Меню

Как найти токи ветвей если известно напряжение



Расчет электрических цепей

Для вычисления рабочих параметров радиотехнических устройств и отдельных схем применяют специальные методики. После изучения соответствующих технологий результат можно узнать быстро, без сложных практических экспериментов. Корректный расчет электрических цепей пригодится на стадии проектирования и для выполнения ремонтных работ.

Задачи на расчет электрических цепей решают с применением типовых алгоритмов

Категории элементов и устройств электрической цепи

Для условного изображения определенной цепи применяют специальную схему. Кроме отдельных физических компонентов, она содержит сведения о направлении (силе) токов, уровнях напряжения и другую информацию. Качественная модель показывает реальные процессы с высокой точностью.

Компоненты электрической цепи:

  • источник постоянного или переменного тока (Е) – аккумулятор или генератор, соответственно;
  • пассивные элементы (R) – резисторы;
  • компоненты с индуктивными (L) и емкостными (С) характеристиками;
  • соединительные провода.

Типовые названия

На рисунке обозначены:

  • ветви – участки цепи с одним током;
  • узлы – точки соединения нескольких ветвей;
  • контур – замкнутый путь прохождения тока.

При решении практических задач выясняют, как узнать силу тока в отдельных ветвях. Полученные значения используют для анализа электрических параметров. В частности, можно определять падение напряжения на резисторе, мощность потребления подключенной нагрузки. При расчете цепей переменного тока приходится учитывать переходные энергетические процессы, влияние частоты.

Метод расчета по законам Ома и Кирхгофа

До изучения технологий вычислений необходимо уточнить особенности типовых элементов при подключении к разным источникам питания. При постоянном токе сопротивлением индуктивности можно пренебречь. Конденсатор эквивалентен разрыву цепи. Также следует учитывать следующие различия разных видов соединений резисторов:

  • последовательное – увеличивает общее сопротивление;
  • параллельное – распределяет токи по нескольким ветвям, что улучшает проводимость.

Закон Ома для участка цепи

Типовая аккумуляторная батарея легкового автомобиля вырабатывает напряжение U = 12 V. Бортовой или внешний амперметр покажет соответствующее значение при измерении. Соединение клемм проводом недопустимо, так как это провоцирует короткое замыкание. Если жила тонкая (

К сведению. Результат показанного расчета пригодится для поиска подходящего резистора. Следует делать запас в сторону увеличения. По стандарту серийных изделий подойдет элемент с паспортной номинальной мощностью 5 Вт.

На практике приходится решать более сложные задачи. Так, при значительной длине линии нужно учесть влияние соединительных ветвей цепи. Через стальной проводник ток будет протекать хуже, по сравнению с медным аналогом. Следовательно, надо в расчете учитывать удельное сопротивление материала. Короткий провод можно исключить из расчета. Однако в нагрузке может быть два элемента. В любом случае общий показатель эквивалентен определенному сопротивлению цепи. При последовательном соединении Rэкв = R1 + R2 +…+ Rn. Данный метод пригоден, если применяется постоянный ток.

Закон Ома для полной цепи

Для вычисления такой схемы следует добавить внутреннее сопротивление (Rвн) источника. Как найти ток, показывает следующая формула:

Вместо напряжения (U) при расчетах часто используют типовое обозначение электродвижущей силы (ЭДС) – E.

Первый закон Кирхгофа

По классической формулировке этого постулата алгебраическая сумма токов, которые входят и выходят из одного узла, равна нулю:

I1 + I2 + … + In = 0.

Это правило действительно для любой точки соединения ветвей электрической схемы. Следует подчеркнуть, что в данном случае не учитывают характеристики отдельных элементов (пассивные, реактивные). Можно не обращать внимания на полярность источников питания, включенных в отдельные контуры.

Чтобы исключить путаницу при работе с крупными схемами, предполагается следующее использование знаков отдельных токов:

  • входящие – положительные (+I);
  • выходящие – отрицательные (-I).

Второй закон Кирхгофа

Этим правилом установлено суммарное равенство источников тока (ЭДС), которые включены в рассматриваемый контур. Для наглядности можно посмотреть, как происходит распределение контрольных параметров при последовательном подключении двух резисторов (R1 = 50 Ом, R2 = 10 Ом) к аккумуляторной батарее (Uакб = 12 V). Для проверки измеряют разницу потенциалов на выводах пассивных элементов:

  • UR1 = 10 V;
  • UR1 = 2 V;
  • Uакб = 12 V = UR1 + UR2 = 10 + 2;
  • ток в цепи определяют по закону Ома: I = 12/(50+10) = 0,2 А;
  • при необходимости вычисляют мощность: P = I2 *R = 0,04 * (50+10) = 2,4 Вт.

Второе правило Кирхгофа действительно для любых комбинаций пассивных компонентов в отдельных ветвях. Его часто применяют для итоговой проверки. Чтобы уточнить корректность выполненных действий, складывают падения напряжений на отдельных элементах. Следует не забывать о том, что дополнительные источники ЭДС делают результат отличным от нуля.

Метод преобразования электрической цепи

Как определить силу тока в отдельных контурах сложных схем? Для решения практических задач не всегда нужно уточнение электрических параметров на каждом элементе. Чтобы упростить вычисления, используют специальные методики преобразования.

Расчет цепи с одним источником питания

Для последовательного соединения пользуются рассмотренным в примере суммированием электрических сопротивлений:

Rэкв = R1 + R2 + … + Rn.

Контурный ток – одинаковый в любой точке цепи. Проверять его можно в разрыве контрольного участка мультиметром. Однако на каждом отдельном элементе (при отличающихся номиналах) прибор покажет разное напряжение. По второму закону Кирхгофа можно уточнить результат вычислений:

E = Ur1 + Ur2 + Urn.

Параллельное соединение резисторов, схемотехника и формулы для расчетов

В этом варианте в полном соответствии с первым постулатом Кирхгофа токи разделяются и соединяются во входных и выходных узлах. Показанное на схеме направление выбрано с учетом полярности подключенного аккумулятора. По рассмотренным выше принципам сохраняется базовое определение равенства напряжений на отдельных компонентах схемы.

Как найти ток в отдельных ветвях, демонстрирует следующий пример. Для расчета приняты следующие исходные значения:

  • R1 = 10 Ом;
  • R2 = 20 Ом;
  • R3= 15 Ом;
  • U = 12 V.

По следующему алгоритму будут определяться характеристики цепи:

  • базовая формула для трех элементов:

Rобщ = R1*R2*R3/(R1*R2 + R2*R3 + R1*R3.

  • подставив данные, вычисляют Rобщ = 10 * 20 * 15 / (10*20 + 20*15 +10*15) = 3000 /(200+300+150) = 4,615 Ом;
  • I = 12/ 4,615 ≈ 2,6 А;
  • I1 = 12/ 10 = 1,2 А;
  • I2 = 12/20 = 0,6 А;
  • I3 = 12/15 = 0,8 А.

Как и в предыдущем примере, рекомендуется проверить результат вычислений. При параллельном соединении компонентов должно соблюдаться равенство токов на входе и суммарного значения:

I = 1,2 + 0,6 + 0,8 = 2,6 А.

Если применяется синусоидальный сигнал источника, вычисления усложняются. При включении в однофазную розетку 220V трансформатора придется учитывать потери (утечку) в режиме холостого хода. В этом случае существенное значение имеют индуктивные характеристики обмоток и коэффициент связи (трансформации). Электрическое сопротивление (ХL) зависит от следующих параметров:

  • частоты сигнала (f);
  • индуктивности (L).

Вычисляют ХL по формуле:

Чтобы находить сопротивление емкостной нагрузки, подойдет выражение:

Следует не забывать о том, что в цепях с реактивными компонентами сдвигаются фазы тока и напряжения.

Расчет разветвленной электрической цепи с несколькими источниками питания

Пользуясь рассмотренными принципами, вычисляют характеристики сложных схем. Ниже показано, как найти ток в цепи при наличии двух источников:

  • обозначают компоненты и базовые параметры во всех контурах;
  • составляют уравнения для отдельных узлов: a) I1-I2-I3=0, b) I2-I4+I5=0, c) I4-I5+I6=0;
  • в соответствии со вторым постулатом Кирхгофа, можно записать следующие выражения для контуров: I) E1=R1 (R01+R1)+I3*R3, II) 0=I2*R2+I4*R4+I6*R7+I3*R3, III) -E2=-I5*(R02+R5+R6)-I4*R4;
  • проверка: d) I3+I6-I1=0, внешний контур E1-E2=I1*(r01+R1)+I2*R2-I5*(R02+R5+R6)+I6*R7.
Читайте также:  Электрический ток в воздухе это

Пояснительная схема к расчету с двумя источниками

Дополнительные методы расчета цепей

В зависимости от сложности устройства (электрической схемы), выбирают оптимальную технологию вычислений.

Метод узлового напряжения

Основные принципы этого способа базируются на законе Ома и постулатах Кирхгофа. На первом этапе определяют потенциалы в каждом узле. Далее вычисляют токи в отдельных ветвях с учетом соответствующих электрических сопротивлений (отдельных компонентов или эквивалентных значений). Проверку делают по рассмотренным правилам.

Метод эквивалентного генератора

Эта технология подходит для быстрого расчета тока в одной или нескольких контрольных ветвях.

Графическое пояснение

В данной методике общую цепь представляют в виде источника тока с определенным напряжением и внутренним сопротивлением. Далее выполняют вычисления по контрольной ветви с применением стандартного алгоритма.

Видео

Источник

Как найти токи ветвей если известно напряжение

Метод токов ветвей

Первый и самый простой метод анализа цепей постоянного тока называется методом токов ветвей. В этом методе нам сначала нужно определить направления токов в цепи, а затем написать уравнения, описывающие их отношения друг с другом через законы Кирхгофа и Ома. Как только мы получим уравнения для каждого из неизвестных токов, мы сможем решить систему уравнений, рассчитав тем самым все токи, а затем и все напряжения в цепи.

Для рассмотрения метода мы будем использовать следующую схему:

analiz5

Первое что нам нужно сделать — это выбрать узел цепи (место соединения проводов), который будет использоваться в качестве точки отсчета для поиска неизвестных токов. Мы выберем узел, соединяющий резистор R1 справа, R2 снизу и R3 слева.

analiz6

Теперь нам нужно проставить направления токов в примыкающих к этому узлу проводах, обозначив их I1, I2 и I3 соответственно. Имейте ввиду, эти направления будут только предполагаемыми. Если выяснится, что наши предположения оказались ошибочными, то мы это увидим в процессе математического расчета (любые «неправильные» направления токов отобразятся в виде отрицательных чисел).

analiz7

Согласно Первому Закону Кирхгофа, алгебраическая сумма токов входящих в узел и выходящих из него должна быть равна нулю, поэтому мы можем связать все токи нашей схемы (I1, I2 и I3) друг с другом при помощи одного уравнения. Все входящие в узел токи мы обозначим знаком «плюс», а выходящие из него — знаком «минус»:

analiz8

На следующем шаге нам нужно промаркировать полярности напряжений всех резисторов в соответствии с предполагаемыми направлениями токов. Конец резистора, в который ток втекает — будет отрицательным, а из которого вытекает — будет положительным (электрон заряжен отрицательно, и течет от минуса к плюсу):

analiz9

Полярность батареи проставляется в соответствии со стандартом (короткий конец — отрицательный, длинный конец — положительный). В некоторых случаях вы можете обнаружить, что полярность резисторов не соответствует полярности батареи, а ток течет обратно через батарею. Ничего страшного, это только предполагаемое направление тока. Здесь важно помнить, что простановку полярности напряжений на резисторах и последующие расчеты нужно производить по изначально предполагаемым направлениям токов. Как отмечалось ранее, если ваши предположения окажутся неверными, то вы увидите это по окончательным результатам расчетов (они будут отрицательными). Сами же полученные величины все равно будут правильными.

Согласно Второму Закону Кирхгофа, алгебраическая сумма всех напряжений цепи должна равняться нулю. Исходя из этого, мы сможем создать несколько уравнений для нашей системы, подставив в них неизвестные значения токов (I1, I2 и I3). Для получения уравнений Второго Закона Кирхгофа нам нужно знать количество и полярность напряжений в каждой из ветвей цепи. В целях облегчения данной задачи давайте представим, что мы измерили все напряжения реальным вольтметром, обозначив неизвестные значения как положительное или отрицательное напряжение. Сначала мы создадим уравнение для левой ветви схемы, взяв за точку отсчета верхний левый угол, и двигаясь против часовой стрелки (выбор точки отсчета и направление — произвольны). Результат будет выглядеть следующим образом:

analiz10

analiz12

analiz13

analiz14

Закончив исследование левой ветви схемы, мы можем применить к полученным значениям Второй Закон Кирхгофа (сумма всех напряжений цепи равна нулю):

analiz15

Нам еще неизвестны значения напряжений на резисторах R1 и R2, поэтому мы не можем вставить их в уравнение в виде числовых величин. Однако, мы знаем, что сумма этих трех напряжений равна нулю, поэтому уравнение верно. Теперь пойдем дальше, и выразим неизвестные напряжения как произведение неизвестных токов и соответствующих им сопротивлений (применив Закон Ома: U = IR), а так же уберем все нулевые значения из левой части уравнения:

analiz16

Поскольку нам известны сопротивления всех резисторов, давайте подставим в уравнение конкретные числовые значения:

analiz17

У вас наверняка возник вопрос: зачем мы произвели все эти манипулирования с первоначальным видом уравнения (-28 + ER2 + ER1)? Какая разница в чем будет выражено уравнение, в напряжении или в токе (умноженном на сопротивление), если в обоих случаях последние два члена до сих пор неизвестны? Ответ на данные вопросы прост. Целью всех выше приведенных преобразований является получение уравнения Второго Закона Кирхгофа с использованием тех же неизвестных переменных, что и в уравнении Первого Закона Кирхгофа, так как это является необходимым условием для решения любой системы уравнений. Чтобы найти значения трех неизвестных токов (I1, I2 и I3), у нас должно быть три уравнения, связывающих их вместе.

Применив те же самые действия к правой ветви схемы (начиная с выбранного узла и двигаясь против часовой стрелки), мы получим еще одно уравнение Второго Закона Кирхгофа:

analiz18

analiz19

analiz20

analiz21

analiz22

Зная, что напряжение на каждом из резисторов может и должно быть выражено как произведение соответствующих токов и сопротивлений (величина которых известна), мы можем переписать это уравнение следующим образом:

analiz23

Теперь у нас есть система из трех уравнений (одно уравнение Первого и два уравнения Второго Законов Кирхгофа) с тремя неизвестными:

analiz24

Далее нам нужно перенести все известные величины в правые части уравнений, а неизвестные оставить в левой, дополнив их отсутствующими нулевыми значениями:

analiz25

Решив эту систему уравнений мы получим следующий результат:

analiz26

Таким образом, ток I1 равен 5 амперам, ток I2 равен 4 амперам и ток I3 равен минус 1 амперу. Отрицательное значение тока I3 означает что наше предположение по его направлению оказалось неверным. Давайте вернемся к первоначальной схеме и перерисуем стрелку этого тока на противоположное направление (исправив соответственно полярность напряжения на резисторе R3):

analiz27

Обратите внимание на тот факт, что в правой ветви схемы ток течет обратно через батарею 2. Это происходит благодаря более высокому напряжению батареи 1 (в которой ток течет «как обычно» — через цепь от минуса к плюсу). Означает ли это, что более «сильная» батарея всегда будет «побеждать» более слабую. Вовсе нет! Данный фактор зависит как от относительных напряжений батарей, так и от сопротивлений резисторов цепи. Единственным способом установления происходящих в цепи процессов является математический анализ.

Читайте также:  Максимальный выходной ток что это такое

Итак, величины всех токов данной цепи нам известны. Теперь, при помощи Закона Ома (U = IR), можно рассчитать напряжения на всех ее резисторах:

analiz28

Давайте теперь проанализируем эту схему при помощи программы PSPICE, проверив тем самым полученные результаты для напряжений. Данная программа, конечно, сможет рассчитать и токи, но тогда нам потребуется включить в схему дополнительные компоненты. Принимая во внимание этот факт, мы с вами пойдем по пути наименьшего сопротивления (если выданные программой значения напряжений совпадут с нашими расчетами, то и токи мы рассчитали правильно). Схема с номерами узлов для программы представлена ниже:

analiz29

analiz30

Как видите, результаты работы программы совпадают с нашими рассчетами: 20 вольт на резисторе R1 (узлы 1 и 2), 8 вольт на резисторе R2 (узлы 2 и 0) и 1 вольт на резисторе R3 (узлы 2 и 3). Обратите внимание на знаки всех этих напряжений: они имеют положительные значения! PSPICE основывает свою полярность на порядке, в котором перечислены узлы: первый узел должен быть положительным, а второй — отрицательным. Например, положительное (+) напряжение 20 вольт между узлами 1 и 2 означает, что узел 1 является положительным по отношению к узлу 2. Если бы число получилось отрицательным, то то ошибку следовало бы искать в порядке перечисления узлов.

Источник

Определить Токи Электрической Схемы

Подставив 1.


Свернуть цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений. Реальная электрическая цепь может быть представлена в виде активного и пассивного двухполюсников рис.

Если вы не помните формулу делителя тока, то можно решить задачу другим способом. Известны величины сопротивлений и ЭДС, необходимо определить токи.
Как научиться читать электрические схемы



Для исходной схемы своего варианта, см.

Последовательное включение источников питания источников ЭДС применяется тогда, когда требуется создать напряжение требуемой величины, а рабочий ток в цепи меньше или равен номинальному току одного источника ЭДС рис.

Выберем три независимых контура и укажем направления обхода контуров. В схеме имеются четыре узла, можно составить четыре уравнения по первому закону Кирхгофа.

Дальнейший расчет п.

На параллельную работу включают обычно источники с одинаковыми ЭДС, мощностями и внутренними сопротивлениями. Токи, протекающие через общие сопротивления определяем как алгебраическую сумму контурных, учитывая направление обхода.

RL ЦЕПЬ │Теория и задача │Переменный ток

Рассчитайте схему цепи

Так как ток обоих участков цепи одинаков, а сумма напряжений на элементах равна приложенному рис. Приступаем к основному этапу — составлению системы уравнений контурных токов. Реальная электрическая цепь может быть представлена в виде активного и пассивного двухполюсников рис.

Выберем три независимых контура и укажем направления обхода контуров.

Линейные электрические цепи постоянного тока Для электрической схемы, соответствующей номеру варианта и изображенной на рис.

Задача 1. Свернуть цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений.

Так как контура у нас три, следовательно, система будет состоять из трех уравнений. Последовательное соединение нелинейных элементов.

Результаты расчета токов, проведенного двумя методами, свести в таблицу и сравнить между собой. Составляем систему уравнений по второму закону Кирхгофа для каждого замкнутого контура так, чтобы охватить каждый неизвестный ток в данной схеме имеем 3 таких контура.

Пользуясь характеристиками рис. При этом на нагрузке выделится активная мощность 1.
Как читать электрические схемы. Урок №6

Основные понятия

Рассмотрим пример. В заданной схеме, см.

Токи в резисторах В данном случае удобно проверить задачу с помощью первого закона Кирхгофа, согласно которому сумма токов сходящихся, в узле равна нулю. Выполняем все поэтапно.

В табл.

Ток в сопротивлении R3, являющийся общим для обоих контуров, равен разности контурных токов I11 и I22, так как эти токи направлены в ветви с R3 встречно. Управляемые элементы работают под влиянием управляющего воздействия тиристоры, транзисторы и другие.

Пусть, например, задана величина приложенного к току напряжения U и требуется определить ток в цепи и распределение напряжений на ее участках. Последовательное соединение нелинейных элементов. Управляемые элементы работают под влиянием управляющего воздействия тиристоры, транзисторы и другие.

Примеры решения задач на законы Кирхгофа


В схеме рис. После проведенных преобразований рис.

Приступаем к основному этапу — составлению системы уравнений контурных токов. Про комплексные числа можно подробнее прочитать на нашем сайте. Определим параметры электрической цепи рис. Уравнения по второму закону составляют для независимых контуров. Но с помощью закона Кирхгофа удобно проверять простые цепи, имеющие один контур.

Система уравнений 4. Метод контурных токов заключается в том, что вместо токов в ветвях определяются, на основании второго закона Кирхгофа, так называемые контурные токи, замыкающиеся в контурах. Запишем уравнения:: 4. В этом случае ток в нагрузке становится равным нулю, и как следует из соотношения 1.
КАК ТЕЧЁТ ТОК В СХЕМЕ — Читаем Электрические Схемы 1 часть

Переменный ток.

В цепи должен соблюдаться баланс мощностей, то есть энергия отданная источниками должна быть равна энергии полученной приемниками.

Последним этапом находим действительные токи, для этого нужно записать для них выражения. Работа активного двухполюсника под нагрузкой в номинальном режиме определяется уравнением 1.

Определим параметры электрической цепи рис. Неуправляемые нелинейные элементы имеют одну вольт-амперную характеристику; управляемые — семейство характеристик.

Определить ток I1 в заданной по условию схеме с источником тока, используя метод эквивалентного генератора. Чтобы решить такую систему можно воспользоваться программой MathCad. В цепи должен соблюдаться баланс мощностей, то есть энергия отданная источниками должна быть равна энергии полученной приемниками. Свернуть цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений.

АГЗ МЧС РГР №1 Расчёт линейных цепей постоянного тока

Уравнения по второму закону составляют для независимых контуров. Определим параметры электрической цепи рис. Контурный ток равен действительному току, который принадлежит только этому контуру. Свернуть цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений.

Направление обхода контура совпадает с направлением контурных токов. Режим работы электрической цепи рис. Переменный синусоидальный ток или напряжение задается уравнением: Здесь Im — амплитуда тока. Например, с помощью закона Кирхгофа, который гласит, что сумма ЭДС в контуре равна сумме напряжений в нем. Метод контурных токов заключается в том, что вместо токов в ветвях определяются, на основании второго закона Кирхгофа, так называемые контурные токи, замыкающиеся в контурах.

Определить токи во всех ветвях схемы на основании метода наложения.

Эта вольт-амперная характеристика строится по двум точкам 1 и 2 рис. Для этого необходимо найти напряжение в цепи, которое будет общим для обоих резисторов, так как соединение параллельное. Следовательно, схема источника тока рис. Вычислим коэффициент подобия.

Составить баланс мощностей в исходной схеме схеме с источником тока , вычислив суммарную мощность источников и суммарную мощность нагрузок сопротивлений. Рекомендуется узлы схемы a, b, c, d заменить на 1, 2, 3, 4 соответственно. Исключением служат цепи, содержащие более сложные соединения звездой и треугольником. В нашем случае эти токи направлены по часовой стрелке.
Законы Кирхгофа — Теория и задача

Читайте также:  Расчет силы сварочного тока по диаметру электрода

Источник

ElectronicsBlog

Обучающие статьи по электронике

Электротехника Часть 5 Методы расчёта электрических цепей

Всем доброго времени суток. В прошлой статье я рассматривал типы соединений приемников энергии в электрических цепях, а так же законы Кирхгофа, которые определяют основные соотношения токов и напряжений в этих цепях. Но кроме знания основных законов электротехники необходимо уметь рассчитывать неизвестные параметры электрических цепей по заданным известным параметрам. Так, например, по известным напряжениям, ЭДС и сопротивлениям необходимо знать какую мощность будет потреблять тот или иной приемник энергии, а так же вся цепь в целом. Этим мы и займёмся в данной статье.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Расчёт электрических цепей с помощью законов Кирхгофа

Существует несколько методов расчёта электрических цепей, которые различаются между собой параметрами, которые необходимо найти, а так же количеством необходимых расчётов.

Вначале я расскажу, как произвести расчёт цепи в общем виде, но в результате размеры вычислений будут неоправданно большими. Данный метод расчёта основан на законах Ома и Кирхгофа и используется при расчётах небольших цепей с малым количеством контуров. Для этого составляют систему уравнений из (q — 1) уравнений для узлов цепи и n уравнений для независимых контуров. Независимые контуры характеризуются тем, что при составлении уравнений для каждого нового контура входит хотя бы одна новая ветвь, не вошедшая в предыдущий контур. Таким образом, количество уравнений в системе уравнений по данному методу расчёта цепи будет определяться следующим выражением

В качестве примера рассчитаем электрическую цепь, приведённую на рисунке ниже

Схема для расчёта по законам Кирхгофа

Пример электрической цепи для расчёта по законам Ома и Кирхгофа.

В качестве примера возьмём следующие параметры схемы: E1 = 50 B, E2 = 30 B, R1 = R3 = 10 Ом, R2 = R5 = 20 Ом, R4 = 25 Ом.

    Составим уравнение по первому закону Кирхгофа. Так как узла у нас два, то выберем узел А и составим для него уравнение. Я выбрал условно, что токи I1 и I2 втекают в узел, а I3 – вытекает, тогда уравнение будет иметь вид

Составим недостающие уравнения по второму закону Кирхгофа. В схеме у нас два независимых контура: E1R1R2R4E2R3 и E2R4R5, поэтому выбирая произвольное направление контуров составим недостающие два уравнения. Я выбрал обход по ходу часовой стрелке, поэтому уравнения имеют вид

Таким образом, получившаяся система уравнений будет иметь следующий вид

Решив данную систему, получим следующие результаты: I1 ≈ 0,564 А, I2 ≈ 0,103 А, I2 ≈ 0,667 А.

В результате решения системы уравнений по данному методу может оказаться, что токи получились отрицательными. Это значит, что действительное направление токов противоположно по направлению выбранному.

Метод контурных токов

Рассмотренный выше метод расчета электрических цепей при анализе больших и разветвленных цепей приводит к неоправданно трудоемким расчетам, поэтому редко применяется. Более широко используется метод контурных токов, позволяющий значительно сократить количество уравнений. При этом вместо токов в ветвях электрической цепи определяются так называемые контурные токи при помощи второго закона Кирхгофа. Таким образом, количество требуемых уравнений будет равняться числу независимых контуров. В качестве примера рассчитаем цепь изображённую на рисунке ниже

Метод контурных токов

Расчет цепи методом контурных токов.

Если бы мы вели расчёт цепи по методу законов Ома и Кирхгофа, то необходимо было бы решить систему из пяти уравнений. Для расчёта по методу контурных токов необходимо всего три уравнения.

В начале расчёта выделяют независимые контуры, в нашем случае это: E1R1R2E2, E2R2R4E3R3 и E3R4R5. Затем контурам присваивают произвольно направленный контурный ток, который имеет одинаковое направление для всех участков выбранного контура, в нашем случае для первого контура контурный ток будет Ia, для второго – Ib, для третьего – Ic. Как видно из рисунка некоторые контурные токи соответствуют токам в ветвях

Остальные же токи можно найти как разность двух контурных токов

В результате выбора контурных токов можно составить систему уравнений по второму закону Кирхгофа

Рассчитаем схему, изображённую на рисунке выше со следующими параметрами E1 = E3 = 100 B, E2 = 50 B, R1 = R2 = 10 Ом, R3 = R4 = R5 = 20 Ом. Запишем систему уравнений

В результате решения системы получим Ia = I1 = 4,286 А, Ib = I3 = 3,571 А, Ic = I5 = -0,714 А, I2 = -0,715 А, I4 = 4,285 А. Так же как и в предыдущем случае если токи получаются отрицательными, значит действительное направление противоположно принятому. Таким образом, токи I2 и I5 имеют направление противоположное изображённым на рисунке.

Метод узловых напряжений

Кроме метода контурных токов, для уменьшения трудоемкости расчётов, применяют метод узловых напряжений, при этом возможно еще меньшее число уравнений, так как при этом методе их число достигает

где q – количество узлов в электрической цепи.

Принцип расчёта электрической цепи заключается в следующем:

  1. Принимаем один из узлов цепи за базисный и присваиваем ему потенциал равный нулю;
  2. Для оставшихся узлов составляем уравнения по первому закону Кирхгофа, заменяя токи в ветвях по закону Ома через напряжение и сопротивление;
  3. После решения получившейся системы уравнений вычисляем токи в ветвях по обобщенному закону Ома.

В качестве примера возьмём предыдущую цепь и составим систему уравнений

Метод узловых потенциалов

Схема для решения уравнений методом узловых потенциалов.

В качестве базисного возьмём узел А и заземлим его, для остальных узлов B и D составим уравнения по первому закону Кирхгофа

Примем потенциалы узлов В = U1 и D = U2, тогда токи в ветвях выразятся через обобщённый закон Ома

В результате получившаяся система будет иметь следующий вид

Рассчитаем схему, изображённую на рисунке выше со следующими параметрами E1 = E3 = 100 B, E2 = 50 B, R1 = R2 = 10 Ом, R3 = R4 = R5 = 20 Ом. Запишем систему уравнений

В результате решения системы уравнений мы пришли к следующим результатам: потенциал в узле В – U1 = -57,14 В, а в узле D – U2 = 14,29 В. Теперь нетрудно посчитать, что токи в ветвях будут равны

Результат решения для токов I2 и I5 получился отрицательным, так как действительное направление токов противоположно направлению, изображённому на рисунке. Данные результаты совпадают с результатами, полученными для этой же схемы при расчёте по методу контурных токов.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Источник