Меню

Как определить ток в цепи возбуждения



Большая Энциклопедия Нефти и Газа

Определение — ток — возбуждение

Определение тока возбуждения в нагрузочном режиме при заданном напряжении якоря U, токе якоря / и коэффициенте мощности cosip с учетом насыщения проводится графически с помощью векторной диаграммы и характеристики холостого хода Ef2f ( If), если не учитывается изменение потока рассеяния обмотки возбуждения при нагрузке. [1]

Определение тока возбуждения If в нагрузочном режиме при заданном напряжении якоря U, токе якоря / и коэффициенте мощности cosip с учетом насыщения и изменения потока рассеяния обмотки возбуждения при нагрузке проводится графически с помощью векторной диаграммы и частичных характеристик намагничивания. [2]

Определение тока возбуждения If ( или F / m) в нагрузочном режиме, заданном через U, I и ф, производится теперь так, как показано. [4]

Для определения тока возбуждения первого генератора откладываем на характеристике холостого хода ( фиг. [5]

Сравнение результатов определения тока возбуждения для различных cos ф и одного и того же номинального тока / н 2990 а по диаграмме Потье и Шведской диаграмме с опытными данными для того же генератора даны в следующей таблице, где ток возбуждения выражен в относительных единицах. [7]

Хотя из вышеизложенных методов определения тока возбуждения следует, что в установившемся режиме рассеяние ротора не оказывает влияния на работу машины, тем не менее величина тока возбуждения вследствие насыщения стали косвенно зависит от этого рассеяния. [8]

Для машин с неявновыраженными полюсами определение тока возбуждения производится посредством построения векторной диаграммы, использующей данные опытов холостого хода и короткого замыкания и известной под наименованием диаграммы Потье. [10]

Наиболее употребительным практическим методом по определению тока возбуждения при нагрузке является диаграмма Потье. [12]

Расчет магнитной цепи при холостом ходе проводится для определения тока возбуждения / у или МДС возбуждения Ffm, которые образуют магнитное поле взаимной индукции с потоком Оут Фт, индуцирующим в обмотке статора заданную ЭДС. [13]

Ввиду того что целью построения векторной диаграммы оказывается определение тока возбуждения I ; при заданных U, I и coscp, целесообразно рассмотреть построение векторной диаграммы с приведением МДС обмотки якоря к обмотке ротора. [15]

Источник

Машины постоянного тока

Определить ток якоря и напряжение генератора с независимым возбуждением для токов возбуждения I в , равных 0,4 А и 0,2 А. Сопротивление цепи якоря r я =0,6 Ом , нагрузки r н =9,4 Ом . Характеристика холостого хода генератора изображена на рис. 9.12. Указать не правильный ответ.

Для I в = 0,4 А : 1) I я =14 А. 2) U я = 131,6 В.

Для I в = 0,2 А : 3) I я = 12А. 4) U я = 102,8 В.

Электродвижущую силу генератора определяем по характеристике холостого хода рис.9.12:

а) при I В =0,4 А ЭДС Еa= 140 В;

б) при I В =0,2 А ЭДС Е б = 120 В.

Ток якоря определяем по закону Ома:

a) I я,а =E а /(r н +r я )=140/(9,44+0,6)=14 A;

б) I я,б =E б /(r н +r я )=120/(9,4+0,6) =12 А.

Напряжение генератора меньше ЭДС на падение напряжения в обмотке якоря:

а) U а =Е а – I я,а r я =140 — 14∙0,6= 131,6 В ;

б) U а =Е а – I я,а r я =120 — 12∙0,6 = 112,8 В. Ответ: 4.

Обмотка возбуждения двигателя постоянного тока с параллельным возбуждением по ошибке оказалась включенной неправильно (рис. 9.25). Как будет вести себя двигатель после включения его в сеть при r п = 9 r я , I п = 2,5 I ном , если момент нагрузки:

а) М с =0 ; б) М с =0,5 М ном . Указать правильный ответ.

  1. В обоих случаях двигатель не будет вращаться.
  2. В обоих случаях двигатель разгонится до недопустимо большой частоты вращения.
  3. а) двигатель разгонится до n≈n 0 ; б) двигатель не будет вращатся.
  4. а) двигатель пойдет в разнос; б) двигатель не будет вращатся.

Пусковой ток якоря двигателя I П =U а /(r П +r я ) . Напряжение на обмотке якоря двигателя меньше напряжения сети на падение напряжения в пусковом реостате:

U Дв =U ном – I П r П =U ном – U нмо r П /(r я +r П )=U ном – U ном 9r я /(r я +9r я )=U ном – 9U ном /10=U ном /10

Номинальный ток возбуждения двигателя имеет место при номинальном напряжении I В,ном =U ном /r В . В данном случае напряжение на обмотке возбуждения равно напряжению на обмотке якоря, которое меньше номинального в 10 раз. Если допустить, что характеристика зависимости магнитного потока двигателя от тока возбуждения — почти прямая линия, то магнитный поток двигателя будет меньше номинального в 10 раз.

Момент, развиваемый двигателем при пуске, равен

М П =k M ФI П = k M Ф ном 2,5I ном /10= 0,25 k M Ф ном I ном =0,25 М ном .

При пуске вхолостую двигатель пойдет в ход и разгонится до частоты вращения, примерно равной частоте вращения идеального холостого хода, так как по мере разбега двигателя вследствие уменьшения тока в пусковом реостате напряжение на обмотке якоря и, следовательно, на обмотке возбуждения будет увеличиваться и к концу разбега будет близко к номинальному.

При пуске под нагрузкой с моментом Мс=0,5 М ном двигатель вращаться не будет, так как момент, развиваемый двигателем, меньше момента сил сопротивления на валу: Мс>М Дв ,

т. е. 0,5 М ном >0,25 М ном . Ответ: 3.

Определить сопротивление обмотки якоря двигателя r я и пускового реостата r п , который надо включить в цепь якоря, чтобы ток якоря при пуске I я,п =2,5 I ном . Данные двигателя: P ном =39 квт; U ном =220 В; I ном =200 А. Указать правильный ответ.

1) r я =1,0 Ом. 2) r я =0,125 Ом. 3) r п =0,3775 Ом. 4) r п =0,44 Ом.

Потери в обмотке якоря при номинальной нагрузке равны

∆P ном =U ном I ном — P ном = 220∙200 — 39∙10 3 = 5000 Вт . Сопротивление обмотки якоря равно r я =∆P ном / 2I ном 2 =5000/2∙200 2 = 0,0625 Ом.

Сопротивление пускового реостата определяем по закону Ома

r П =U ном /I ном – r я =200/2,5∙200 — 0,0625 = 0,3775 Ом. Ответ: 3.

В каком соотношении находятся ЭДС обмотки якоря двигателя при его работе в точках /, 2, 3, 4 характеристик, изображенных на рис. 9.43? Характеристика, на которой расположена точка 2, является естественной. Указать правильный ответ.

  1. E 1 =E 2 =E 3 =E 4 . 2) E 1 =E 2 >E 3 >E 4 . 3) E 1 >E 2 >E 3 >E 4 . 4) E 1 2 3 4 .

Электродвижущая сила, возникающая в обмотке якоря двигателя,

E=k e Фn=U – I я (r я +r Д ).

Из взаимного расположения характеристик видно, что характеристика, на которой расположена точка 1, соответствует ослабленному магнитному потоку двигателя; характеристика, на которой расположена точка 3,— реостатная (в цепи якоря включен добавочный резистор); характеристика, на которой расположена точка 4, имеем место при пониженном напряжении на обмотке якоря двигателя; например в системе Г—Д:

Е 1 =U ном – I я r я Е 2 =U ном – I я r я =k e Фn 2 E 3 =U ном – I ном( r я + r Д )= k e Фn 3

Е 4 =U′ – I я r я =n′ 0 U ном /n 0 – Iяrя=k e Фn 1

Так , как ток якоря I я1 двигателя для всех точек одинаков, a n 2 >n 3 >n 4 , то E 1 =E 2 >E 3 >E 4 .

Что произойдет при обрыве обмотки возбуждения двигателя постоянного тока с пара.ллельным возбуждением, если он работает: а) с номинальным моментом на валу

М С = М ном , б) вхолостую? Указать неправильный ответ.

а) При номинальном моменте на валу:

1) сгорят предохранители, и двигатель остановится;

2) если предохранители не сгорят, двигатель остановится.

б) При работе вхолостую:

3) сгорят предохранители;

4) если предохранители не сгорят, двигатель остановится;

5) если предохранители не сгорят, частота вращения вигателя начнет увеличиваться и двигатель может пойти вразнос.

При обрыве цепи обмотки возбуждения двигателя постоянного тока с параллельным возбуждением исчезнет ток возбуждения и, следовательно, магнитный поток, создаваемый им. Останется лишь магнитный поток остаточного намагничивания, который составляет не более 3—5 % номинального потока .

Из выражения Е=U ном – I я r я =k e Фn следует, что в той же степени уменьшится ЭДС обмотки якоря до (3—5) % U ном .

Если допустить, что частота вращения двигателя вследствие инерции якоря в течение времени после обрыва обмотки и исчезновения тока возбуждения практически не изменится, то справедливо следующее.

До обрыва ЭДС двигателя составляла:

а) при работе двигателя с номинальным моментом иа валу

Е ном =U ном – I я,ном r я =(0,85 — 0,95) U ном ;

б) при работе вхолостую Е x1 =U ном .

В результате значительного уменьшения ЭДС двигателя, как следу-из выражения I я =(U ном – Е)r я , возрастает ток якоря двигателя. Для случая а) имеем

I я,ном =(U ном — (0,85 — 0,95) U ном )/ r я ;

I я,а =(U ном — (0,03 — 0,05) U ном )/ r я ,

I я,а = I я,ном (U ном — (0,03 — 0,05) U ном )/(U ном — (0,85 — 0,95) U ном )≈(7—18) I я,ном .

Для случая б) ток увеличится в несколько большей степени, так как

Предохранители обычно рассчитываются на ток не более (3—4) I ном , .поэтому в обоих случаях должны сгореть предохранители и двигатель остановится.

Момент, развиваемый двигателем при обрыве в цепи обмотки возбуждения, равен

М=k М ФI я =k М (0,03 — 0,05)Ф ном (7—18) I я,ном =(0,21— 0,9)М ном

Поэтому, если предохранители не сгорят в первом случае, двигатель остановится, так как момент, развиваемый двигателем, меньше момента сил сопротивления навалу, т.е. Мд (0,21— 0,9)М ном ном , и если двигатель не будет отключен, он выйдет из строя.

Во втором случае при отсутствии момента на валу частота вращения двигателя начнет увеличиваться и может достичь недопустимого значения – двигатель пойдет вразнос:

n 0 =U ном /k е Ф ном ; n′ 0 =U ном /k е (0,03 — 0,05)Ф ном ;

n′ 0 = n 0 /(0,03 — 0,05) ≈ (30— 20) n 0 . Ответ: 4.

Определить сопротивление, включенное в цепь якоря двигателя постоянного тока с последовательным возбуждением, при котором двигатель имеет характеристику а (рис. 9.60). Сопротивление цепи r я + r в =0,3 Ом . Характеристики естественная (б) и искусственная с добавочным сопротивлением в цепи якоря 1,5 Ом (в) изображены на рис. 9.60. Указать правильный ответ.

1) 1 Ом. 2) 0,75 Ом. 3) 0,6 Ом. 4) не достаточно условий.

Уравнение естественной характеристики имеет вид:

n е =[U ном – I я( r я + r В )]/ k l Ф= n 0е -∆ n е

Уравнение искусственной характеристики

n И =[U ном – I я( r я + r В +r Д )]/ k е Ф= n 0И — ∆ n И

Если двигатель работает на естественной или искусственной характеристике с одинаковым током якоря, магнитные потоки двигателя будут иметь одинаковое значение, так как Ф В ≡ I В = I я .

Тогда ∆ n е / ∆ n И = ( r я + r В )/ ( r я + r В +r Д )

Из отношения ∆n е к ∆n И на искусственной характеристике а, например для тока

I я = 40 А , определяем ∆n е из ∆n е /(∆n е +400)=0,3/(0,3+ +1,5) , откуда ∆n е = 80 об/мин.

Из отношения ∆n е к ∆n И на искусственной характеристике а, например для тока

I я =40 А , определяем искомое сопротивление ∆n е /( ∆n е +200)=80/(80+200)=0,3(0,3+r Д ) , откуда r Д =0,75 Ом. Ответ: 2.

Определить частоту вращения и ЭДС якоря двигателя постоянного тока со смешанным возбуждением при токах якоря для двух случаев: а) I я =0,5I я , ном ; б) I я =I я , ном , если в цепь якоря включено добавочное сопротивление r Д =2 Ом. Данные двигателя:

Р ном = 9 кВт; n ном =900 об/мин; U ном =220 B; I ном =50 А; r я +r в =0,338+0,062=0,4 Ом. Естественная скоростная характеристика изображена на рис. 9.67. Указать неправильный ответ. 1) n а =860 об/мин. 2) Е а =160 В. 3) n б =420 об/мин. 4) Е б =100 В.

Решение 9-67. Электродвижущая сила якоря равна:

а) при I я =0,5I ном

Е а =U ном – I я( r я + r В +r Д )]= 220 — 25 (0,4 + 2) = 160 В ;

б) при I я =I ном ,

Е б = 220 — 50 (0,4 +2)= 100 В .

Уравнение электромеханической, естественной характеристики имеет вид

n е =[U ном – I я( r я + r В )]/ k e Ф

n И =[U ном – I я( r я + r В +r Д )]/ k e Ф

Если двигатель работает на естественной или искусственной характеристике с одинаковым током якоря, магнитные потоки двигателя будут иметь одинаковое значение, так как I посл =I; Ф≡ (Iw) п,о + (Iw) посл =(Iw) п,о +сI я , где (Iw) п,о —МДС параллельной обмотки возбуждения, которая от нагрузки не зависит.

Тогда из отношения уравнений для естественной и искусственной характеристик можно получить

n И = n е [U ном – I я( r я + r В +r Д )] / [U ном – I я( r я + r В )].

При I я = 0,5 I ном частота вращения на естественной характеристике (см. рис. 9.67) равна

n е = 1,25n ном = 1,25∙900 = 1125 об/мин ;

n а =n И = n е [U ном – I я( r я + r В +r Д )] / [U ном – I я( r я + r В )]= n е Е а / [U ном – I я( r я — r В )]=

=1125∙ 160/(220 – 25 ∙0,4)=860 об/мин.

При токе I я = I ном имеем n е = n ном = 900 об/мин;

n б =n И = n е Е б / [U ном – I ном( r я + r В )]=900 ∙100/(220 – 50 ∙0,5)=450 об/мин.

Генератор постоянного тока с независимым возбуждением приводится в движение асинхронным двигателем (рис. 9.73, а), механическая характеристика которого изображена на рис. 9.73, б. При нагрузке генератора 20 А напряжение на его выводах 220 В , а момент на валу асинхронного двигателя оказался равным номинальному значению. Определить напряжение при холостом ходе генератора ( I я = 0 ). Потерями мощности в генераторе пренебречь. Сопротивление якоря генератора r я =0,5 Ом. Номинальная частота вращения асинхронного двигателя n ном =920 об/мин . Указать правильный, ответ.

1) 230 В. 2) 240 В. 3) 220 В. 4) 250 В.

Электродвижущая сила генератора при нагрузке 20 А равна

Е=U – I я r я =220 + 20∙0,5 = 230 В .

При холостом ходе генератора нагрузки на валу двигателя не будет, его частота вращения и, следовательно, частота вращения генератора будут равны примерно частоте вращения магнитного потока асинхронного двигателя n=n 0 =1000 об/мин; определим ЭДС генератора:

при нагрузке E= k e Фn ном = ke Ф ∙920 = 230 В;

при холостом ходе E 0 = k e Фn 0 = ke Ф∙1000 ;

из отношения Е 0 к Е следует:

Е 0 = E n 0 / n 0 = 230∙1000/920 = 250 В.

Валы двух одинаковых двигателей постоянного тока Д 1 и Д 2 с независимым возбуждением с помощью кулачковых муфт К 1 и К 2 соединены с валом производственного механизма ПМ (рис. 9.74). Якоря двигателей соединены последовательно и включены в сеть с напряжением, в 2 раза большим номинального напряжения двигателей. Двигатели нагружены номинальным моментом и вращаются с номинальной частотой вращения. Как изменятся частоты вращения двигателей, если у муфты К 2 срежется шпонка и вал двигателя Д 2 потеряет связь с механизмом? Указать правильный ответ.

1) Частота вращения обоих двигателей уменьшится.

2) Частота вращения обоих двигателей увеличится.

3) Оба двигателя остановятся.

  1. Двигатель Д 1 остановится, частота вращения двигателя увеличится почти в 2 раза.

В условиях нормальной работы токи якорей равны:

I я =(2U ном – 2E)/2r я =(U ном – E)/r я =I ном .

Моменты, развиваемые двигателями, также были равны:

М Д1 =М Д2 =k М ФI ном .

Момент сопротивления распределялся поровну на каждый двигатель:

М С,Д1 =М С,Д2 = М=М С /2. Как только вал двигателя Д 2 потеряет механическую связь с механизмом, момент сил сопротивления на его валу исчезнет и его частота

вращения, как это вытекает из уравнения движения

Одновременно будет увеличиваться его ЭДС

Е Д2 = k е Фn Д2

и уменьшаться ток в цепи якорей двигателей. В результате момент, развиваемый двигателем Д 1 , будет уменьшаться и окажется меньше момента, создаваемого механизмом на его валу; частота вращения двигателя начнет уменьшаться, и двигатель постепенно остановится. Поскольку двигатель Д 2 оказался без нагрузки, он разгонится до частоты вращения, при которой ток в цепи якорей будет близок к нулю:

I я =(2U ном – E Д2 )/2r я =0,

Е Д2 == 2U ном = 2k e Фn 0 = k e Ф Д2 .

Таким образом, двигатель Д 2 будет вращаться с частотой, примерно в 2 раза большей частоты вращения идеального холостого хода. Ответ: 4.

Причинами использования в качестве двигателей электропровода двигателей постоянного тока с последовательным возбуждением, а не с параллельным являются: а) возможность длительной их работы с номинальным моментом при длительном снижении напряжения в сети постоянного тока, б) независимость пускового момента от напряжения сети.

Два двигателя постоянного тока, один с последовательным, другой с параллельным возбуждением, имеют следующие паспортные данные:

Р ном = 60 кВт, U ном = 440 В, I ном =160 А, n ном = 960 об/мин. Сопротивление последовательной обмотки возбуждения . r в = 0,5r я . Зависимость магнитного потока от МДС обмотки возбуждения двигателей изображена на рис. 9.91.

Определить ток в цепи якоря, частоту вращения двигателей при моменте сил

сопротивления на валу М с =М ном , значение которого не зависит от частоты вращения, при их работе от сети с напряжением U =0,6U ном , а также значения максимально возможных моментов при этом напряжении, если значения пусковых токов I п =2,5I ном . Указать неправильный ответ. Двигатель с параллельным возбуждением: 1) I я =230 А. 2 ) n=562 об/мин. 3) М п =0,7 М п(Uном) .

Двигатель с последовательным возбуждением: 4) I я =160 А. 5) n=547 об/мин.

Решение 9-91. Сопротивление обмотки якоря

r я =∆P ном /2I ном 2 =(U ном I ном — P ном )/ 2I ном 2

Двигатель с последовательным возбуждением. Сопротивление обмотки последовательного возбуждения

r В = 0,5 r я =0,5∙0,137 =0,0685 Ом

при номинальном напряжении

М C =М ном =k М Ф ном I я,ном , I я,ном =(U ном – E ном )/(r я +r В )

при пониженном напряжении

М C =М′= k М Ф′I я , I я ′=(0,6U ном – E)/(r я +r В ).

Поскольку момент сил сопротивления на валу остался неизменным, , очевидно, что

Ф′=Ф ном , I я ′= I я,ном ,

Значение частоты вращения при U= 0,6 U ном можно определить из соотношения ЭДС

Е ном =U ном – I я,ном (r я + r В ) = k e Фn 1 = 440 — 160 (0,137+0,0685) = 407 В;

Е′ =0,6U ном – I я,ном (r я + r В ) = k e Фn′= 0,6∙440 — 160 (0,137 4-0,0685) = 231 В ,

n′= n 0 E′/E ном =960∙231/407=547 об/мин .

Пусковой, момент при U= U ном

М п,ном =k М Ф ном I′ я,п

М′ п =k е Ф ном I я,п

Двигатель с параллельным возбуждением. Ток возбуждения и МДС параллельной обмотки возбуждения при U= 0,6U ном составляют I B =0,6 I в,ном и (Iw)′ В =0,6 (Iw) В,ном ,

так как ток возбуждения пропорционален напряжению сети. Магнитный поток, соответствующий этой МДС, определяется из кривой Ф=(Iw) (см. рис. 9.91):

Ток якоря при U= 0,6U ном определяется из выражения

М С = М ном =k е Ф′ I′ я = k е Ф ном I я,ном ;

I′ я = I я,ном Ф ном /Ф′=160/0,7=230 А.

Значение частоты вращения определяется из соотношения ЭДС:

Е ном =U ном – I я,ном r я = k е Ф ном n ном = 440 – 160∙0,137 = 418 В;

Е′ =0,6U ном – I′ я r я = k е Ф′ n′=0,6∙440 – 230∙ 0,137 ==232,5 В ;

n′= n ном E′ Ф ном /E ном Ф′=960 ∙232,5/(418 ∙0,7)=762 об/мин

Источник

Измерение тока ротора генератора с бесщеточной системой возбуждения (БСВ)

Ротор ТГ — вторая по величине часть этой электрической синхронной машины после статора. При испытаниях на нагревание, снятиях электрических характеристик ХХ и КЗ, а так же в процессе эксплуатации, возникает необходимость контролировать значение тока ротора.

Тут существует две системы:

  • Ток ротора снимается со щеток и через шунт выводится на амперметр и цепи управления и защиты
  • Либо же щеток нет и ток ротора никак не измерить напрямую

На заводе, где могут машину разобрать и собрать в два счета, производят снятие опытных характеристик, которые заносятся в паспорт на изделие и могут пригодиться в дальнейшем для определения тока ротора на бесщеточной системе возбуждения (БСВ).

Так как в мире инженерии нет ничего невозможного, то были придуманы различные способы для измерения тока ротора на генераторах с бесщеточной системой возбуждения.

Каждый из этих методов живет в качестве запатентованного метода и просто так, в целях “измерений-испытаний”, быть использован не может без выполнения определенных условий-требований. Однако, рассказать о сути данных технологий — дело просветительское и для пытливых умов — полезное.

Рассмотрим два запатентованных метода измерения, один будет аналитически-теоретический, для реализации же второго варианта, необходимо будет залезть в сам ротор и немного “похимичить”. Каждый сам выберет, какой вариант ему по душе.

Косвенный способ определения тока ротора турбогенератора с БСВ

Данный способ представлен широкой публике в форме патента за номером 2011203, опубликованного 15.04.1994. В результате научной работы автора патента Полякова В.И. была представлена формула, позволяющая определять значение тока ротора:

формула определения тока ротора генератора с бесщеточной системой возбуждения

В данной формуле присутствуют следующие составляющие:

— определяемый ток ротора

Скз — коэффициент, равный отношению тока возбуждения возбудителя к току возбудителя. Определяется из заводской характеристики короткого замыкания.

Схх — коэффициент, равный отношению тока возбуждения возбудителя к напряжению возбудителя. Определяется из заводской характеристики холостого хода (отношение берется на прямолинейном участке кривой).

Характеристики холостого хода и короткого замыкания определяются заводом-изготовителем и могут находиться в паспорте на возбудитель вместе с другими результатами заводских испытаний.

iвв — ток возбуждения возбудителя, который можно определить амперметром, подключенным в цепь ВВ.

— напряжение ротора, определяется вольтметром, подключенным к токосьемным щеткам, которые “снимают” напряжение с измерительных колец.

— номинальная частота вращения ротора возбудителя (это не 50Гц, а об/мин — то есть 1500, 3000 или другое значение).

f — частота вращения ротора возбудителя измеренная в ходе эксперимента с помощью тахометра или частотометра.

В интернетах и журналах пишут, что данным методом можно добиться точности измерения в 1%. Естественно с приборами класса точности 0,2 для ротора и возбудителя, и 0,5 — для статора. Также полезно упомянуть, что если знать мат модель и подключить приборы к ЭВМ, то значение тока ротора с требуемой погрешностью будет выводиться прямо на экран оператора, или же внедряться в систему АСУ для контроля.

Существует эксплуатационный способ определения тока ротора на БСВ с помощью индукционных датчиков. В данном случае датчик представляет собой разомкнутую катушку, которая расположена в нескольких милиметрах от вала ротора, на котором находятся токонесущие шпильки выпрямленного тока от возбудителя. При вращении ротора в датчике образуется синусоидальный сигнал.

Однако, данный метод не точный, так как на качество измерений оказывает влияние множество факторов: намагниченность вала, величина воздушного зазора, частота вращения ротора. Так как сама идея датчиков правильная, но расположение вблизи ротора не показывает нужных результатов, был изобретен следующий патент.

Метод измерения тока ротора с помощью датчика внутри ротора

Данный патент более современный, опубликован 20.06.2008 года за авторством Попова И.Н. Суть метода определения тока ротора описывается с помощью рисунка.

определение тока ротора с помощью датчика внутри

На рисунке показан вал ротора (1), токопроводящие медные полустержни (2) и (3), изоляционные элементы (5) и (4), и сам датчик (6).

В данном методе датчик, которым может быть настроенный датчик Холла, располагается внутри прокладки ротора (5). В этом случае на результат замера не влияют факторы, описанные выше (намагниченность, зазор, скорость вращения).

Способ хорош, однако, при его реализации на оборудовании, которое давно находится в работе, могут возникнуть определенные, возможно непреодолимые сложности. В данном случае аналитический способ выглядит более прогрессивным и доступным.

На стадии проектирования, например, при внедрении нового или замене старого ТГ, я бы отдал предпочтение именно способу с датчиком внутри ротора. Так как он более точный, в том плане, что определение постоянных с заводских характеристик КЗ и ХХ может вносить определенные неточности в косвенный метод.

Всё вышеописанное является ознакомительной информацией, при желании более глубоко изучить данную тему — по номерам патентов в гугле легко находится их подробное описание.

Сохраните в закладки или поделитесь с друзьями

Источник

Генераторы независимого возбуждения

Дата публикации: 29 января 2013 .
Категория: Статьи.

Свойства генераторов анализируются с помощью характеристик, которые устанавливают зависимости между основными величинами, определяющими работу генераторов. Такими основными величинами являются: 1) напряжение на зажимах U, 2) ток возбуждения iв, 3) ток якоря Iа или ток нагрузки I, 4) скорость вращения n.

Обычно генераторы работают при n = const. Поэтому основные характеристики генераторов определяются при n = nн = const.

Существуют пять основных характеристик генераторов: 1) холостого хода, 2) короткого замыкания, 3) внешняя, 4) регулировочная, 5) нагрузочная.

Все характеристики могут быть определены как экспериментальным, так и расчетным путем.

Рассмотрим основные характеристики генератора независимого возбуждения.

Характеристика холостого хода

Характеристика холостого хода (х. х. х.) U = f (iв) при I = 0 и n = const определяет зависимость напряжения или электродвижущей силы (э. д. с.) якоря Eа от тока возбуждения при холостом ходе (I = 0, P2 = 0). Характеристика снимается экспериментально по схеме рисунка 1, а при отключенном рубильнике.

Рисунок 1. Схемы генераторов и двигателей независимого (а), параллельного (б), последовательного (в), смешанного (г) возбуждения (сплошные стрелки – направления токов в режиме генератора, штриховые – в режиме двигателя)

Рисунок 2. Характеристика холостого хода генератора независимого возбуждения

Снятие характеристики целесообразно начинать с максимального значения тока возбуждения и максимального напряжения U = (1,15 – 1,25) Uн (точка а кривой на рисунке 2). При уменьшении iв напряжение уменьшается по нисходящей ветви аб характеристики сначала медленно ввиду насыщения магнитной цепи, а затем быстрее. При iв = 0 генератор развивает некоторое напряжение U00 = Об (рисунок 2), обычно равное 2 – 3% от Uн, вследствие остаточной намагниченности полюсов и ярма индуктора. Если затем изменить полярность возбуждения и увеличить iв в обратном направлении, начиная с iв = 0, то при некотором iв div > .uk-panel’>» data-uk-grid-margin>

Источник

Читайте также:  Прижечь эрозию шейки матки электрическим током