Меню

Как получить ток от тела



Как получить ток от тела

И снова Закон Ома!

Довольно часто нам приходится слышать такие фразы, как «Ударило током» или «Убило током», и ни какого упоминания о напряжении. Исходя из этого, у вас может сложиться впечатление, что для человека опасен ток, а не напряжение. Какой-то элемент истины здесь имеет место быть. Однако, если напряжение не представляет никакой опасности, то зачем пишутся предупреждающие таблички примерно такого содержания: «ОСТОРОЖНО — ВЫСОКОЕ НАПРЯЖЕНИЕ!»?

По большому счету принцип «опасности тока» верен. Электрический ток вызывает ожоги тканей тела, блокирует мышцы и останавливает сердце, но он не может возникнуть сам по себе. Чтобы создать поток электронов через тело человека, к нему нужно приложить напряжение. При выполнении расчетов мы так же должны учесть сопротивление, которое тело человека оказывает электрическому току.

Если с помощью Закона Ома мы выразим силу тока через известные значения напряжения и сопротивления, то получим следующее уравнение:

safety8

Сила тока, проходящего через тело человека прямопропорциональна величине напряжения, приложенного к двум его точкам, и обратнопропрорциональна сопротивлению между этими точками. Очевидно, чем больше величина напряжения, создающего поток электронов, тем легче эти электроны будут проходить через конкретную величину сопротивления. Следовательно, высокое напряжение опасно для жизни, потому что оно создает большой ток, который может травмировать или убить человека. И наоборот, чем большее сопротивление оказывает тело электрическому току, тем медленнее будут течь через него электроны при заданной величине напряжения. Проще говоря, опасность того или иного напряжения зависит от величины сопротивления, оказываемого телом человека потоку электронов.

Сопротивление тела не является фиксированной величиной. Оно изменяется от человека к человеку, и время от времени. На измерении электрического сопротивления между пальцами рук и ног основывается метод определения процентного содержания жира в организме. Разные проценты содержания жира обеспечивают разные сопротивления, и это только одна из величин, влияющая на электрическое сопротивление тела человека. Чтобы метод работал точно, человек за несколько часов до теста должен регулировать потребление жидкости, а это говорит о том, что гидратация является еще одним фактором, влияющим на сопротивление человеческого тела.

Сопротивление так же зависит от того, между какими частями тела мы его будем измерять: между руками, между ногами, между рукой и ногой и т.д. Необходимо учесть и тот фактор, что прекрасными проводниками электричества являются пот, богатый солями и минералами, а также кровь, с ее высоким содержанием проводящих химических элементов. Таким образом, контакт между проводом и потными руками или руками с кровоточащей раной будет обладать гораздо меньшим сопротивлением, чем контакт между проводом и руками с сухой, чистой кожей.

Измеряя сопротивление своего тела чувствительным измерительным прибором, путем сжимания его щупов пальцами рук, я получил значение 1 миллион Ом (1 МОм). При этом прибор показывает меньшее сопротивление, когда я плотно сжимаю щупы, и большее сопротивление — когда я ослабляю пальцы. Руки мои при этом чисты и сухи . Если бы я работал во влажной и грязной производственной среде, то сопротивление между моими руками было бы намного меньше, представляя большую угрозу поражения электрическим током.

Итак, какая же величина тока опасна для человека?. Ответ на этот вопрос зависит от нескольких факторов. Значительное влияние на то, как электрический ток воздействует на человека, оказывает химический состав его тела. Некоторые люди очень чувствительны к току, и поэтому испытывают непроизвольное сокращение мышц даже от разряда статического электричества, который другие люди могут и не почувствовать. Несмотря на эти различия, посредством тестов были выведены примерные значения тока (очень небольшие), которые могут оказать вредное воздействие на организм человека. Все значения в таблице даны в миллиамперах (миллиампер равен 1/1000 ампера):

«Гц» является сокращенным обозначением единицы измерения Герц, которая служит мерой скорости чередования направлений переменного тока. Эта мера иначе известна как частота. Так, заголовок «60 Гц АС» одного из столбцов таблицы означает что все значения этого столбца относятся к переменному току, который чередуется с частотой 60 циклов в секунду (1 цикл равен периоду времени, в течении которого поток электронов сначала движется в одном направлении, а потом в другом). Последняя колонка, с надписью «10 кГц АС», относится к переменному току, который совершает десять тысяч циклов в секунду.

Следует иметь ввиду, что все вышеприведенные цифры являются приблизительными, поскольку реакция на ток людей с разным химическим составом тела будет различной. Существует предположение, что достаточно пропустить переменный ток величиной в 17 миллиампер через грудь человека, чтобы при определенных условиях вызвать у него аритмию сердца. Большинство данных таблицы, касающихся аритмии сердца, взяты из опытов над животными. И это естественно, ведь никто не будет проводить такие эксперименты на людях, в связи с чем имеющиеся данные весьма приблизительны. Если вас интересует вопрос, почему женщины более восприимчивы к электрическому току чем мужчины, то здесь мы вам не поможем — для нас это тоже загадка.

Теперь давайте предположим, что я взялся сухими и чистыми руками за контакты источника напряжения переменного тока частотой 60 Гц. Какое напряжение должно быть у этого источника, чтобы создать ток величиной 20 миллиампер (при таком токе я не смогу самостоятельно отпустить контакты источника)? Ответ на этот вопрос можно найти в Законе Ома (U = IR):

U = 20,000 вольт, или 20 кВ

Имейте в виду, что это сценарий «лучшего случая» с точки зрения электробезопасности (чистая, сухая кожа), а полученная величина напряжения, с огромной долей вероятности, вызовет оцепенение человека. Гораздо меньшее напряжение потребуется для вызова болевых ощущений. Следует учесть так же и тот момент, что физиологические эффекты воздействия различных токов на разных людей могут значительно отличаться, поэтому наши расчеты являются только приблизительной оценкой действительности.

Если я смочу пальцы своих рук водой, имитируя пот, то сопротивление моего тела между руками составит всего 17000 Ом (17 кОм). Обратите внимание, что в нашем случае с тонкими металлическими щупами измерительного прибора контактирует по одному пальцу каждой руки. Повторно вычислив напряжение, необходимое для получения тока величиной 20 мА, мы получим следующее значение:

В этом случае достаточно напряжения 340 вольт, чтобы создать ток 20 миллиампер через тело человека. Однако, смертельный удар током можно получить и от меньшего напряжения если увеличить площадь контакта, уменьшив тем самым его сопротивление. Примером такого контакта служит кольцо на пальце (золото обернутое вокруг пальца создает превосходный контакт для поражения электрическим током) или большой металлический предмет, такой как труба или ручка инструмента. Сопротивление организма при этом понизится до 1000 Ом (10 кОм), что создаст реальную угрозу поражения низкими значениями напряжения:

Таким образом, чтобы создать ток величиной 20 мА и вызвать оцепенение человека, достаточно напряжения 20 вольт. Ранее мы упомянули предположение, что сила тока 17 мА, пропущенная через грудь человека, при определенных условиях может вызвать аритмию сердца. Так вот, если сопротивление между руками человека будет равно 1 кОм, то для создания этого опасного условия потребуется всего 17 вольт:

В этих расчетах мы показали вам «наихудший» сценарий для напряжения переменного тока частотой 60 Гц и отличной проводимости человеческого тела. Данный пример дает наглядную картину опасности даже небольших значений напряжения.

Понизить сопротивление человеческого тела до 1000 Ом можно не только путем воздействия рассмотренных выше экстремальных факторов (например плотным контактом золотого кольца с пальцем). Оно может уменьшиться при длительном воздействии напряжения (например, когда человек под действием тока не может разжать руку, и только крепче сжимает проводник). Одновременно с уменьшением сопротивления увеличивается сила тока при фиксированном напряжении.

Ниже приведены примерные значения сопротивлений точек контакта человека с различными предметами в различных условиях:

Обратите внимание на значения сопротивлений в двух случаях с 1,5-дюймовой металлической трубой. Если трубу обхватить двумя руками, то сопротивление будет ровно в два раза меньше, чем при обхвате этой же трубы одной рукой.

safety10

Две руки, сжимающие металлическую трубу, увеличивают площадь контакта в два раза по сравнению с одной рукой. Это очень важное обстоятельство: электрическое сопротивление между любыми контактирующими объектами уменьшается с увеличением площади контакта при прочих равных условиях. В этом случае электроны текут из трубы в тело (или наоборот) по двум параллельным маршрутам.

Читайте также:  Задача амплитуда силы тока контура с сопротивлением

safety11

Как вы увидите позже, общее сопротивление параллельной цепи всегда меньше (или равно) любого из сопротивлений этой цепи.

В промышленности пороговым значением опасного напряжения считается, как правило, напряжение величиной 30 вольт. Осторожный человек должен рассматривать любое напряжение, превышающее это значение, как опасное. Работая с электричеством он должен содержать свои руки чистыми и сухими, а так же снять все металлические украшения, которые представляют опасность и при более низких значениях напряжения. Такие украшения, выступая в качестве контактов между двумя точками цепи, способны провести достаточный ток, чтобы сжечь кожу.

Опасными могут быть и напряжения менее 30 вольт, если они достаточны чтобы вызвать неприятные ощущения, в результате которых человек может совершить резкое движение и вступить в контакт с другим, более высоким напряжением или иным источником повышенной опасности. Автор статьи вспоминает, как однажды он ремонтировал свой автомобиль в жаркий летний день. По причине теплой погоды он был в шортах, и работая с аккумуляторной батареей прислонился оголенной частью ног к хромированному бамперу машины. Когда он коснулся металлическим ключом положительного контакта 12-вольтовой батареи, то почувствовал покалывание в точке контакта ноги с бампером. Таким образом, надежный контакт с металлом и потная кожа позволили почувствовать удар током от электрического потенциала значением всего-лишь 12 вольт.

К счастью, в этом случае ничего плохого не случилось. Но, если бы двигатель автомобиля был запущен, и воздействие тока почувствовала рука а не нога, то автор, возможно, рефлексивно дернул бы ее в сторону вращающегося вентилятора или уронил бы ключ на клеммы аккумулятора (вызвав тем самым короткое замыкание и сноп искр). Этот пример иллюстрирует еще один важный урок электробезопасности — электрический ток может послужить косвенной причиной травмирования.

Очень важное значение имеет путь, по которому ток течет через тело человека. Благодаря тому, что электрический ток оказывает влияние на все мышцы организма находящиеся на его пути, в том числе и на такие жизненно-важные, как сердце и легкие, наиболее опасным будет такой ток, который проходит через грудь человека. Это сценарий возможен в том случае, если человек соприкоснется с источником напряжения двумя руками.

В целях недопущения такого сценария, при работе со схемой (находящейся под напряжением) желательно использовать только одну руку, засунув вторую при этом в карман (чтобы случайно ничего ей не тронуть). Конечно, безопаснее было бы работать с обесточенной схемой, но на практике это не всегда возможно. Если схема находится под напряжением, то работать с ней предпочтительнее правой рукой. А почему правой, спросите вы. Во-первых, если человек правша (каких большинство), то ему удобнее будет работать именно этой рукой, а во-вторых — сердце расположено в левой части грудной клетки.

Лучшей защитой от удара электрическим током является сопротивление, которое может быть добавлено к телу при помощи изолированных инструментов, перчаток, сапог и других приспособлений. Как вы уже знаете, ток в цепи равен напряжению деленному на общее сопротивление потоку электронов. Наибольший эффект сопротивления будут иметь при расположении их таким образом, чтобы создать только один путь для потока электронов (подробнее на этом мы остановимся в последующих статьях):

safety12

safety13

Ниже представлена эквивалентная схема человека, экипированного перчатками и сапогами:

safety14

safety15

В этом случае суммарное (общее) сопротивление сапог, тела и перчаток потоку электронов будет больше, чем сопротивление каждого из компонентов по отдельности.

Безопасность является одной из причин, по которой электрические провода покрываются пластмассовой или резиновой изоляцией, которая значительно увеличивает сопротивление между проводником и прикоснувшемуся к нему человеком. Однако покрывать изоляцией высоковольтные провода линий электропередач слишком дорого, поэтому безопасность в этом случае достигается путем подвешивания их на столбы высоко над землей.

Источник

Как человеческий организм вырабатывает электричество

Как человеческий организм вырабатывает электричество

Мы знаем о том, что человеческий организм «работает» на основе электрохимических реакций. Каким же образом наши тела способны генерировать электричество?

Вспомните школьный курс физики: в каждом атоме есть некоторое количество протонов, электронов и нейтронов. Обычно количество электронов равно числу протонов, что позволяет поддерживать нейтральный баланс частицы. Электроны расположены на разных расстояниях от центра атома с протонами и нейтронами: чем дальше от ядра вращается электрон, тем больше его потенциальная энергия. Так называемые валентные электроны (расположенные на внешних орбитах) могут покидать атом даже при незначительном стороннем воздействии. Явление перемещения электронов от одних атомов к другим и называют электрическим током.

В организме человека присутствуют множество химических веществ (например, кислород, калий, магний, кальций или натрий), реакции которых друг с другом способствуют возникновению электрической энергии. В числе прочего, это происходит в процессе так называемого «клеточного дыхания» — извлечения клетками тела энергии, необходимой для жизнедеятельности.

Каждая из молекул этих химических веществ может создавать отрицательный или положительный электрический импульс в зависимости от конкретной цели. Например, в сердце человека есть клетки, которые в процессе поддержания сердечного ритма поглощают натрий и выделяют калий, что создаёт в клетке положительный заряд. Когда заряд достигает определённого значения, клетки обретают способность воздействовать на сокращения сердечной мышцы.

«Клеточное дыхание» — лишь один из химических процессов организма, способствующих выработке электричества. Каждый человек — это сложнейшее сочетание химических соединений, взаимодействие которые рождает электрический заряд.

Источник

Закон Ома (снова!)

Распространенная фраза в отношении электробезопасности звучит примерно так: «Убивает не напряжение, а ток!». Хотя в этом есть доля правды, об опасности поражения электрическим током нужно понимать больше, чем эта простая пословица. Если бы напряжение не представляло опасности, никто бы никогда не распечатал и не вывесил надписи: ВЫСОКОЕ НАПРЯЖЕНИЕ! ОПАСНО ДЛЯ ЖИЗНИ!

Принцип «убивает ток», по сути, верен. Это электрический ток сжигает ткани, заставляет мышцы замереть и вызывает фибрилляцию сердца. Однако электрический ток не возникает сам по себе: должно быть доступно напряжение, чтобы заставить ток протекать через пострадавшего. Тело человека также оказывает сопротивление току, что тоже необходимо учитывать.

Взяв закон Ома для напряжения, тока и сопротивления и выразив его через ток для заданных напряжения и сопротивления, мы получим следующее уравнение:

Сила тока, проходящего через тело человека, равна величине напряжения, приложенного между двумя точками этого тела, деленной на электрическое сопротивление, оказываемое телом между этими двумя точками. Очевидно, что чем большее напряжение доступно, тем легче ток будет проходить через любое заданное сопротивление.

Следовательно, существует опасность высокого напряжения, которое может создавать ток, достаточный для получения травмы или смерти. И наоборот, если тело имеет более высокое сопротивление, то при любом заданном напряжении будет протекать меньший ток. Насколько опасно напряжение, зависит от полного сопротивления цепи, препятствующего прохождению электрического тока.

Сопротивление тела человека не является фиксированной величиной. Оно варьируется от человека к человеку и время от времени. Существует даже метод измерения жировых отложений, основанный на измерении электрического сопротивления между пальцами рук и ног.

Разный процент жира в организме обеспечивает разное сопротивление: эта переменная влияет на электрическое сопротивление в организме человека. Чтобы методика работала точно, человек должен регулировать потребление жидкости за несколько часов до теста, что указывает на то, что гидратация тела является еще одним фактором, влияющим на электрическое сопротивление тела человека.

Сопротивление тела человека также зависит от того, как происходит контакт с кожей: от руки к руке, от руки к ноге, от ступни к ступне, от кисти руки к ее локтю и т.д. Пот, богатый солью и минералами, будучи жидкостью, является отличным проводником электричества. То же самое и с кровью с таким же высоким содержанием проводящих химикатов.

Таким образом, контакт с проводом потной рукой или открытой раной будет оказывать гораздо меньшее сопротивление току, чем контакт с чистой сухой кожей.

Измеряя электрическое сопротивление чувствительным прибором, я получаю в результате примерно 1 миллион Ом (1 МОм) между руками, держась за металлические щупы измерителя пальцами. Прибор показывает меньшее сопротивление, когда я плотно сжимаю щупы, и большее сопротивление, когда я держу их свободно.

Я сижу за компьютером и печатаю эти слова, мои руки чистые и сухие. Если бы я работал в жаркой, грязной промышленной среде, сопротивление между моими руками, вероятно, было бы намного меньше, представляя меньшее сопротивление смертельному току и большую опасность поражения электрическим током.

Читайте также:  Как получить ток от трения

Насколько опасен электрический ток?

Ответ на этот вопрос также зависит от нескольких факторов. Химический состав тела человека оказывает значительное влияние на то, как электрический ток влияет на человека. Некоторые люди очень чувствительны к току и испытывают непроизвольное сокращение мышц от ударов статического электричества.

Другие могут получить большой разряд статического электричества и почти не почувствовать его, не говоря уже о мышечном спазме. Несмотря на эти различия, с помощью тестов были разработаны приблизительные руководящие принципы, которые показывают, что для проявления вредных эффектов требуется очень небольшой ток (опять же, информацию об источнике этих данных смотрите в конце главы).

Все значения силы тока даны в миллиамперах (миллиампер равен 1/1000 ампера):

Воздействие электрического тока на организм человека

Влияние на организм Мужчины/женщины Постоянный ток Переменный ток, 60 Гц Переменный ток, 10 кГц
Легкое покалывание руки мужчины 1,0 мА 0,4 мА 7 мА
женщины 0,6 мА 0,3 мА 5 мА
Болевой порог мужчины 5,2 мА 1,1 мА 12 мА
женщины 3,5 мА 0,7 мА 8 мА
Больно, но сознательное управление мышцами сохраняется мужчины 62 мА 9 мА 55 мА
женщины 41 мА 6 мА 37 мА
Больно, невозможно отпустить провод мужчины 76 мА 16 мА 75 мА
женщины 51 мА 10,5 мА 50 мА
Сильная боль, трудно дышать мужчины 90 мА 23 мА 94 мА
женщины 60 мА 15 мА 63 мА
Возможна фибрилляция сердца после 3 секунд воздействия мужчины и женщины 500 мА 100 мА

«Гц» обозначает единицу измерения герц. Это параметр того, насколько быстро изменяется переменный ток, известный как частота. Таким образом, столбец значений, обозначенный «Переменный ток, 60 Гц», относится к току, который меняется с частотой 60 циклов (1 цикл = период времени, когда ток сначала течет в одном направлении, а затем в другом в направлении) в секунду.

Последний столбец, обозначенный «Переменный ток, 10 кГц», относится к переменному току, который совершает десять тысяч (10 000) циклов каждую секунду.

Имейте в виду, что эти цифры являются приблизительными, поскольку люди с различным химическим составом тела могут реагировать по-разному. Было высказано предположение, что для переменного тока при протекании поперек грудной клетки достаточно всего 17 мА, чтобы при определенных условиях вызвать у человека фибрилляцию. Большинство данных относительно вызванной фибрилляции получены в результате испытаний на животных. Очевидно, что проводить тесты на вызов фибрилляции желудочков на людях непрактично, поэтому имеющиеся данные отрывочны.

И если вам интересно, я понятия не имею, почему женщины более восприимчивы к электрическому току, чем мужчины!

Предположим, я положил руки на клеммы источника переменного напряжения с частотой 60 Гц (60 циклов в секунду). Какое напряжение потребуется при чистой, сухой коже, чтобы получить ток в 20 миллиампер (достаточно, чтобы я не мог отпустить источник напряжения)? Чтобы определить его, мы можем использовать закон Ома:

\[E = IR = (20 \ мА)(1 \ МОм) = 20 000 \ вольт = 20 кВ\]

Имейте в виду, что с точки зрения электробезопасности это «идеальный случай» (чистая, сухая кожа), и что это значение напряжения представляет собой величину, необходимую для вызова оцепенения. Чтобы вызвать болезненный удар, потребуется гораздо меньшее напряжение! Кроме того, имейте в виду, что физиологические эффекты любой конкретной силы тока могут значительно отличаться от человека к человеку, и что эти расчеты являются приблизительными.

Обрызгав пальцы водой, чтобы имитировать пот, я смог измерить сопротивление «рука-рука» – всего 17000 Ом (17 кОм). Имейте в виду, что это касается только одного пальца каждой руки, касающегося тонкой металлической проволоки. Пересчитав напряжение, необходимое для возникновения тока в 20 мА, мы получим следующее значение:

\[E = IR = (20 \ мА)(17 \ кОм) = 340 \ вольт\]

В этом реалистичном состоянии, чтобы вызвать ток 20 миллиампер на пути «рука-рука», потребуется напряжение всего 340 вольт. Тем не менее, всё же возможно получить смертельный удар от меньшего напряжения, чем это. При условии гораздо более низкого значения сопротивления тела, увеличенного за счет, например, контакта с кольцом на пальце (полоса из золота, обернутая по окружности пальца, является отличной точкой контакта для поражения электрическим током) или полного контакта с большим металлическим предметом, таким как труба или металлическая ручка инструмента, сопротивление тела может упасть до 1000 Ом (1 кОм), что приведет к тому, что даже более низкое напряжение может представлять потенциальную опасность.

\[E = IR = (20 \ мА)(1 \ кОм) = 20 \ вольт\]

Обратите внимание, что в этом состоянии 20 вольт достаточно, чтобы вызвать через человека ток в 20 миллиампер; достаточно, чтобы вызвать оцепенение. Помните, было высказано предположение, что сила тока всего 17 миллиампер может вызвать фибрилляцию желудочков (сердца). При сопротивлении «рука-рука» 1000 Ом для создания этого опасного состояния потребуется всего 17 вольт.

\[E = IR = (17 \ мА)(1 \ кОм) = 17 \ вольт\]

Семнадцать вольт – это не так много для электрических систем. Конечно, это «наихудший» сценарий с переменным напряжением 60 Гц и отличной проводимостью тела, но он показывает, насколько низкое напряжение при определенных условиях может представлять серьезную угрозу.

Условия, необходимые для создания сопротивления тела 1000 Ом, не должны быть такими экстремальными, как те, которые были представлены (потная кожа при контакте с золотым кольцом). Сопротивление тела может уменьшаться при прикладывании напряжения (особенно если оцепенение заставляет пострадавшего крепче держать проводник), поэтому при длительном прикладывании напряжения удар может усилиться после первого контакта.

То, что начинается как легкий шок (ровно настолько, чтобы «заморозить» пострадавшего, чтобы он не мог двигаться), может перерасти в нечто, достаточно серьезное, чтобы убить человека, поскольку сопротивление его тела уменьшается, а сила тока соответственно увеличивается.

Исследования предоставили примерный набор значений электрического сопротивления для точек контакта человека в различных условиях (информацию об источнике этих данных смотрите в конце главы):

  • контакт пальца с проводом: от 40 000 Ом до 1 000 000 Ом в сухом состоянии, от 4 000 Ом до 15 000 Ом во влажном состоянии;
  • удерживание провода рукой: от 15 000 Ом до 50 000 Ом в сухом состоянии, от 3 000 Ом до 5 000 Ом во влажном состоянии;
  • удерживание рукой металлических плоскогубц: от 5 000 Ом до 10 000 Ом в сухом состоянии, от 1 000 Ом до 3 000 Ом во влажном состоянии;
  • контакт с ладонью: от 3 000 Ом до 8 000 Ом в сухом состоянии, от 1 000 Ом до 2 000 Ом во влажном состоянии;
  • удержание одной рукой 1,5-дюймовой металлической трубы: от 1 000 Ом до 3 000 Ом в сухом состоянии, от 500 Ом до 1 500 Ом во влажном состоянии;
  • удержание двумя руками 1,5-дюймовой металлической трубы: от 500 Ом до 1 500 Ом в сухом состоянии, от 250 Ом до 750 Ом во влажном состоянии;
  • рука погружена в токопроводящую жидкость: от 200 Ом до 500 Ом.
  • нога погружена в токопроводящую жидкость: от 100 Ом до 300 Ом.

Обратите внимание на значения сопротивления для двух условий с 1,5-дюймовой металлической трубой. Сопротивление, измеренное при захвате трубы двумя руками, составляет ровно половину того сопротивления, когда трубу держит одна рука.

Рисунок 1 Сопротивление при удержании металлической трубы одной рукой Рисунок 1 – Сопротивление при удержании металлической трубы одной рукой

При удержании двумя руками площадь контакта с телом будет вдвое больше, чем с одной рукой. Это важный урок: электрическое сопротивление между любыми контактирующими объектами уменьшается с увеличением площади контакта при прочих равных условиях. Если держать трубу двумя руками, у тока будет два параллельных пути, по которым он течет из трубы в тело человека (или наоборот).

Рисунок 2 Сопротивление при удержании металлической трубы двумя руками Рисунок 2 – Сопротивление при удержании металлической трубы двумя руками

Как мы увидим в следующей главе, пути в параллельной цепи всегда приводят к меньшему общему сопротивлению, чем любой отдельный путь, рассматриваемый отдельно.

В промышленности консервативным пороговым значением для опасного напряжения обычно считается 30 вольт. Осторожный человек должен рассматривать любое напряжение выше 30 вольт как опасное, не полагаясь на нормальное сопротивление тела для защиты от удара. Тем не менее, при работе с электричеством всё же хорошо бы держать руки чистыми и сухими и снимать все металлические украшения.

Даже при более низком напряжении металлические украшения могут представлять опасность, поскольку проводят ток, достаточный для ожога кожи, при контакте между двумя точками цепи. В частности, металлические кольца были причиной нескольких ожогов пальцев из-за замыкания между точками в низковольтной, сильноточной цепи.

Кроме того, напряжение ниже 30 может быть опасным, если его достаточно, чтобы вызвать неприятное ощущение, которое может вызвать вздрагивание и случайное соприкосновение с более высоким напряжением или другой опасностью. Я вспоминаю, как однажды жарким летним днем работал над автомобилем.

Я был в шортах, и моя голая нога касалась хромированного бампера автомобиля, когда я затягивал контакты аккумулятора. Когда я прикоснулся металлическим ключом к положительной (незаземленной) стороне 12-вольтовой батареи, я почувствовал покалывание в том месте, где моя нога касалась бампера. Сочетание плотного контакта с металлом и моей вспотевшей кожи позволило ощутить удар всего лишь при напряжении 12 вольт.

К счастью, ничего страшного не произошло, но если бы двигатель работал и удар ощущался в моей руке, а не в ноге, я мог бы рефлекторно дернуть руку в сторону вращающегося вентилятора или уронить металлический ключ на клеммы аккумулятора (создав больший ток через гаечный ключ с большим количеством искр).

Это иллюстрирует еще один важный урок, касающийся электробезопасности; электрический ток может быть косвенной причиной травмы, заставляя вас дернуться или вызывать спазмы частей вашего тела.

Опасность электрического тока также зависит от пути его протекания через человеческое тело. Ток будет влиять на все мышцы, находящиеся на его пути, а поскольку мышцы сердца и легких (диафрагмы), вероятно, являются наиболее важными для выживания, пути протекания тока, проходящие через грудную клетку, являются наиболее опасными. Поэтому при протекании электрического тока по пути «рука-рука» есть больше шансов для получения травм и летального исхода.

Во избежание подобных ситуаций рекомендуется работать с цепями, находящимися под напряжением, только одной рукой. Конечно, всегда безопаснее работать в цепи, когда она отключена, но это не всегда практично или возможно.

При работе одной рукой, как правило, предпочтение отдается правой руке по двум причинам: большинство людей правши (что обеспечивает дополнительную координацию при работе), и сердце расположено в грудной полости слева от центра.

Для левшей этот совет может быть не лучшим. Если такой человек недостаточно ловко работает правой рукой, он может подвергнуть себя большей опасности, используя руку, с которой ему менее всего комфортно, даже если электрический ток через другую руку может представлять большую опасность для его сердца. Относительная опасность между электрическим ударом через одну руку или через другую, вероятно, меньше, чем опасность работы с менее оптимальной координацией, поэтому выбор руки для работы лучше всего оставить на усмотрение человека.

Лучшая защита от ударов цепи под напряжением – это сопротивление, а сопротивление может быть добавлено к телу с помощью изолированных инструментов, перчаток, обуви и других средств. Ток в цепи является функцией доступного напряжения, деленного на общее сопротивление на пути протекания тока. Как мы рассмотрим более подробно позже в этой книге, сопротивления складываются, когда они составляются так, что ток течет только по одному пути:

Рисунок 3 Сопротивление тела при прямом контакте Рисунок 3 – Сопротивление тела при прямом контакте

Человек напрямую прикасается к источнику напряжения: ток ограничен только сопротивлением тела человека.

Далее мы увидим эквивалентную схему для человека в изолирующих перчатках и ботинках:

Рисунок 4 Сопротивление при контакте в изолирующих перчатках и ботинках Рисунок 4 – Сопротивление при контакте в изолирующих перчатках и ботинках

Человек одет в изолирующие перчатки и ботинки: ток теперь ограничен полным сопротивлением цепи.

Поскольку, чтобы замкнуть цепь обратно к источнику напряжения, электрический ток должен пройти через ботинок и тело и перчатку. И общая сумма этих сопротивлений противодействует прохождению тока в большей степени, чем любое из этих сопротивлений, рассматриваемое отдельно.

Безопасность – одна из причин, по которой электрические провода обычно покрывают пластиковой или резиновой изоляцией: чтобы значительно увеличить сопротивление между проводником и тем, что может с ним контактировать.

К сожалению, изолировать проводники линии электропередачи, чтобы обеспечить безопасность в случае случайного контакта, было бы непомерно дорого. Таким образом, в этом случае безопасность обеспечивается за счет того, что эти линии должны находиться достаточно далеко, вне зоны досягаемости, чтобы никто не мог случайно их коснуться.

Источник

Россияне создали технологию питания гаджетов от человеческого тела

Российские термоячейки

Ученые Национального исследовательского технологического университета МИСиС (НИИТУ «МИСиС») разработали новый тип энергоэффективных устройств – термохимических ячеек (термоячеек), превращающих тепло в электрическую энергию. Об этом говорится в пресс-релизе, опубликованном на официальном сайте университета.

Технология, предложенная российскими специалистами, как ожидается, позволит выпускать компактные элементы питания. Их можно будет размещать практически на любой поверхности – к примеру, на одежде, и использовать для выработки электрического тока за счет разницы в температурах человеческого тела и окружающей среды. Полученную энергию можно будет направить на подпитку различных мобильных устройств.

Работа термоячеек основывается на эффекте Зеебека. Эффект Зеебека, открытый в 1821 г. немецким физиком Томасом Зеебеком (Thomas Seebeck), заключается в том, что в замкнутой цепи, состоящей из разнородных проводников, возникает электродвижущая сила (ЭДС), если места контактов поддерживают при разных температурах. Термоэлектричество в НИИТУ «МИСиС» называют одним из самых перспективных направлений «зеленой энергетики». Серьезным недостатком уже существующих современных образцов термоячеек является их низкая выходная мощность. Это существенно ограничивает область их применения.

misis600.jpg

Новые термоячейки, разработанные россиянами, состоят из оксидно-металлических электродов на основе полых никелевых микросфер и водного электролита. Такая комбинация, по словам специалистов, позволяет повысить ток, одновременно снижая внутреннее сопротивление элемента, получив на выходе увеличение мощности в 10-20 раз по сравнению с аналогами – напряжение разомкнутой цепи может достигать 0,2 В при температуре электрода до 85 градусов Цельсия. Кроме того, использование водного электролита снижает стоимость производства и повышает безопасность системы. По словам одного из авторов работы, ведущего эксперта кафедры ФНСиВТМ НИТУ «МИСиС» Игоря Бурмистрова, был достигнут рекордный (4,5 мВ/К) для водных электролитов показатель гипотетического коэффициента Зеебека (термоэлектрической чувствительности), а также выявлено нетипичное для термоячеек нелинейное изменение вольт-амперных характеристик, обеспечивающее рост коэффициента полезного действия (КПД) устройства.

seeback.jpg

Результаты работы российских ученых опубликованы в британском журнале Renewable Energy. В будущем специалисты планируют добиться повышения выходной мощности за счет оптимизации состава электродного материала и улучшения конструкции термоячейки. В перспективе же можно создать суперконденсатор, который бы сохранял в себе заряд длительное время.

К слову, в августе 2019 г. CNews писал о том, что в НИТУ «МИСиС» нашли применение борщевику – опасному сорняку, в изобилии произрастающему на территории России. Как выяснилось, его стебли можно использовать в производстве электродов для суперконденсаторов. Полученные в ходе исследований результаты показали, что, несмотря на растительное происхождение электродов, суперконденсаторы не утратили своих свойств, смогли накапливать заряд в больших объемах и хранить его продолжительное время.

Атомная батарейка

Отечественные специалисты из НИТУ «МИСиС» также смотрят и в сторону других типов портативных источников тока. Так, в августе 2020 г. они продемонстрировали собственный прототип батареи, конструкция которой основана на запатентованной микроканальной 3D-структуре никелевого бета-гальванического элемента. Срок службы такой батарейки – 20 лет.

Особенность трехмерной структуры батарейки заключается в том, что радиоактивный элемент наносится с двух сторон так называемого планарного p-n перехода, что позволяет упростить технологию изготовления элемента, а также контролировать обратный ток, который «крадет» мощность батареи. Особая микроканальная структура обеспечивает увеличение эффективной площади преобразования бета-излучения в 14 раз, что в результате дает общее увеличение тока.

За счет оригинальной 3D-структуры бета-гальванического элемента размеры батареи, по словам разработчиков, по сравнению с предыдущими уменьшились втрое, удельная мощность повысилась в 10 раз, а себестоимость снизилась на 50%.

Батарейка может быть применена в нескольких функциональных режимах: в качестве аварийного источника питания и датчика температуры в устройствах, используемых при экстремальных температурах и в труднодоступных (или совсем не доступных) местах: в космосе, под водой, в высокогорных районах.

В США тоже заняты разработкой бета-гальванических батарей. К примеру, американская компания Nano Diamond Battery недавно заявила о создании прототипа батареи такого типа, которая якобы может работать 28 тыс. лет. В ее основе лежит сердечник из переработанных ядерных отходов, но для человека она безопасна за счет покрытия из специальных синтетических алмазов.

Источник