Меню

Как нужно изменить силу тока в линии электропередачи чтобы при повышении напряжения в 100 раз



Справочник электрика

вторник, 30 апреля 2013 г.

Передача электроэнергии. Путь от электростанции к потребителю. Сокращение потерь при передаче электроэнергии.

Передача электроэнергии. Путь от электростанции к потребителю. Сокращение потерь при передаче электроэнергии.

Рассмотрим кратко систему электроснабжения, представляющую из себя группу электротехнических устройств для передачи, преобразования, распределения и потребления электрической энергии. Глава расширит кругозор тех, кто хочет научиться грамотно использовать домашнюю электросеть.

Снабжение электроэнергией осуществляется по стандартным схемам. Например, на рис. 1.4 представлена радиальная однолинейная схема электроснабжения для передачи электроэнергии от понижающей подстанции электростанции до потребителя электроэнергии напряжением 380 В.

От электростанции электроэнергия напряжением 110—750 кВ передается по линиям электропередач (ЛЭП) на главные или районные понижающие подстанции, на которых напряжение снижается до 6—35 кВ. От распределительных устройств это напряжение по воздушным или кабельным ЛЭП передается к трансформаторным подстанциям, расположенным в непосредственной близости от потребителей электрической энергии. На подстанции величина напряжения снижается до 380 В, и по воздушным или кабельным линиям электроэнергия поступает непосредственно к потребителю в доме. При этом линии имеют четвертый (нулевой) провод 0, позволяющий получить фазное напряжение 220 В, а также обеспечивать защиту электроустановок.
Такая схема позволяет передать электроэнергию потребителю с наименьшими потерями. Поэтому на пути от электростанции к потребителям электроэнергия трансформируется с одного напряжения на другое. Упрощенный пример трансформации для небольшого участка энергосистемы показан на рис. 1.5. Зачем применяют высокое напряжение? Расчет сложен, но ответ прост. Для снижения потерь на нагрев проводов при передаче на большие расстояния.

Потери зависят от величины проходящего тока и диаметра проводника, а не приложенного напряжения.

Например:
Допустим, что с электростанции в город, находящийся от нее на расстоянии 100 км, нужно передавать по одной линии 30 МВт. Из-за того, что провода линии имеют электрическое сопротивление, ток их нагревает. Эта теплота рассеивается и не может быть использована. Энергия, затрачиваемая на нагревание, представляет собой потери.

Свести потери к нулю невозможно. Но ограничить их необходимо. Поэтому допустимые потери нормируют, т. е. при расчете проводов линии и выборе ее напряжения исходят из того, чтобы потери не превышали, например, 10% полезной мощности, передаваемой по линии. В нашем примере это 0,1-30 МВт = 3 МВт.

Например:
Если не применять трансформацию, т. е. передавать электроэнергию при напряжении 220 В, то для снижения потерь до заданного значения сечение проводов пришлось бы увеличить примерно до 10 м2. Диаметр такого «провода» превышает 3 м, а масса в пролете составляет сотни тонн.
Применяя трансформацию, т. е. повышая напряжение в линии, а затем, снижая его вблизи расположения потребителей, пользуются другим способом снижения потерь: уменьшают ток в линии. Этот способ весьма эффективен, так как потери пропорциональны квадрату силы тока. Действительно, при повышении напряжения вдвое ток снижается вдвое, а потери уменьшаются в 4 раза. Если напряжение повысить в 100 раз, то потери снизятся в 100 во второй степени, т. е. в 10000 раз.

Например:
В качестве иллюстрации эффективности повышения напряжения укажу, что по линии электропередачи трехфазного переменного тока напряжением 500 кВ передают 1000 МВт на 1000 км.

Линии электропередач

Электрические сети предназначены для передачи и распределения электроэнергии. Они состоят из совокупности подстанций и линий различных напряжений. При электростанциях строят повышающие трансформаторные подстанции, и по линиям электропередачи высокого напряжения передают электроэнергию на большие расстояния. В местах потребления сооружают понижающие трансформаторные подстанции.

Основу электрической сети составляют обычно подземные или воздушные линии электропередачи высокого напряжения. Линии, идущие от трансформаторной подстанции до вводно-распределительных устройств и от них до силовых распределительных пунктов и до групповых щитков, называют питающей сетью. Питающую сеть, как правило, составляют подземные кабельные линии низкого напряжения.

По принципу построения сети разделяются на разомкнутые и замкнутые. В разомкнутую сеть входят линии, идущие к электроприемникам или их группам и получающие питание с одной стороны. Разомкнутая сеть обладает некоторыми недостатками, заключающимися в том, что при аварии в любой точке сети питание всех потребителей за аварийным участком прекращается.

Замкнутая сеть может иметь один, два и более источников питания. Несмотря на ряд преимуществ, замкнутые сети пока не получили большого распространения. По месту прокладки сети бывают наружные и внутренние.

Способы выполнения линий электропередач

Каждому напряжению соответствуют определенные способы выполнения электропроводки. Это объясняется тем, что чем напряжение выше, тем труднее изолировать провода. Например, в квартирах, где напряжение 220 В, проводку выполняют проводами в резиновой или в пластмассовой изоляции. Эти провода просты по устройству и дешевы.

Читайте также:  При увеличении силы тока в катушке вдвое магнитная энергия катушки увеличилась в 4 раза что

Несравненно сложнее устроен подземный кабель, рассчитанный на несколько киловольт и проложенный под землей между трансформаторами. Кроме повышенных требований к изоляции, он еще должен иметь повышенную механическую прочность и стойкость к коррозии.

Для непосредственного электроснабжения потребителей используются:

♦ воздушные или кабельные ЛЭП напряжением 6 (10) кВ для питания подстанций и высоковольтных потребителей;
♦ кабельные ЛЭП напряжением 380/220 В для питания непосредственно низковольтных электроприемников. Для передачи на расстояние напряжения в десятки и сотни киловольт создаются воздушные линии электропередач. Провода высоко поднимаются над землей, в качестве изоляции используется воздух. Расстояния между проводами рассчитываются в зависимости от напряжения, которое планируется передавать. На рис. 1.6 изображены в одном масштабе опоры для воздушных линий электропередач напряжениями 500, 220, 110, 35 и 10 кВ. Заметьте, как увеличиваются размеры и усложняются конструкции с ростом рабочего напряжения!

Например:
Опора линии напряжением 500 кВ имеет высоту семиэтажного дома. Высота подвеса проводов 27 м, расстояние между проводами 10,5 м, длина гирлянды изоляторов более 5 м. Высота опор для переходов через реки достигает 70 м. Рассмотрим варианты выполнения ЛЭП подробнее.

Воздушные ЛЭП
Определение.
Воздушной линией электропередачи называют устройство для передачи или распределения электроэнергии по проводам, находящимся на открытом воздухе и прикрепленным при помощи траверс (кронштейнов), изоляторов и арматуры к опорам или инженерным сооружениям.

В соответствии с «Правилами устройства электроустановок» по напряжению воздушные линии делятся на две группы: напряжением до 1000 В и напряжением свыше 1000 В. Для каждой группы линий установлены технические требования их устройства.

Воздушные ЛЭП 10 (6) кВ находят наиболее широкое применение в сельской местности и в небольших городах. Это объясняется их меньшей стоимостью по сравнению с кабельными линиями, меньшей плотностью застройки и т. д.

Для проводки воздушных линий и сетей используют различные провода и тросы. Основное требование, предъявляемое к материалу проводов воздушных линий электропередачи, — малое электрическое сопротивление. Кроме того, материал, применяемый для изготовления проводов, должен обладать достаточной механической прочностью, быть устойчивым к действию влаги и находящихся в воздухе химических веществ.

В настоящее время чаще всего используют провода из алюминия и стали, что позволяет экономить дефицитные цветные металлы (медь) и снижать стоимость проводов. Медные провода применяют на специальных линиях. Алюминий обладает малой механической прочностью, что приводит к увеличению стрелы провеса и, соответственно, к увеличению высоты опор или уменьшению длины пролета. При передаче небольших мощностей электроэнергии на короткие расстояния применение находят стальные провода.

Для изоляции проводов и крепления их к опорам линий электропередач служат линейные изоляторы, которые наряду с электрической должны также обладать и достаточной механической прочностью. В зависимости от способа крепления на опоре различают изоляторы штыревые (их крепят на крюках или штырях) и подвесные (их собирают в гирлянду и крепят к опоре специальной арматурой).

Штыревые изоляторы применяют на линиях электропередач напряжением до 35 кВ. Маркируют их буквами, обозначающими конструкцию и назначение изолятора, и числами, указывающими рабочее напряжение. На воздушных линиях 400 В используют штыревые изоляторы ТФ, ШС, ШФ. Буквы в условных обозначениях изоляторов обозначают следующее: Т — телеграфный; Ф — фарфоровый; С — стеклянный; ШС — штыревой стеклянный; ШФ — штыревой фарфоровый.

Штыревые изоляторы применяют для подвешивания сравнительно легких проводов, при этом в зависимости от условий трассы используются различные типы крепления проводов. Провод на промежуточных опорах укрепляют обычно на головке штыревых изоляторов, а на угловых и анкерных опорах— на шейке изоляторов. На угловых опорах провод располагают с наружной стороны изолятора по отношению к углу поворота линии.

Подвесные изоляторы применяют на воздушных линиях 35 кВ и выше. Они состоят из фарфоровой или стеклянной тарелки (изолирующая деталь), шапки из ковкого чугуна и стержня. Конструкция гнезда шапки и головки стержня обеспечивает сферическое шарнирное соединение изоляторов при комплектовании гирлянд. Гирлянды собирают и подвешивают к опорам и тем самым обеспечивают необходимую изоляцию проводов. Количество изоляторов в гирлянде зависит от напряжения линии и типа изоляторов.

Материалом для вязки алюминиевого провода к изолятору служит алюминиевая проволока, а для стальных проводов— мягкая стальная. При вязке проводов выполняют обычно одинарное крепление, двойное же крепление применяют в населенной местности и при повышенных нагрузках. Перед вязкой заготовляют проволоку нужной длины (не менее 300 мм).

Головную вязку выполняют двумя вязальными проволоками разной длины. Эти проволоки закрепляют на шейке изолятора, скручивая между собой. Концами более короткой проволоки обвивают провод и плотно притягивают четыре-пять раз вокруг провода. Концы другой проволоки, более длинные, накладывают на головку изолятора накрест через провод четыре-пять раз.

Читайте также:  Двигатели постоянного тока последовательного возбуждения обладают

Для выполнения боковой вязки берут одну проволоку, кладут ее на шейку изолятора и оборачивают вокруг шейки и провода так, чтобы один ее конец прошел над проводом и загнулся сверху вниз, а второй — снизу вверх. Оба конца проволоки выводят вперед и снова оборачивают их вокруг шейки изолятора с проводом, поменяв местами относительно провода.

После этого провод плотно притягивают к шейке изолятора и обматывают концы вязальной проволоки вокруг провода с противоположных сторон изолятора шесть-восемь раз. Во избежание повреждения алюминиевых проводов место вязки иногда обматывают алюминиевой лентой. Изгибать провод на изоляторе сильным натяжением вязальной проволоки не разрешается.

Вязку проводов выполняют вручную, используя монтерские пассатижи. Особое внимание обращают при этом на плотность прилегания вязальной проволоки к проводу и на положение концов вязальной проволоки (они не должны торчать). Штыревые изоляторы крепят к опорам на стальных крюках или штырях. Крюки ввертывают непосредственно в деревянные опоры, а штыри устанавливают на металлических, железобетонных или деревянных траверсах. Для крепления изоляторов на крюках и штырях используют переходные полиэтиленовые колпачки. Разогретый колпачок плотно надвигают на штырь до упора, после этого на него навинчивают изолятор.

Провода подвешиваются на железобетонных или деревянных опорах при помощи подвесных или штыревых изоляторов. Для воздушных ЛЭП используются неизолированные провода. Исключением являются вводы в здания — изолированные провода, протягиваемые от опоры ЛЭП к изоляторам, укрепленным на крюках непосредственно на здании.

Внимание!
Наименьшая допустимая высота расположения нижнего крюка на опоре (от уровня земли) составляет: в ЛЭП напряжением до 1000 В для промежуточных опор от 7 м, для переходных опор — 8,5 м; в ЛЭП напряжением более 1000 В высота расположения нижнего крюка для промежуточных опор составляет 8,5 м, для угловых (анкерных) опор — 8,35 м.

Наименьшие допустимые сечения проводов воздушных ЛЭП напряжением более 1000 В, выбираемые по условиям механической прочности с учетом возможной толщины их обледенения, приведены в табл. 1.1.

Минимально допустимые значения проводов возжушныхЛЭП напряжением более 1000 В
Таблица 1.1

На воздушных ЛЭП напряжением до 1000 В устанавливают заземляющие устройства. Расстояние между ними определяется числом грозовых часов в году:

♦ до 40 часов — не более 200 м;
♦ более 40 часов — не более 100 м.

Сопротивление заземляющего устройства должно быть не более 30 Ом.

Допустимые расстояния от нижних проводов воздушных ЛЭП напряжением до 1000 В и до 10 кВ и их опор до объектов представлены в табл. 1.2.

Источник

Во сколько раз увеличено напряжение?

И наконец-то, последняя задача, которую я бы хотел просто попросить вас, дорогие форумчане проверить. Опять же, гложет сомнение насчет правильности моего решения.
Задача: При увеличении напряжения без изменения мощности источника потери энергии на линиях электропередачи уменьшилось в 100 раз. Во сколько раз увеличено напряжение?
Решение: Из темы «Трансформаторы» я узнал, что P=UI, формула доказывает что, если уменьшить силу тока во сколько-то раз, то нужно напряжение увеличить в столько-же раз чтобы мощность не изменилась. Однако при этом кпд передачи энергии увеличится, ибо проводник будет греться намного меньше. Ответ: напряжение увеличили в 100 раз.

Есть еще один вариант решение, закон Джоуля-Ленца, однако он под сомнением, но все-же небольшой процент есть. Он и подталкивает меня узнать истинный ответ.

Во сколько раз уменьшится напряжение?
Пробовал решить, ни в какую. Пожалуйста, помогите с решением. Сопротивление реостата.

Во сколько раз уменьшается напряжение на обкладках конденсатора?
1. В пространство между обкладками заряженного и отключенного от источника конденсатора вдвигают.

Найти, во сколько раз уменьшится напряжение на конденсаторе за время двух периодов
Колебательный контур состоит из конденсатора емкостью 0,405 мкФ и катушки индуктивностью 10 мГн и.

Во сколько раз изменится напряжение на зажимах?
Решил задачу, не знаю правильно ли. Где-то в интернете раздобыл куча формул из которых вывел одну.

Источник

Почему на ЛЭП повышают напряжение тем самым УМЕНЬШАЯ силу тока

Час назад задавал аналогичный вопрос, вроде всё постепенно складывается по полочкам. Но одно я никак не могу понять — почему напряжение растёт а сила тока уменьшается, когда в законе ома наоборот. Я конечно понимаю что P=U*I. Но в законе ома они прямо пропорциональны. Вообще запутался. Распутайте пожалуйста) Желательно на пальцах))

Читайте также:  Учет потерь трансформатора тока

Чем больше напряжение, тем меньше сопротивление. Чем меньше сопротивление, тем меньше сила тока. Повышают напряжение для того чтобы не было потерь тока на сопротивление проводника. А потом понижают напряжение чтобы увеличить ток. Иначе бы ток нагревал и намагничивал проводники ЛЭП вместо того, чтобы нагревать фольфрам лампочки в твоем сортире.

Элеонора Габбасова

Попробую. . если сам не запутаюсь.
Мощность = Сила тока умножить на напряжение.

Мощность электростанции — величина постоянная. Но передать эту мощность можно за счет увеличения одного из множителей. Тогда уменьшится второй.

Мощность станции 20

Можно получить эти 20 как 5 умножить на 4

А можно и как 10 умножить на 2

Получается что при росте напряжения падает сила тока, но на выходе имеем ту же мощность.
Ты просто забываешь что Мощность — величина в данном случае постоянная.

Надя

Слов было сказано (написано много).. . порой бред, особливо про зависимость сопротивления от напряжения. Короче так: 1. P = I x U, где P — передаваемая мощность, I — ток, U — напряжение, х — умножить 2. Ка видно из формулы, одну и ту же мощность можно передать либо за счет увеличения напряжения и снижении тока, либо за счет снижения напряжения при увеличении тока. Это понятно? 3. Pп = I^2 x R, где Pп — мощность потерь (тепловые) в проводе, I — ток, R — сопротивление провода, ^2 -в квадрате, х — умножить. 4. Если увеличивать ток, то. как видно из п. 3 вырастут потери мощности в проводе, провод разогреется, R возрастет за счет нагрева провода, что еще больше увеличит потери, — посему выгоднее увеличивать напряжение и снижать ток. P.S. бесконечно увеличивать напругу на эл. станции невозможно, т. к. на проводах возникнет коронный разряд, что также приведет к потерям. Эт коротенько.

Как сказали выше, передаваемая мощность приблизительно постоянна. Эту мощность надо передать на большое расстояние по проводам. У проводов есть СОПРОТИВЛЕНИЕ протеканию ТОКА.
При этом на сопротивлении будет теряться мощность и тем больше, чем выше сила тока. P=I^2/R (т. е. потери пропорциональны сопротивлению)
С другой стороны P=U^2/R (здесь потери обратно пропорциональны сопротивлению и нам выгодно иметь большее сопротивление линии передачи. )
Так же чем больше сила тока, тем толще должны быть провода
Соответственно логично повысить Напряжение и понизить Силу тока дабы снизить потери при передаче и уменьшить сечение проводов.
Наиболее разумное соотношение находится учетом всех факторов: сечение и стоимость проводов, соотношение I U R обеспечивающее наименьшие потери при данном сечении и расттоянии передачи.

Вы че там, сговорились? Или ты под разными именами заходишь?
http://otvet.mail.ru/profile/id179511457

Ирина

если на лампочку подать напряжение 12 вольт при силе тока 3 ампер, то примерная мощность лампы 36 ватт. если же напряжение поднять до 24 вольт (теоретически) , то сила тока возрастёт до 6 ампер, мощность лампы составит 144 ватта, это закон Ома. Линия передаёт постоянную мощность, например 1 мегаватт, при напряжении 380 вольт это составило бы 2600 ампер. это не годится. но если напряжение поднять до 220 киловольт, то сила тока будет всего 4,5 ампера при мощности 1 мегаватт.

Q = I*U*t = I2*R*t = U2*t/R
от сюда видно что чем больше напряжение тем меньше потери на транспорт.

А технологический расход электроэнергии на транспорт — это основной показатель работы энергосистемы, но у распредсетей 35/10/6 кВ после этого начинается головная боль

меньше сила тока — можно использовать провода меньшего сечения!

Именно для того, чтобы понизить силу тока и сделать провода приемлемого сечения.

Tynchtykbek Tokonov

P=U*I => U=P/ I => следовательно напряжение и ток обратно пропорциональны.

просто две формулы, для двух разных проблем.

Источник

Как увеличить силу тока

Как увеличить силу тока

  • Как увеличить силу тока
  • Как увеличить ток
  • Как повышать и понижать напряжение
  • как изменится ток если увеличить напряжение
  • Как увеличить мощность токаКак увеличить мощность тока
  • Как повысить силу токаКак повысить силу тока
  • Как увеличить силу АмпераКак увеличить силу Ампера
  • Как увеличить напряжениеКак увеличить напряжение
  • Как повысить мощность блока питанияКак повысить мощность блока питания
  • Как увеличить выделенную мощностьКак увеличить выделенную мощность
  • Как сделать токКак сделать ток
  • Как понизить силу токаКак понизить силу тока
  • Как увеличить частоту токаКак увеличить частоту тока
  • Как изменяется сила тока в резистореКак изменяется сила тока в резисторе
  • Почему меняется сила токаПочему меняется сила тока
  • Как уменьшить амперыКак уменьшить амперы
  • Как увеличить точность измерения эдсКак увеличить точность измерения эдс
  • Как снизить напряжение питанияКак снизить напряжение питания
  • Как уменьшить токКак уменьшить ток
  • Как увеличить мощность usbКак увеличить мощность usb
  • Закон Джоуля-Ленца: определение, практическое значениеЗакон Джоуля-Ленца: определение, практическое значение
  • Как изменить энергию магнитного поляКак изменить энергию магнитного поля
  • Как изменить электрическую проводимостьКак изменить электрическую проводимость
  • Как изменяется ток при изменении сопротивленияКак изменяется ток при изменении сопротивления
  • Как повысить крутящий моментКак повысить крутящий момент

Источник