;
  • блока управления;
  • силового блока.

Неисправности и ремонт сварочных аппаратов в большинстве случаев связаны с поломкой силового блока, состоящего из:

  1. Первичного и вторичного выпрямителей.
    В состав блока входят два диодных моста различной мощности. Первый мост способен выдерживать до 40 ампер ток и до 250 вольт напряжение. Второй диодный мост собран из более мощных элементов и способен поддерживать силу тока 250 ампер при напряжении порядка 100 вольт. Возможные ошибки данного модуля связаны с аварией диодов первичного или вторичного моста.
  2. Инверторного преобразователя.
    Поломка силового транзистора инверторного преобразователя часто является ответом на вопрос почему сварочный аппарат не варит. Ремонт инвертора можно произвести путем замены транзистора на аналог с параметрами силы тока 32 ампера и напряжением 400 вольт.
  3. Высокочастотного трансформатора.
    Как правило, трансформатор состоит из нескольких обмоток, повышающих силу тока до 250 ампер при напряжении до 40 вольт. Большинство инверторного оборудования имеет две обмотки, выполненные при помощи медной проволоки или ленты.

Перед тем, как отремонтировать сварочные аппараты своими руками следует внимательно продиагностировать прибор и четко определить, какой из элементов неисправен.

Не стоит даже пытаться самостоятельно отремонтировать инвертор из корпуса которого повалил плотный белый дым. В таких случаях самым правильным решением будет обращение в квалифицированный ремонтный центр.

Компоновка деталей сварочного инвертора.

Ремонт сварочного полуавтомата с инверторным источником может понадобиться при возникновении следующих неисправностей:

  1. Нестабильное горение раскаленной дуги или сильное разбрызгивание материала электрода.
    Неисправность в большинстве случаев связана с неправильным выбором рабочего тока. В инструкции по эксплуатации сказано, что на 1 миллиметр диаметра электрода должна приходится сила тока от 20 до 40 ампер.
  2. Прилипания сварки к металлу.
    Такое поведение характерно для устройств, работающих при недостаточном напряжении. Подобные неисправности и способы их устранения четко описаны в сопроводительной документации. При прилипании электрода к свариваемому материалу следует очистить контакты клемм, к которым подключаются модули инверторного устройства. Кроме этого, не лишним будет замерить напряжение в электрической сети.
  3. Отсутствие дуги при включении аппаратуры.
    Дефект зачастую связан с банальным перегревом устройства или повреждением силовых кабелей кабелей в процессе длительной эксплуатации при повышенных температурах.
  4. Аварийное отключение инвертора.
    Если в процессе проведения работ аппарат внезапно отключился, то наверняка сработала защита от короткого замыкания между проводами и корпусом. Ремонт устройства в случае возникновения подобного дефекта состоит в нахождении и замене поврежденных элементов силовой цепи инвертора.
  5. Огромное потребление электрического тока при холостой работе.
    Типичная неисправность, возникающая вследствие замыкания витков на токопроводящих катушках. Восстановление работоспособности устройства после такой неисправности состоит в полной перемотке катушек и наложении слоя дополнительной изоляции.
  6. Отключение сварочного оборудования через определенный промежуток времени.
    Подобное поведение характерно для перегревающихся инверторных электроприборов. Если сварка внезапно выключилась, то нужно дать ей остыть и через 30-40 минут можно продолжить работу.
  7. Посторонние звуки при работе блока питания.
    Устранение дефекта заключается в затягивании болтов, стягивающих элементы магниторовода. Помимо этого, неисправность может быть связана с дефектом в крепеже сердечника или замыканием между кабелями.
Читайте также:  Цап and с and суммированием and весовых and токов

[box type=”info”]Важно отметить, что большинство видов работ следует выполнять с использованием паяльника, укомплектованного специальным отсосом. Такой инструмент существенно облегчает работу по нанесению и удалению припоя на посадочные места радиотехнических элементов.[/box]

Рекомендации по самостоятельному ремонту

Выполняя ремонт сварочных аппаратов инверторного типа следует придерживаться определенного алгоритма:

  1. При возникновении неисправности, нужно немедленно отключить электрический прибор от сети, дать ему остыть и лишь после этого следует открывать металлических кожух.
  2. Диагностику необходимо начинать с визуального осмотра электротехнических компонентов инвертора.
    Нередки случаи, когда ремонт инверторного сварочного аппарата заключается в простейшей замене поврежденных деталей или пропайке токопроводящих контактов. Визуально увеличившиеся конденсаторы или треснувшие транзисторы нужно заменять в первую очередь.
  3. Если при визуальном осмотре не удалось определить причину неисправности сварочного аппарата, необходимо перейти к проверке параметров деталей при помощи мультиметра, вольтметра и осциллографа.
    Наиболее частые поломки силовых блоков связаны с нарушением работы транзисторов.
  4. После замены электротехнических элементов стоит перейти к проверке печатных проводников, расположенных на плате инвертора.
    При обнаружении оторванных или поврежденных дорожек на печатной плате сварочного инструмента нужно немедленно устранить дефект путем запаивания перемычек или восстановления дорожек при помощи медной проволоки необходимого сечения.
  5. По завершению работы с дорожками имеет смысл перейти к обслуживанию разъемов.
    Если инверторный прибор переставал работать постепенно, то возможно имеет место быть плохой контакт в соединительных разъемах. В таком случае достаточно промерять все контакты при помощи мультиметра и зачистить разъемы обыкновенным бытовым ластиком.
  6. Несмотря на то, что неисправности сварочного инвертора редко бывают связаны с диодными мостами, будет не лишним проверить и их работоспособность.
    Проводить диагностику данного электротехнического элемента лучше в выпаянном виде. Если все ножки моста прозваниваются накоротко, то следует выполнить поиск неисправного диода и произвести его замену.
  7. Последним этапом в ремонте инвертора служит проверка платы и пультов управления.
    Диагностика всех компонентов платы должна производиться при помощи высокоразрешающего осциллографа.

[box type=”warning”]Если диагностика проведена, но обнаружить что сломалось в сварочном аппарате не удалось, следует прекратить самостоятельный ремонт и обратиться в специализированные мастерские.[/box]

При выполнении самостоятельных ремонтных работ следует не забывать о правилах безопасности:

  • нельзя использовать электрические приборы без защитного верхнего кожуха;
  • проведение всех диагностических и ремонтных работ следует осуществлять на полностью обесточенном оборудовании;
  • удаление скопившейся пыли и грязи безопаснее всего проводить при помощи воздушного потока, формируемого компрессором или баллоном с сжатым газом;
  • очистку печатных плат необходимо производить с использованием нейтральных растворителей, нанесенных на специальную кисточку;
  • длительное хранение электрических приборов нужно производить в сухих помещениях в полностью выключенном состоянии.

Большинство инверторных электроприборов поставляется в комплекте с сопроводительной документацией. В этих бумагах можно отыскать описание наиболее типичных неисправностей и методов ремонта. Поэтому, при возникновении неисправностей следует внимательно изучить документацию и лишь потом приступать к ремонтным работам.

Заключение

Самостоятельный ремонт может производится в домашних условиях. Основные неисправности инверторов связаны с выбором неправильного режима работы или выходом из строя радиоэлементов.

Некоторые неисправности сварочного полуавтомата можно определить визуально. Существует всего несколько причин из-за которых не включается сварочный инвертор. Большинство причин поломки работающего инвертора связаны с сгоревшими конденсаторами или пробитыми сварочными транзисторами.

Источник

Проверка сварочного оборудования

Проверка сварочного оборудования

Вопросы, рассмотренные в материале:

  • В чем суть проверок сварочного оборудования
  • По каким параметрам следует проводить проверку сварочного оборудования
  • Каковы особые проверки сварочного оборудования
  • Как проверять сварочное оборудование частному лицу

Работа большей части промышленных предприятий невозможна без использования сварочного оборудования. Аппаратура, предназначенная для выполнения сварочных работ, требует периодического планово-предупредительного ремонта. В этой статье поговорим о том, что представляет собой проверка сварочного оборудования, в чем ее суть и для чего она необходима.

Суть проверок сварочного оборудования

Разные виды сварочного оборудования нуждаются в различных обслуживающих мероприятиях. Перечень самих мероприятий и их периодичность определены в нормативах и правилах, касающихся конкретной аппаратуры. Но, помимо индивидуальных требований, существуют также общие правила, относящиеся ко всему оборудованию.

Суть проверок сварочного оборудования

Эксплуатация, проверка и техническое обслуживание электросварочной аппаратуры, относящейся к электроустановкам, осуществляется в соответствии с Правилами технической эксплуатации электроустановок потребителей.

Названные правила требуют проведения следующих проверочных мероприятий сварочного оборудования:

  • проведения визуального осмотра установок;
  • контрольного включения в режиме холостого хода как минимум на 5 минут;
  • замеров величин сопротивления изоляции;
  • оценки исправности цепей защитного заземления;
  • проведения испытаний при повышении напряжения.

Проверка сварочного оборудования, включающая визуальный осмотр, контрольное включение, оценку сопротивления изоляции, в обязательном порядке выполняется, когда аппаратура вводится в эксплуатацию после продолжительного перерыва в работе.

Рекомендовано к прочтению

Периодичность подобных проверок – один раз в полгода, также они проводятся, если на оборудовании обнаружены механические или электрические повреждения. По окончании проверки выполнявший ее сотрудник должен сделать соответствующую запись в специально предназначенном для этих целей журнале.

В журнале проверок состояния сварочного и термического оборудования, приборов и аппаратуры предусматриваются графы, содержащие информацию о:

  • дате и порядковом номере проверки;
  • наименовании оборудования, аппаратуры, приборов и инструментов;
  • заводском номере проверяемого оборудования;
  • инвентарном номере;
  • виде проводимой проверки;
  • метрологической проверке контрольно-измерительных приборов/дате проверки;
  • метрологической проверке контрольно-измерительных приборов/сроке следующей проверки;
  • заключении о состоянии оборудования;
  • лице, проводившем проверку, его должности, Ф. И. О., подписи.

Журналы проверки сварочного оборудования прошиваются, их страницы нумеруются.

Проверяемое оборудование должно соответствовать нормативам, закрепленным в вышеназванных Правилах (Приложение 3), а также в инструкциях по эксплуатации и проведению техобслуживания.

Сварочное и термическое оборудование является источником повышенной опасности. В связи с этим осуществление контроля его состояния должно выполняться в соответствии со специальным руководящим документом РД 34.10.127-34.

Документ предписывает проведение проверок, ремонтных, профилактических работ со сварочным оборудованием в строгом соответствии с графиком, который утверждается главным техническим специалистом предприятия.

Особое значение имеет своевременная проверка измерительных приборов

Особое значение имеет своевременная проверка измерительных приборов, являющихся составными элементами сварочного оборудования. Поэтому в составлении графиков проверки аппаратуры обязательно участие специалиста, отвечающего за проведение метрологических испытаний на предприятии.

Соответственно, плановая проверка сварочного оборудования или его техническое обслуживание должно проводиться одновременно с поверкой измерительных приборов.

Периодичность проверки сварочного оборудования, установленная руководящим документом, должна быть следующей:

  • осмотр сварочных аппаратов переменного и постоянного тока (трансформаторов и выпрямителей) – дважды в месяц;
  • осмотр сварочных инверторных преобразователей – еженедельно;
  • осмотр оборудования для автоматической и полуавтоматической сварки – ежедневно.

Параметры проверки сварочного оборудования

Проверяя сварочное оборудование, инструменты и приспособления, необходимо сравнивать полученные результаты с приведенными в таблице данными:

Назначение оборудования, инструмента, приспособлений и основные проверяемые показатели

Возможные отклонения от требований

I. Оборудование для контактной стыковой и точечной сварки

1. Напряжение первичного тока

2. Рабочее давление сжатого воздуха

3. Герметичность системы охлаждения

4. Циркуляция воды в системе охлаждения

Беспрепятственная, с расходом, указанным в паспорте оборудования или в Приложении 2 Указаний

5. Длина рычага механизма осадки у стыковых сварочных машин с ручным приводом

При сварке арматурной стали класса A-IV не меньше 1200 мм

Читайте также:  Каким током варят алюминий аргоном

6. Длина рукоятки ручных зажимов стержней в электродах стыковых сварочных машин

Не меньше 500 мм

7. Установка электродов

а) В машинах для стыковой сварки – соосное расположение свариваемых стержней

б) В машинах для точечной сварки с двусторонним подводом тока – соосное расположение верхнего и нижнего электродов

в) То же, с односторонним подводом тока – оси смежных электродов должны располагаться в одной вертикальной плоскости параллельно друг к другу

8. Закрепление электродов

Надежно, без люфтов

II. Оборудование для дуговой сварки

1. Тип источника питания током

В зависимости от способа сварки в соответствии с рекомендациями Указаний

2. Подключение источника питания к сварочным постам

К самостоятельным электрическим сборкам, получающим ток от отдельных фидеров ближайшего трансформаторного поста

3. Напряжение тока, питающего первичную обмотку сварочного трансформатора

4. Напряжение холостого хода генератора при полуавтоматической сварке

На 2–5 В выше начального напряжения сварки

5. Прикрепление гибких токоподводящих кабелей (к трансформаторам, друг к другу и т. п.)

Плотное, с помощью наконечников, скрепляемых болтами или другим способом, обеспечивающим хороший электрический контакт

6. Площадь поперечного сечения гибких токоподводящих кабелей

В зависимости от сварочного тока: до 200 В – 25 мм 2

200–300 – 50 мм 2

300–400 – 70 мм 2

400–600 – 95 мм 2

7. Длина гибкого кабеля

8. Изоляция гибких кабелей

9. Полярность дуги при сварке постоянным током

В соответствии с рекомендациями Указаний

10. Чистота контактных поверхностей электродов (губок) и токоподводящего электрода стола в машинах для сварки под слоем флюса тавровых соединений элементов закладных деталей

Зачистка до металлического блеска

11. Скорость подачи сварочной проволоки

В зависимости от диаметров проволоки и свариваемых стержней в соответствии с требованиями Указаний

12. Равномерность подачи сварочной проволоки

Подача без рывков и задержек

13. Диаметр отверстия в наконечнике держателя полуавтомата

Наконечник выбирается в зависимости от диаметра сварочной проволоки. Диаметр отверстия канала наконечника должен быть больше диаметра проволоки на 0,3 мм

14. Выработка канала в наконечнике держателя

Местная выработка не более 1,5 мм

Наконечник может быть повернут так, чтобы проволока прижималась к невыработанному участку канала

III. Инструмент (электроды) для контактной стыковой или точечной сварки

1. Геометрические размеры

В зависимости от диаметра свариваемых стержней в соответствии с требованиями Указаний

При точечной сварке увеличение диаметра или размеров овальной рабочей поверхности в плане вследствие деформации электродов не должно превышать 3 мм

2. Форма электродов для точечной сварки

В зависимости от вида свариваемых элементов в соответствии с рекомендациями Указаний

3. Форма гнезд в электродах для сварки арматурной стали встык

В зависимости от класса арматурной стали в соответствии с рекомендациями Указаний

4. Состояние рабочих поверхностей электродов

а) Чистые до металлического блеска.

б) Отсутствие вмятины – желобка в месте контакта со стержнями.

в) Форма поверхности в соответствии с требованиями Указаний

Вмятины глубиной не более 1,5 мм

IV. Приспособления для дуговой сварки швами или ванной сварки

1. Тип электрододержателя для дуговой многоэлектродной ванной сварки

Специальный, в соответствии с рекомендациями Указаний

2. Тип и размеры инвентарных форм

В зависимости от положения и диаметра свариваемых стержней в соответствии с рекомендациями Указаний

3. Износ инвентарных форм

Зазор между цилиндрическими поверхностями стержней и форм не более 2 мм, а толщина стенок уменьшена не более чем на 0,15 d

4. Состояние внутренней (рабочей) поверхности медных форм

Свободна от шлака

Особые проверки сварочного оборудования

В отношении сварочного оборудования, не использовавшегося в течение трех и более месяцев, вводимого в эксплуатацию после ремонта либо впервые поступающего на предприятие, проводится особая проверка.

В обязательном порядке проверяют, имеется ли у сварочного оборудования техническая эксплуатационная документация (паспорт изделия, инструкция по эксплуатации, схемы), в полном ли объеме она представлена.

Оборудование осматривается визуально, новые аппараты очищают от лишней смазки, удаляют транспортные крепежи (при наличии), проверяют состояние болтовых соединений, подтягивают при необходимости.

Отметка о поверке метрологических приборов, проставляемая на корпусе оборудования специализированной организацией, должна быть действующей (непросроченной). Данные о сроках поверки могут быть занесены в паспорт аппаратуры.

Проверка сварочного оборудования также включает в себя измерение уровня электрического сопротивления изоляции. Оценка работоспособности аппаратов проводится путем их включения.

Проверка сварочного оборудования также включает в себя измерение уровня электрического сопротивления изоляции

Сопротивление изоляции замеряется между обмотками (при проверке трансформаторов и выпрямителей) и между каждой обмоткой и корпусом сварочного аппарата.

Проверки должны проводиться в соответствии с требованиями, прописанными в технических документах к оборудованию. Если инструкция по эксплуатации не содержит раздела о рекомендуемых методиках испытаний, при их выполнении необходимо руководствоваться ГОСТами, к примеру, при работе с автоматическими сварочными аппаратами – ГОСТом 8213.

Полуавтоматические сварочные устройства должны соответствовать требованиям, закрепленным в ГОСТе 18130. При испытаниях оборудования на основе сварочного инвертора необходимо руководствоваться ГОСТом 7237, аппаратов переменного тока (трансформаторов) – ГОСТом 7012.

Руководящим документом при испытаниях электрических генераторов является ГОСТ 304, аппаратов, работающих на выпрямленном сварочном токе, – ГОСТ 13821.

Хранение и обслуживание сварочного аппарата

Проверка сварочного оборудования также включает в себя регулярное базовое обслуживание, т. е. очистку установок от пыли и загрязнений. Для проведения технического обслуживания аппаратура либо сдается в сервисный центр, либо привлекается специалист с опытом такого рода работы. При отсутствии навыков заниматься техническим обслуживанием установок не рекомендуется.

Прежде чем приступить к обслуживанию аппаратуры, следует отключить ее от питания. Для удаления загрязнений на корпусе и кабелях необходимо воспользоваться влажной (но не мокрой) тряпкой, при сильных въевшихся загрязнениях – специальным средством. При отсутствии необходимости корпус оборудования разбирать не следует. Не стоит перегибать или заламывать провода, работа в целом должна выполняться аккуратно.

Специалисты для очистки оборудования используют сжатый воздух (воздушный компрессор). Постоянно замасливающиеся элементы нуждаются в регулярной очистке при помощи тряпки. Специалист проверяет надежность крепления деталей, при необходимости подгоняет их.

Хранение и обслуживание сварочного аппарата

Проверке также подлежат кабели, которые не должны иметь разрывов и неисправностей. Периодичность подобных проверок – раз в месяц, а также перед тем, как установка будет отправлена на хранение.

Соблюдение правил при хранении оборудования влияет на срок его службы и частоту выхода из строя.

Для хранения инвертора можно использовать заводскую коробку, но лучшим вариантом станет пластиковая упаковка (плотный полиэтиленовый пакет, рулонная упаковка и пр.). Оборудование должно быть надежно защищено от пыли, грязи, воды и снега. Однако упаковочная тара не должна быть слишком плотной, воздух внутри нее должен циркулировать.

Несмотря на то, что температура хранения современного сварочного оборудования может варьироваться от +50 до -20 °С, оптимально хранить установки при комнатной температуре. Сырость, повышенная влажность, хранение аппаратуры непосредственно на земле отрицательно скажется на ее состоянии.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Источник