Меню

Как нагреть в токе водорода



Электродный нагрев жидких сред

Электродный способ нагрева применяют для нагрева проводников II рода : воды, молока, фруктовых и ягодных соков, почвы, бетона и т.д. Электродный нагрев широко распространен в электродных водонагревателях, водогрейных и паровых котлах, а также в процессах пастеризации и стерилизации жидких и влажных сред, тепловой обработки кормов.

Материал помещают между электродами и нагревают электрическим током, протекающим по материалу от одного электрода к другому. Электродный нагрев считается прямым нагревом — здесь материал служит средой, в которой электрическая энергия преобразуется в тепловую.

Электродный нагрев — наиболее простой и экономичный способ нагрева материалов, не требует специальных источников питания или нагревателей из дорогостоящих сплавов.

Электроды подводят ток к нагреваемой среде и сами током практически не нагреваются. Электроды изготавливают из недифицитных материалов, чаще всего из металлов, но и могут быть и неметаллическими (графитовыми, угольными), Во избежание электролиза для электродного нагрева используют только переменный ток.

Проводимость влажных материалов обуславливается содержанием воды, поэтому в дальнейшем электродный нагрев будем рассматривать, главным образом, к нагреву воды, но приводимые зависимости применимы и к нагреву других влажных сред.

электродный нагрев молока

Нагрев в электролите

В машиностроении и ремонтном производстве применяют нагрев в электролите . Металлическое изделие (деталь) помещают в электролитическую ванну (5 — 10 %-ный раствор Na 2 CO 3 и др.) и подсоединяют к отрицательному полюсу источника постоянного тока. В результате электролиза на катоде выделяется водород, а на аноде — кислород. Слой пузырьков водорода, покрывающий деталь, представляет для тока высокое сопротивление. В нем выделяется основная доля теплоты, нагревающая деталь. На аноде , имеющем гораздо большую поверхность, плотность тока мала. При определенных условиях деталь нагревается электрическими разрядами, возникающими в водородном слое. Газовый слой одновременно служит теплоизоляцией, предотвращающей охлаждение детали электролитом.

Преимущество нагрева в электролите — значительная плотность энергии (до 1 кВт / см2), обеспечивающая высокую скорость нагрева. Однако это достигается повышенным расходом энергии.

Электрическое сопротивление проводников II рода

Проводники II рода называют электролитами . К ним относятся водные растворы кислот, щелочей, солей, а также различные жидкие и влагосодержащие материалы (молоко, влажные корма, почва).

Дистиллированная вода имеет удельное электрическое сопротивление порядка 10 4 ом х м и практически не проводит электрический ток, а химически чистая вода является хорошим диэлектриком. «Обычная» вода содержит в растворенном виде соли и другие химические соединения, молекулы которых диссоциируют в воде на ионы, сообщая ей ионную (электролитическую проводимость). Удельное электрическое сопротивление воды зависит от концентрации солей и приближенно может быть определено по эмпирической формуле

p 20 = 8 х 10 / С,

где p 20 — удельное сопротивление воды при 20 0 С, Ом х м, С — суммарная концентрация солей, мг/г

Атмосферная вода содержит растворенных солей не более 50 мг/л, воды рек — 500 — 600 мг/л, подземные воды — от 100 мг/л до нескольких граммов на литр. Наиболее часто встречающиеся значения у дельного электрического сопротивления p 20 для воды находятся в диапазоне 10 — 30 Ом х м.

Электрическое сопротивление проводников II рода существенно зависит от температуры. С ее возрастанием увеличивается степень диссоциации молекул солей на ионы и их подвижность, вследствие чего проводимость повышается, а сопротивление снижается. Для любой температуры t до начала заметного парообразования удельная электрическая проводимость воды, Ом х м -1 , определяется линейной зависимостью

yt = y20 [1 + a (t-20)] ,

где y20 — удельная проводимость воды при температуре 20 o C , а — температурный коэффициент проводимости, равный 0,025 — 0,035 o C -1 .

В технических расчетах обычно пользуются не проводимостью, а удельным сопротивлением

pt = 1/ yt = p20 / [1 + a (t-20)] (1)

и его упрощенной зависимостью p (t) , принимая a = 0,025 o C -1 .

Тогда удельное сопротивление воды определяют по формуле

pt = 40 p20 / (t +20)

В диапазоне температур 20 — 100 о С удельное сопротивление воды возрастает в 3 — 5 раз, во столько же раз изменяется мощность, потребляемая из сети. Это один из существенных недостатков электродного нагрева, приводящий к завышению сечения питающих проводов и усложняющий расчет установок электродного нагрева.

Удельное сопротивление воды подчиняется зависимости (1) только до наступления заметного парообразования, интенсивность которого зависит от давления и плотности тока в электродах. Пар не является проводником тока, и поэтому при парообразовании удельное сопротивление воды возрастает. В расчетах это учитывается коэффициентом b , зависящим от давления и плотности тока:

pc м = p в b = p в a e k J

где pc м — удельное сопротивление смеси вода — пар, p в — удельное сопротивление воды без заметного парообразования, a — постоянная, равная для воды 0,925, k — величина, зависящая от давления в котле (можно принять k = 1 , 5 ), J — плотность тока на электродах, А/см2.

При нормальном давлении влияние парообразования сказывается при температуре выше 75 о С. Для паровых котлов коэффициент b достигает значения 1,5.

электродные системы и их параметры

Электродные системы и их параметры

Электродная система — совокупность электродов, определенным образом связанных между собой и питающей сетью, предназначенных для подвода тока к нагреваемой среде.

Параметрами электродных систем являются : число фаз, форма, размеры, число и материал электродов, расстояние между ним, электрическая схема соединения («звезда», «треугольник», смешанное соединение и т. п.).

При расчете электродных систем определяют их геометрические параметры, обеспечивающие выделение в нагреваемой среде заданной мощности и исключающих возможность ненормальных режимов.

Мощность трехфазной электродной системы при соединении звездой:

P = U2 л / R ф = 3 U ф / R ф

Мощность трехфазной электродной системы при соединении треугольником:

Электродный нагрев жидких средПри заданном напряжении U л питания мощность электродной системы P определяется сопротивлением фазы R ф, которое представляет собой сопротивление тела нагрева, заключенного между электродами, образующими фазу. Конфигурация и размеры тела зависят от формы, размеров и расстояния между электродами. Для простейшей электродной системы с плоскими электродами шириной каждого b , высотой h и расстоянием между ними:

R ф = pl / S = pl / (bh)

где, l , b , h — геометрические параметры плоскопараллельной системы.

Для сложных систем зависимость R ф от геометрических параметров не представляется выразить столь просто. В общем случае ее можно представить в виде R ф = с х ρ , где с — коэффициент, определяемый геометрическими параметрами электродной системы (его можно определить по справочникам).

Размеры электродов, обеспечивающие необходимое значение R ф, могут быть рассчитаны, если известно аналитического описание электрического поля между электродами, а также зависимость p от определяющих ее факторов (температура, давление и др.).

Геометрический коэффициент электродной системы находят как k = R ф h / ρ

Мощность любой трехфазной электродной системы можно представить в виде P = 3U 2 h /( ρ k)

Кроме этого, важно обеспечить надежность электродной системы, исключение порчи продукта и электрического пробоя между электродами. Эти условия выполняются ограничением напряженности поля в межэлектродном пространстве, плотности тока на электродах и правильным выбором материала электродов.

Допустимую напряженность электрического поля в межэлектродном пространстве ограничивают требованием недопущения электрического пробоя между электродами и нарушения работы установок. Допустимую напряженность E доп поля выбирают по электрической прочности Епр поля выбирают по электрической прочности Епр материала с учетом коэффициента запаса: Едоп = Епр / (1,5 . 2)

Величина Едоп определяет расстояние между электродами:

l = U / Едоп = U / (J доп ρ т),

где J доп — допустимая плотность тока на электродах, ρ т — удельное сопротивление воды при рабочей температуре.

Электродный нагрев жидких средПо опыту проектирования и эксплуатации электродных водонагревателей значение Едоп принимают в пределах (125 . 250) х 102 Вт/м, минимальное значение соответствует удельному сопротивлению воды при температуре 20 о С менее 20 Ом х м, максимальное — удельному сопротивлению воды при температуре 20 о С более 100 Ом х м.

Читайте также:  Зависимость тока от напряжения источник питания

Допустимую плотность тока ограничивают из-за возможности загрязнения нагреваемой среды вредными продуктами электролиза на электродах и разложения воды на водород и кислород, которые в смеси образуют гремучий газ.

Допустимую плотность тока определяют по формуле:

J доп = Едоп / ρ т,

где ρ т — удельное сопротивление воды при конечной температуре.

Максимальная плотность тока:

Jmax = k н I т / S ,

где, k н = 1,1 . 1,4 — коэффициент, учитывающий неравномерность плотности тока по поверхности электрода, I т — сила рабочего тока, стекающего с электрода при конечной температуре, S — площадь активной поверхности электрода.

Во всех случаях должно быть соблюдено условие:

Материалы для электродов должны быть электрохимически нейтральны (инертны) относительно нагреваемой среды. Недопустимо выполнять электроды из алюминия или оцинкованной стали. Лучшими материалами для электродов служат титан, нержавеющие стали, электротехнический графит, графитизированные стали. При нагреве воды для технологических нужд используют обычную (черную) углеродистую сталь. Для питья такая вода непригодна.

Регулирование мощности электродной системы возможно при изменении значений U и R . Чаще всего при регулировании мощности электродных систем прибегают к изменению рабочей высоты электродов (площади активной поверхности электродов) путем введения между электродами диэлектрических экранов или изменением геометрического коэффициент электродной системы (определяется по справочникам в зависимости от схем электродных систем).

Источник

Отопление водородом перспектива ли

Способы получения водорода в промышленных условиях

Добыча путем конверсии метана
. Вода в парообразном состоянии, предварительно нагретая до 1000 градусов по Цельсию, смешивается с метаном под давлением и в присутствии катализатора. Способ этот интересный и проверенный, также надо отметить, что он постоянно совершенствуется: ведется поиск новых катализаторов, более дешевых и эффективных.

Рассмотрим самый древний метод получения водорода — газификацию угля
. При условии отсутствия доступа воздуха и температуре в 1300 градусов Цельсия, нагревают уголь и водяной пар. Таким образом, происходит вытеснение водорода из воды, и получается углекислый газ (водород будет наверху, углекислый газ, также получаемый в результате проводимой реакции, – внизу). Таким будет разделение газовой смеси, все очень просто.

Получение водорода путем электролиза воды
считается самым простым вариантом. Для его осуществления необходимо залить в емкость раствор соды, поместить также туда два электрических элемента. Один будет заряжен положительно (анод), а второй – отрицательно (катод). При подаче тока водород отправится на катод, а кислород — на анод.

Получение водорода по методике частичного окисления
. Для этого используется сплав алюминия и галлия. Его помещают в воду, что приводит к образованию водорода и оксида алюминия в процессе реакции. Галлий необходим для того, чтобы реакция произошла в полном объеме (этот элемент не позволит алюминию окислиться преждевременно).

В последнее время приобрела актуальность методика использования биотехнологий
: при условии недостатка кислорода и серы, хламидомонады начинают интенсивно выделять водород. Очень интересный эффект, который сейчас активно изучается.

Отопление водородом перспектива ли

Не стоит забывать и еще один старый, проверенный метод добычи водорода, который заключается в использовании разных щелочных элементов
и воды. В принципе, эта методика осуществима в лабораторных условиях при наличии необходимых мер безопасности. Таким образом, в ходе реакции (она протекает при нагревании и с катализаторами) образуется оксид металла и водород. Остается только его собрать.

Получить водород путем взаимодействия воды и угарного газа
можно только в промышленных условиях. Образуется углекислый газ и водород, принцип их разделения описан выше.

Отопление водородом перспектива ли

ИЗОБРЕТЕНИЕ ИМЕЕТ СЛЕДУЮЩИЕ ПРЕИМУЩЕСТВА

Тепло, полученное при окислении газов, можно использовать непосредственно на месте, причем водород и кислород получаются при утилизации отработанного пара и технической воды.

Небольшой расход воды при получении электроэнергии и тепла.

Значительная экономия энергии, т.к. она затрачивается только на разогрев стартера до установившегося теплового режима.

Высокая производительность процесса, т.к. диссоциация молекул воды длится десятые доли секунды.

Взрыво- и пожаробезопасность способа, т.к. при его осуществлении нет необходимости в емкостях для сбора водорода и кислорода.

В процессе работы установки вода многократно очищается, преобразуясь в дистиллированную. Это исключает осадки и накипь, что увеличивает срок службы установки.

Установка изготавливается из обычной стали; за исключением котлов, изготавливаемых из жаропрочных сталей с футеровкой и экранированием их стенок. То есть не требуются специальные дорогие материалы.

Изобретение может найти применение в
промышленности путем замены углеводородного и ядерного топлива в силовых установках на дешевое, распространенное и экологически чистое — воду при сохранении мощности этих установок.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ получения водорода и кислорода из пара воды
, включающий пропускание этого пара через электрическое поле, отличающийся тем, что используют перегретый пар воды с температурой 500 — 550 o C
, пропускаемый через электрическое поле постоянного тока высокого напряжения для диссоциации пара и разделения его на атомы водорода и кислорода.

Давно хотел сделать подобную штуку. Но дальше опытов с батарейкой и парой электродов не доходило. Хотелось сделать полноценный аппарат для производства водорода, в количествах для того чтобы надуть шарик. Прежде чем делать полноценный аппарат для электролиза воды в домашних условиях, решил все проверить на модели.

Общая схема электролизера выглядит так.

Отопление водородом перспектива ли

Эта модель не подходит для полноценной ежедневной эксплуатации. Но проверить идею удалось.

Итак для электродов я решил применить графит. Прекрасный источник графита для электродов это токосъемник троллейбуса. Их полно валяется на конечных остановках. Нужно помнить, что один из электродов будет разрушаться.Отопление водородом перспектива ли

Пилим и дорабатываем напильником. Интенсивность электролиза зависит от силы тока и площади электродов.Отопление водородом перспектива ли

К электродам прикрепляются провода. Провода должны быть тщательно изолированы.Отопление водородом перспектива ли

Для корпуса модели электролизера вполне подойдут пластиковые бутылки. В крышке делаются дырки для трубок и проводов.Отопление водородом перспектива ли

Все тщательно промазывается герметиком.Отопление водородом перспектива ли

Для соединения двух ёмкостей подойдут отрезанные горлышки бутылок.Отопление водородом перспектива ли

Их необходимо соединить вместе и оплавить шов.Отопление водородом перспектива ли

Гайки делаются из бутылочных крышек.Отопление водородом перспектива ли

В двух бутылках в нижней части делаются отверстия. Все соединяется и тщательно заливается герметиком.Отопление водородом перспектива ли

В качестве источника напряжения будем использовать бытовую сеть 220в. Хочу предупредить, что это довольно опасная игрушка. Так что, если нет достаточных навыков или есть сомнения, то лучше не повторять. В бытовой сети у нас ток переменный, для электролиза его необходимо выпрямить. Для этого прекрасно подойдет диодный мост. Тот что на фотографии оказался не достаточно мощным и быстро перегорел. Наилучшим вариантом стал китайский диодный мост MB156 в алюминиевом корпусе.Отопление водородом перспектива ли

Диодный мост сильно нагревается. Понадобится активное охлаждение. Кулер для компьютерного процессора подойдет как нельзя лучше. Для корпуса можно использовать подходящую по размеру распаячную коробку. Продается в электротоварах.Отопление водородом перспектива ли

Под диодный мост необходимо подложить несколько слоев картона.Отопление водородом перспектива ли

В крышке распаячной коробки делаются необходимые отверстия.Отопление водородом перспектива ли

Так выглядит установка в сборе. Электролизер запитывается от сети, вентилятор от универсального источника питания. В качестве электролита применяется раствор пищевой соды. Тут нужно помнить, что чем выше концентрация раствора, тем выше скорость реакции. Но при этом выше и нагрев. Причем свой вклад в нагрев будет вносить реакция разложения натрия у катода. Эта реакция экзотермическая. В результате неё будет образовываться водород и гидроксид натрия.Отопление водородом перспектива ли

Тот аппарат, что на фото выше, очень сильно нагревался. Его приходилось периодически отключать и ждать пока остынет. Проблему с нагревом удалось частично решить путем охлаждения электролита. Для этого я использовал помпу для настольного фонтана. Длинная трубка проходит из одной бутылки в другую через помпу и ведро с холодной водой.Отопление водородом перспектива ли

Читайте также:  Как будет изменяться первичный ток во времени при отсутствии конденсатора шунтирующего прерыватель

Актуальность этого вопроса на сегодняшний день достаточно высока по причине того, что сфера использования водорода чрезвычайно обширна, а в чистом виде он практически нигде в природе не встречается. Именно поэтому было разработано несколько методик, позволяющих осуществлять добычу этого газа из других соединений посредством химических и физических реакций. Об этом и рассказывается в приведенной статье.

Добыча водорода в условиях домашнего хозяйства

Выбор электролизера

Для получения элемента дома необходим специальный аппарат – электролизер. Вариантов такого оборудования на рынке много, аппараты предлагают как известные технологические корпорации, так и мелкие производители. Брендовые агрегаты дороже, но качество их сборки выше.

Домашний прибор отличается малыми габаритами и легкостью в эксплуатации. Основными деталями его являются:

Отопление водородом перспектива лиЭлектролизер — что это

  • риформер;
  • система очистки;
  • топливные элементы;
  • компрессорное оборудование;
  • емкость для хранения водорода.

В качестве сырья берется простая вода из-под крана, а электричество идет из обычной розетки. Сэкономить на электроэнергии позволяют агрегаты на солнечных батареях.

«Домашний» водород применяют в системах отопления или приготовления пищи. А также им обогащают бензовоздушную смесь, чтобы повысить мощность двигателей автомобиля.

Изготовление аппарата своими руками

Еще дешевле сделать прибор самому в домашних условиях. Сухой электролизер выглядит как герметичный контейнер, который представляет собой две электродные пластины в емкости с электролитическим раствором. Во Всемирной сети предлагаются разнообразные схемы сборки аппаратов разных моделей:

  • с двумя фильтрами;
  • с верхним либо нижним расположением контейнера;
  • с двумя или тремя клапанами;
  • с оцинкованной платой;
  • на электродах.

Отопление водородом перспектива лиСхема устройства электролиза

Простой прибор для получения водорода создать несложно. Для него потребуются:

  • листовая нержавеющая сталь;
  • прозрачная трубка;
  • штуцеры;
  • пластиковая емкость (1,5 л);
  • водяной фильтр и обратный клапан.

Отопление водородом перспектива лиУстройство простого прибора для получения водорода

Помимо этого, нужны будут различные метизы: гайки, шайбы, болты. Первым делом нужно распилить лист на 16 квадратных отсеков, у каждого из них спилить угол. В противоположном от него углу требуется высверлить отверстие для болтового крепления пластин. Для обеспечения постоянного тока пластины нужно подключать по схеме: плюс–минус–плюс–минус. Изолируют эти детали друг от друга с помощью трубки, а на соединении болтом и шайбами (по три штуки между пластинками). На плюс и минус насаживают по 8 пластин.

При правильной сборке ребра пластинок не будут задевать электроды. Собранные детали опускают в емкость из пластика. В месте касания стенок болтами делают два установочных отверстия. Устанавливают защитный клапан для удаления избытка газа. В крышку контейнера монтируют штуцеры и герметизируют швы силиконом.

Тестирование аппарата

Чтобы протестировать аппарат, выполняют несколько действий:

Отопление водородом перспектива лиСхема получения водорода

  1. Наполняют жидкостью.
  2. Прикрыв крышкой, соединяют один конец трубки со штуцером.
  3. Второй опускают в воду.
  4. Подключают к источнику питания.

После включения прибора в розетку через несколько секунд будет заметен процесс электролиза и выпадение осадка.

Чистая вода не обладает хорошей электропроводностью. Для улучшения этого показателя нужно создать электролитический раствор, добавив щелочь – гидроксид натрия. Он есть в составах для очищения труб наподобие «Крота».

Способы получения водорода

Водород – газообразный элемент без цвета и запаха с плотностью 1/14 по отношению к воздуху. В свободном состоянии он встречается редко. Обычно водород соединен с другими химическими элементами: кислородом, углеродом.

Получение водорода для промышленных нужд и энергетики проводится несколькими методами. Самыми популярными считаются:

  • электролиз воды;
  • метод концентрирования;
  • низкотемпературная конденсация;
  • адсорбция.

Отопление водородом перспектива лиОтопление водородом перспектива лиОтопление водородом перспектива лиОтопление водородом перспектива ли

Выделить водород можно не только из газовых или водных соединений. Добыча водорода производится при воздействии на дерево и уголь высокими температурами, а также при переработке биоотходов.

Атомный водород для энергетики получают, используя методику термической диссоциации молекулярного вещества на проволоке из платины, вольфрама либо палладия. Ее нагревают в водородной среде под давлением менее 1,33 Па. А также для получения водорода используются радиоактивные элементы.

Отопление водородом перспектива лиТермическая диссоциация

Электролизный метод

Наиболее простым и популярным методом выделения водорода считается электролиз воды. Он допускает получение практически чистого водорода. Другими преимуществами этого способа считаются:

Отопление водородом перспектива лиПринцип действия электролизного генератора водорода

  • доступность сырья;
  • получение элемента под давлением;
  • возможность автоматизации процесса из-за отсутствия движущихся частей.

Процедура расщепления жидкости электролизом обратен горению водорода. Его суть в том, что под воздействием постоянного тока на электродах, опущенных в водный раствор электролита, выделяются кислород и водород.

Дополнительным преимуществом считается получение побочных продуктов, обладающих промышленной ценностью. Так, кислород в большом объеме необходим для катализации технологических процессов в энергетике, очистки почвы и водоемов, утилизации бытовых отходов. Тяжелая вода, получаемая при электролизе, в энергетике используется в атомных реакторах.

Получение водорода концентрированием

Этот способ основан на выделении элемента из содержащих его газовых смесей. Так, наибольшая часть производимого в промышленных объемах вещества, извлекается с помощью паровой конверсии метана. Добытый в этом процессе, водород используют в энергетике, в нефтеочистительной, ракетостроительной индустрии, а также для производства азотных удобрений. Процесс получения H2 осуществляют разными способами:

  • короткоцикловым;
  • криогенным;
  • мембранным.

Последний способ считается наиболее эффективным и менее затратным.

Отопление водородом перспектива ли

Конденсация под действием низких температур

Эта методика получения H2 заключается в сильном охлаждении газовых соединений под давлением. В результате они трансформируются в двухфазную систему, которая впоследствии разделяется сепаратором на жидкое составляющее и газ. Для охлаждения применяют жидкие среды:

  • воду;
  • сжиженный этан или пропан;
  • жидкий аммиак.

Отопление водородом перспектива ли

Эта процедура не так проста, как кажется. Чисто разделить углеводородные газы за один раз не получится. Часть компонентов уйдет с газом, забираемым из сепарационного отсека, что не экономично. Решить проблему можно глубоким охлаждением сырья перед сепарацией. Но это требует больших энергозатрат.

В современных системах низкотемпературных конденсаторов дополнительно предусмотрены колонны деметанизации либо деэтанизации. Газовую фазу выводят с последней сепарационной ступени, а жидкость направляется в ректификационную колонну с потоком сырого газа после теплообмена.

Способ адсорбции

Во время адсорбции для выделения водорода используют адсорбенты – твердые вещества, поглощающие необходимые компоненты газовой смеси. В качестве адсорбентов применяют активированный уголь, силикатный гель, цеолиты. Для осуществления этого процесса применяют специальные аппараты – циклические адсорберы или молекулярные сита. При реализации под давлением этот метод позволяет извлекать 85-процентный водород.

Если сравнивать адсорбцию с низкотемпературной конденсацией, можно отметить меньшую материальную и эксплуатационную затратность процесса – в среднем, на 30 процентов. Методом адсорбции производят водород для энергетики и с применением растворителей. Такой способ допускает извлечение 90 процентов H2 из газовой смеси и получение конечного продукта с концентрацией водорода до 99,9%.

Источник

ЭЛЕКТРОЛИЗ ВОДЫ — КАК ОН ЕСТЬ

Еще раз про Н2О
К ак уже говорилось, впервые химический состав воды был определен французским химиком Лавуазье в 1784 году. Лавуазье вместе с военным инженером Мёнье, прогоняя пары воды над раскаленным листом железа, обнаружил, что вода разлагается, выделяя при этом водород и кислород. Да, конечно, для своего времени, для эпохи «упорядочения вещей», эти выводы имели большое значение. В самом деле, ведь до этого открытия вода считалась совершенно однородным веществом. Нельзя, однако, не отметить и другого: открытие это сыграло и свою вполне очевидную отрицательную роль, так как надолго отвлекло внимание других ученых от поисков в этой области и утвердило в умах многих поколений непогрешимость данного вывода, освященного к тому же авторитетом ученого.
Но, что условия, при которых он проводился, были настолько несовершенны, были «грязны».
Чего стоит одно только наличие железа, над которым пропускались пары воды. Оно способно внести такие моменты в опыт, которые даже трудно учесть наперед. Лавуазье с партнером зафиксировали в своем опыте то, что было наиболее очевидным: выделение двух газов — водорода и кислорода, а что было сверх того, на это они и вовсе не обратили внимание, скорее всего по той причине, что это «сверх того» не было столь очевидным, как выделение двух газов.
Поскольку до этого открытия общим мнением, господствовавшим в науке, было мнение, что вода яв­ляется однородным веществом, факт открытия ее не­однородного состава можно назвать революцион­ным. Чего еще можно было требовать от первооткры­вателей! К тому же очевидность результатов опыта была слишком подкупающей.
Старый взгляд на воду был отброшен и заменен новым представлением о во­де как соединении двух элементов — водорода и кис­лорода, которое быстро утвердилось в науке. Этому способствовало в значительной мере развитие элект­рохимии.

Читайте также:  Формула нахождения токов в цепи

ЭЛЕКТРОЛИЗ по Дэви
Р ядом ученых (Никольсон, Кавендиш и др.) был проведен опыт по электрохимическому разложению воды (подобное оп­ределение данного процесса совершенно ошибочно). Под словом «разложение» надо понимать электролиз воды как сложный окис­лительно-восстановительный процесс, но отнюдь не как простое разложение воды на составляющие эле­менты.
Итак, при разложении, т.е. электролизе воды вы­делялись водород и кислород, что, казалось бы, внешним образом подтверждало вывод Лавуазье. Однако при этом «черный ящик» стал неожиданно выдавать дополнительную информацию, которой прежде не было. В процессе электролиза обнаружи­лось два странных явления: во-первых, обе состав­ные части воды выделялись не вместе, а отдельно друг от друга — кислород у одного электрода, водо­род — у другого; во-вторых, наблюдалось образова­ние кислоты у кислородного полюса и щелочи у во­дородного. Это «странное» разложение воды озада чило ученых; притом их больше беспокоила вторая «странность», т.е. появление кислоты и щелочи.

Не видя каких-либо явных источников появле­ния в опытах азота, Дэви предположил, что образо­вание азотной кислоты было обязано соединению водорода и кислорода в момент их выделения с азо­том воздуха, растворенным в воде. Для подтвержде­ния своей догадки, он проделал тот же опыт под ко­локолом воздушного насоса, из которого он выкачал воздух (как он пи ш ет сам: осталась лишь 1/64 его первоначального объема). В итоге получились сле­дующие обнадеживающие для него результаты: в ка­тодном сосуде вода вовсе не обнаруживала присут­ствия щелочи, в анодном сосуде лакмусовая бумаж­ка слабо окрасилась в красный цвет, что свидетель­ствовало об образовании там небольшого количест­ва кислоты. Казалось, его догадка подтверждалась. Чтобы уже окончательно убедиться в своей правоте, Дэви еще раз повторил свой опыт под колоколом, но теперь уже в атмосфере чистого водорода. При этом для большей чистоты опыта он дважды на­полнял колокол водородом, чтобы удалить всякие остатки воздуха. Итоги опыта превзошли все ожида­ния: ни в одном из сосудов не было обнаружено да­же следов щелочи и кислоты. Эти опыты не остави­ли у Дэви никаких сомнений в том, что образование кислоты и щелочи у электродов — явление случай­ное и не связано с химическим составом воды, а обя­зано лишь присутствию воздуха, в котором, как изве­стно, содержится азот. Они убедили не только Дэви, но и многие поколения химиков после него. После этих опытов было уже как бы неприлично возвра­щаться вновь к вопросу о химическом составе воды — всем все стало ясно.

Вода «под пыткой» у Дэви
А действительно ли в опытах Дэви все было так безу­коризненно чисто и хорошо? Рассмотрим опыт Дэви по элек­тролизу воды под колоколом воздушного насоса. По­чему в этом опыте образовалось лишь небольшое ко­личество кислоты в анодном сосуде и не было вовсе обнаружено щелочи в сосуде катодном? Действи­тельно ли, как думал Дэви, это было связано с отсут­ствием воздуха, выкачанного из-под колокола? От­части да, но совершенно в другом смысле, нежели он предполагал. Начать с того, что Дэви допустил серь­езную ошибку в своем первоначальном предположе­нии, что причиной образования кислоты и щелочи являлся азот воздуха. Образование кислоты и щело­чи к азоту воздуха никакого отношения иметь не могло по той простой причине, что азот в обычных условиях химически не активен, не растворяется в воде и не вступает в реакции ни с кислородом, ни с водородом. Один этот факт должен был бы на­толкнуть на поиски иных источников образования кислоты и щелочи. Позже, правда, высказывалось предположение, что образование кислоты и щелочи в опытах было, возможно, вызвано присутствием в воздухе некоторого количества аммонийных солей. Этим объяснением и удовлетворились. Однако вряд ли можно всерьез принимать данное объяснение, так как, во-первых, оно было сделано постфактум и, во- вторых, даже если бы какое-то количество таких со­лей и впрямь присутствовало, то оно настолько должно было быть мало, что не могло оказывать по­стоянного и закономерного образования кислоты и щелочи в каждом опыте, количество которых стоя­ло, как говорилось, лишь в прямой зависимости от продолжительности проводимых опытов.

Итак, множество фактов биологического, химиче­ского и физического свойства не дает оснований при­знать существующую формулу воды верной. Против нее говорят не только эмпирические факты, но и тео­ретические положения и, прежде всего, те, которые вытекают из таких фундаментальных положений, ка­ковыми являются начала термодинамики . Именно с ними совершенно не согласуется взгляд на электро­лиз воды как на процесс простого разложения воды.

Источник

Расщепление воды с эффективностью 100%: полдела сделано

Если найти дешёвый и простой способ электролиза/фотолиза воды, то мы получим невероятно богатый и чистый источник энергии — водородное топливо. Сгорая в кислороде, водород не образует никаких побочных выделений, кроме воды. Теоретически, электролиз — очень простой процесс: достаточно пропустить электрический ток через воду, и она разделяется на водород и кислород. Но сейчас все разработанные техпроцессы требуют такого большого количества энергии, что электролиз становится невыгодным.

Теперь учёные решили часть головоломки. Исследователи из Технион-Израильского технологического института разработали метод проведения второго из двух шагов окислительно-восстановительной реакции — восстановления — в видимом (солнечном) свете с энергетической эффективностью 100%, значительно превзойдя предыдущий рекорд 58,5%.

Осталось усовершенствовать полуреакцию окисления.

Столь высокой эффективности удалось добиться благодаря тому, что в процессе используется только энергия света. Катализаторами (фотокатализаторами) выступают наностержни длиной 50 нм. Они абсорбируют фотоны от источника освещения — и выдают электроны.

В полуреакции окисления производятся четыре отдельных атома водорода и молекула О2 (которая не нужна). В полуреакции восстановления четыре атома водорода спариваются в две молекулы H2, производя полезную форму водорода — газ H2,

Эффективность 100% означает, что все фотоны, поступившие в систему, участвуют в генерации электронов.

На такой эффективности каждый наностержень генерирует около 100 молекул H2 в секунду.

Сейчас учёные работают над оптимизацией техпроцесса, который пока что требует щелочной среды с невероятно высоким pH. Такой уровень никак не приемлем для реальных условий эксплуатации.

К тому же, наностержни подвержены коррозии, что тоже не слишком хорошо.

Тем не менее, сегодня человечество стало на шажок ближе к получению неиссякаемого источника чистой энергии в виде водородного топлива.

Научная работа опубликована в журнале Nano Letters (зеркало).

Источник