Меню

Как изменяется ток по фазе в роторе



§8.6. Зависимость значения и фазы тока от скольжения и ЭДС ротора

В трансформаторе ЭДС вторичной обмотки создает напряжения на нагрузке и преодолевает внутреннее падение напряжения . В асинхронном двигателе обмотка ротора замкнута накоротко , поэтому ЭДС E 2 расходуется в собственном активном и индуктивном сопротивлениях обмотки .

В двигателе с фазным ротором активное сопротивление обмотки ротора может изменяться за счет включения регулировочных реостатов . Индуктивное сопротивление рассеяния обмотки

ротора определяется по известной формуле X 2 = ϖ 2 L 2 =2 π f 2 L 2 и зависит от скольжения . Действительно , f 2 =sf 1 ; X 2 =2 π sf 1 L 2 =s ω 1 L 2

Величина w 1 L 2 представляет собой индуктивное сопротивление обмотки неподвижного ротора Х 2 н ; следовательно , X 2 =sX 2 н

На основании закона Ома для цепи переменного тока можно написать

Здесь E 2 и Х 2 изменяются при изменении частоты вращения двигателя . Целесообразно

выразить ток через неизменные величины и скольжение :

R 2 2 + ( sX 2 н ) 2

Отсюда видно , что ток в обмотке неподвижного ротора ( s =l) имеет наибольшее значение : По мере раскручивания ротора скольжение уменьшается , стремясь к нулю , ток в роторе

также уменьшается и при синхронной частоте вращения становится равным нулю : s =0, I 2 =0. Сдвиг фаз между током и ЭДС ротора может быть определен по его тангенсу :

tg j 2 = X 2 / R 2 =sX 2 н /R 2.

Величины Х 2 н = ω 1 L 2 и R 2 не зависят от частоты вращения двигателя , поэтому tg j 2 пропорционален скольжению двигателя .

При неподвижном роторе ( в момент пуска ), когда s= 1, ток и ЭДС ротора сдвинуты по фазе на максимальный угол : tg j 2 =X 2 н / R 2 .

По мере раскручивания ротора сдвиг фаз между I 2 и Е 2 уменьшается . При s =0 tg j 2 = 0. Для определения ф 2 можно воспользоваться также формулой

R 2 2 + ( sX 2 н ) 2

Карточка № 8.6 (190).

Зависимость значения и фазы тока от скольжения и ЭДС ротора

Активное и индуктивное сопротивления фазы обмотки

R 2 =10 Ом ; Х 2 =10 Ом

неподвижного ротора равны 10 Ом каждое . Чему равны их

R 2 =10 м ; Х 2 =10 Ом

значения при скольжении , равном 10%?

R 2 =10 м ; Х 2 =1 Ом

В предыдущем случае в фазе обмотки неподвижного ротора

индуцируется ЭДС 100

В . Чему равен ток ?

Как будет изменяться ток в обмотке ротора по мере

Чему равен сдвиг фаз между ЭДС и током в обмотке

неподвижного ротора с параметрами , указанными выше ?

ответа на вопрос

Как будет изменяться сдвиг фаз между ЭДС и током в

обмотке ротора по мере раскручивания ротора ?

§8.7. Вращающий момент асинхронного двигателя

Вращающий момент любого электрического двигателя создается в результате взаимодействия магнитного поля и проводников с током . В двигателе постоянного тока

вращающий момент выражается формулой

В асинхронном двигателе вращающий момент выражается аналогичной формулой . Нужно

только установить какое значение тока должно быть использовано . Полный ток I 2 в обмотке ротора состоит из активной I 2a = I 2 cos ϕ 2 и реактивной I 2 р = I 2 sin ϕ 2 составляющих . Допустим , что активная составляющая тока ротора равна нулю . Тогда , несмотря на наличие ЭДС Е 2 и тока I 2 в обмотке ротора , активная мощность этой обмотки была бы равна нулю . Но ротор , не потребляющий активной мощности , не может создавать вращающего момента , так как момент М = Р / ω и равен нулю при Р =0. Следовательно , реактивная составляющая тока ротора не участвует в создании вращающего момента и можно написать М = сФ I 2 cos ϕ 2 , т . е . вращающий момент

асинхронного двигателя пропорционален результирующему магнитному потоку и активной составляющей тока в обмотке ротора . Коэффициент пропорциональности с зависит от конструктивных параметров двигателя .

Необходимо установить , как зависит вращающий момент от скольжения двигателя .

Подставим в формулу для момента значения I 2 и cos ϕ 2 :

R 2 2 + ( sX 2 н ) 2

R 2 2 + ( sX 2 н ) 2

Как и следовало ожидать , при S =0 вращающий момент исчезает . При S= ∞ вращающий момент также обращается в нуль . Таким образом , с увеличением скольжения от нуля вращающий момент увеличивается , достигает максимума , а с дальнейшим возрастанием s до бесконечности снова стремится к нулю . Задаваясь различными значениями скольжения , можно построить график зависимости M ( s ), который представлен на рис . 8.13. На графике выделены три момента : номинальный вращающий момент М н , максимальный момент М мах и пусковой момент М п Номинальный момент обычно соответствует скольжению s =3 ÷ 5%, максимальный момент — s =10 ÷ 14% ( это скольжение называют оптимальным — s opt ), пусковой момент — s =100%. Обычно асинхронный двигатель рассчитывают так , чтобы максимальный момент в 2—3 раза превышал номинальный , а пусковой момент примерно был равен номинальному . Небольшое значение пускового момента — один из существенных недостатков асинхронного двигателя .

Рис . 8.13. Зависимость вращающего момента

Рис . 8.14. Механическая характеристика асинхронного

асинхронного двигателя от скольжения

Кривая M(s) разделена на два участка : ОА и АВ . Участок от точки О до точки А соответствует устойчивым режимам работы асинхронного двигателя : с увеличением момента нагрузки частота вращения двигателя замедляется , скольжение увеличивается и , как видно из графика , возрастает вращающий момент . Новое положение равновесия достигается , когда вращающий момент становится равным тормозному . При этом двигатель устойчиво вращается с уменьшенной частотой .

Участок АВ соответствует неустойчивым режимам работы двигателя : с увеличением момента нагрузки скольжение увеличивается , вращающий момент уменьшается , скольжение возрастает еще больше и т . д . Двигатель останавливается и начинает быстро нагреваться , так как при s =l его пусковой ток в 6—7 раз превышает номинальное значение .

Зависимость частоты вращения двигателя п 2 от момента на валу М при постоянных напряжении питания и частоте сети называют механической характеристикой ( рис . 8.14). Она может быть снята экспериментально и легко получена на основании графика M ( s ). С увеличением момента нагрузки частота вращения двигателя уменьшается незначительно . Если момент нагрузки превысит максимальный , то частота вращения двигателя лавинообразно уменьшится до нуля .

Читайте также:  Как тело человека проводит электрический ток

Частота вращения асинхронного двигателя зависит от напряжения питания . Можно показать , что вращающий момент М пропорционален квадрату напряжения питания . Поэтому

даже небольшие колебания напряжения питания приводят к заметному изменению вращающего момента и частоты вращения двигателя .

Карточка №8.7 (168). Вращающий момент асинхронного двигателя

Источник

§79. Характеристики асинхронных двигателей

Характеристики асинхронных двигателей.

Для правильной эксплуатации асинхронного двигателя необходимо знать его характеристики: механическую и рабочие.

Механическая характеристика.

Зависимость частоты вращения ротора от нагрузки (вращающегося момента на валу) называется механической характеристикой асинхронного двигателя (рис. 262, а). При номинальной нагрузке частота вращения для различных двигателей обычно составляет 98—92,5 % частоты вращения n1 (скольжение sном = 2 – 7,5 %). Чем больше нагрузка, т. е. вращающий момент, который должен развивать двигатель, тем меньше частота вращения ротора.

Как показывает кривая на рис. 262, а, частота вращения асинхронного двигателя лишь незначительно снижается при увеличении нагрузки в диапазоне от нуля до наибольшего ее значения. Поэтому говорят, что такой двигатель обладает жесткой механической характеристикой.

Наибольший вращающий момент Mmax двигатель развивает при некотором скольжении skp, составляющем 10—20%. Отношение Mmax/Mном определяет перегрузочную способность двигателя, а отношение Мпном — его пусковые свойства.

Рис. 262. Механические характеристики асинхронного двигателя: а — естественная; б — при включении пускового реостата

Рис. 262. Механические характеристики асинхронного двигателя: а — естественная; б — при включении пускового реостата

Двигатель может устойчиво работать только при обеспечении саморегулирования, т. е. автоматическом установлении равновесия между приложенным к валу моментом нагрузки Мвн и моментом М, развиваемым двигателем. Этому условию соответствует верхняя часть характеристики до достижения Mmax (до точки В).

Если нагрузочный момент Мвн превысит момент Mmax, то двигатель теряет устойчивость и останавливается, при этом по обмоткам машины будет длительно проходить ток в 5—7 раз больше номинального, и они могут сгореть.

При включении в цепь обмоток ротора пускового реостата получаем семейство механических характеристик (рис. 262,б). Характеристика 1 при работе двигателя без пускового реостата называется естественной. Характеристики 2, 3 и 4, получаемые при подключении к обмотке ротора двигателя реостата с сопротивлениями R1п (кривая 2), R2п (кривая 3) и R3п (кривая 4), называют реостатными механическими характеристиками.

При включении пускового реостата механическая характеристика становится более мягкой (более крутопадающей), так как увеличивается активное сопротивление цепи ротора R2 и возрастает sкp. При этом уменьшается пусковой ток. Пусковой момент Мп также зависит от R2. Можно так подобрать сопротивление реостата, чтобы пусковой момент Мп был равен наибольшему Мmax.

В двигателе с повышенным пусковым моментом естественная механическая характеристика приближается по своей форме к характеристике двигателя с включенным пусковым реостатом. Вращающий момент двигателя с двойной беличьей клеткой равен сумме двух моментов, создаваемых рабочей и пусковой клетками.

Поэтому характеристику 1 (рис. 263) можно получить путем суммирования характеристик 2 и 3, создаваемых этими клетками. Пусковой момент Мп такого двигателя значительно больше, чем момент М’п обычного короткозамкнутого двигателя. Механическая характеристика двигателя с глубокими пазами такая же, как и у двигателя с двойной беличьей клеткой.

Рис. 263. Механическая характеристика асинхронного двигателя с повышенным пусковым моментом (с двойной беличьей клеткой)

Рис. 263. Механическая характеристика асинхронного двигателя с повышенным пусковым моментом (с двойной беличьей клеткой)

Рабочие характеристики.

Рабочими характеристиками асинхронного двигателя называются зависимости частоты вращения n (или скольжения s), момента на валу М2, тока статора I1 коэффициента полезного действия η и cosφ1, от полезной мощности Р2 = Рmx при номинальных значениях напряжения U1 и частоты f1 (рис. 264).

Рис. 264. Рабочие характеристики асинхронного двигателя

Рис. 264. Рабочие характеристики асинхронного двигателя

Они строятся только для зоны практической устойчивой работы двигателя, т. е. от скольжения, равного нулю, до скольжения, превышающего номинальное на 10—20%. Частота вращения n с ростом отдаваемой мощности Р2 изменяется мало, так же как и в механической характеристике; вращающий момент на валу М2 пропорционален мощности Р2, он меньше электромагнитного момента М на значение тормозящего момента Мтр, создаваемого силами трения.

Ток статора I1, возрастает с увеличением отдаваемой мощности, но при Р2 = 0 имеется некоторый ток холостого хода I. К. п. д. изменяется примерно так же, как и в трансформаторе, сохраняя достаточно большое значение в сравнительно широком диапазоне нагрузки.

Наибольшее значение к. п. д. для асинхронных двигателей средней и большой мощности составляет 0,75—0,95 (машины большой мощности имеют соответственно больший к. п. д.). Коэффициент мощности cosφ1 асинхронных двигателей средней и большой мощности при полной нагрузке равен 0,7—0,9.

Следовательно, они загружают электрические станции и сети значительными реактивными токами (от 70 до 40% номинального тока), что является существенным недостатком этих двигателей.

При нагрузках 25—50 % номинальной, которые часто встречаются при эксплуатации различных механизмов, коэффициент мощности уменьшается до неудовлетворительных с энергетической точки зрения значений (0,5—0,75).

При снятии нагрузки с двигателя коэффициент мощности уменьшается до значений 0,25—0,3, поэтому нельзя допускать работу асинхронных двигателей при холостом ходе и значительных недогрузках.

Работа при пониженном напряжении и обрыве одной из фаз.

Понижение напряжения сети не оказывает существенного влияния на частоту вращения ротора асинхронного двигателя. Однако в этом случае сильно уменьшается наибольший вращающий момент, который может развить асинхронный двигатель (при понижении напряжения на 30% он уменьшается примерно в 2 раза). Поэтому при значительном падении напряжения двигатель может остановиться, а при низком напряжении — не включиться в работу.

Читайте также:  Poe 24в постоянного тока

На э. п. с. переменного тока при уменьшении напряжения в контактной сети соответственно уменьшается и напряжение в трехфазной сети, от которой питаются асинхронные двигатели, приводящие во вращение вспомогательные машины (вентиляторы, компрессоры, насосы).

Для того чтобы обеспечить нормальную работу асинхронных двигателей при пониженном напряжении (они должны нормально работать при уменьшении напряжения до 0,75Uном), мощность всех двигателей вспомогательных машин на э. п. с. берется примерно в 1,5—1,6 раза большей, чем это необходимо для привода их при номинальном напряжении.

Такой запас по мощности необходим также из-за некоторой несимметрии фазных напряжений, так как на э. п. с. асинхронные двигатели питаются не от трехфазного генератора, а от расщепителя фаз.

При несимметрии напряжений фазные токи двигателя будут неодинаковы и сдвиг между ними по фазе не будет равен 120°. В результате по одной из фаз будет протекать больший ток, вызывающий увеличенный нагрев обмоток данной фазы. Это заставляет ограничивать нагрузку двигателя по сравнению с работой его при симметричном напряжении.

Кроме того, при несимметрии напряжений возникает не круговое, а эллиптическое вращающееся магнитное поле и несколько изменяется форма механической характеристики двигателя. При этом уменьшаются его наибольший и пусковой моменты.

Несимметрию напряжений характеризуют коэффициентом несимметрии, который равен среднему относительному (в процентах) отклонению напряжений в отдельных фазах от среднего (симметричного) напряжения. Систему трехфазных напряжений принято считать практически симметричной, если этот коэффициент меньше 5 %.

При обрыве одной из фаз двигатель продолжает работать, но по неповрежденным фазам будут протекать повышенные токи, вызывающие увеличенный нагрев обмоток; такой режим не должен допускаться. Пуск двигателя с оборванной фазой невозможен, так как при этом не создается вращающееся магнитное поле, вследствие чего ротор двигателя не будет вращаться.

Использование асинхронных двигателей для привода вспомогательных машин э. п. с. обеспечивает значительные преимущества по сравнению с двигателями постоянного тока. При уменьшении напряжения в контактной сети частота вращения асинхронных двигателей, а следовательно, и подача компрессоров, вентиляторов, насосов практически не изменяются. В двигателях же постоянного тока частота вращения пропорциональна питающему напряжению, поэтому подача этих машин существенно уменьшается.

Источник

Работа асинхронного двигателя

Работа асинхронного двигателя Под влиянием подведенного к статору напряжения сети U1 (рис. 10-19) в его обмотке протекает ток I1, мгновенное направление которого показано соответственно моменту а (рис. 10-2). Этот ток создает вращающийся магнитный поток Ф, замыкающийся через статор и ротор. Поток создает в обеих обмотках э. д. с. Е1 и Е 2, как в первичной и вторичной обмотках трансформатора. Таким образом, асинхронный двигатель подобен трехфазному трансформатору, в котором э. д. с. создаются вращающимся магнитным потоком. Пусть поток вращается в направлении движения стрелки часов. Под влиянием э. д. с. Е2 в обмотке направление которого показано на ротора пойдет ток I2, рис. 10-19 в предположении, что он совпадает по фазе с Е2.

Рис. 10-19. Работа асинхронного двигателя при cos Ψ2 = 1.

Взаимодействие тока I2 и потока Ф создает электромагнитные силы F, приводящие ротор во вращение, вслед за вращающимся потоком. Таким образом, асинхронный двигатель представляет собой трансформатор с вращающейся, вторичной обмоткой и способный поэтому превращать электрическую мощность Е2I2 cos Ψ2 в механическую.

Ротор всегда отстает от вращающегося магнитного потока, так как только в этом случае может возникать э, д. с. E2, а следовательно, ток I2 и силы F. Чтобы изменить направление вращения ротора, следует изменить направление вращения потока. Для этого меняют местами два любых провода, подводящих ток от сети к статору. В этом случае меняется порядок следования фаз ABC на АСВ или ВАС и поток вращается в обратную сторону.

СКОЛЬЖЕНИЕ РОТОРА

Ротор асинхронного двигателя всегда должен отставать от вращающегося магнитного потока. Скорость вращения потока принято означать п1, она постоянна, так как р = const и f1 = const. Скорость вращения ротора можно обозначить п2. Величина называется скольжение м.

Теоретически скольжение меняется от 1 до 0 или от 100% до 0, так как при неподвижном роторе в первый момент пуска п2 = 0, а если вообразить, что ротор вращается синхронно с потоком, п2 = п1. Чем больше нагрузка на валу, тем больший тормозной момент должен уравновеситься большим вращающим моментом. Последнее возможно только при увеличении I2, а значит, и Е2. Как будет показано ниже, Е2увеличивается при уменьшении n2, т. е. при увеличении s. Таким образом, при увеличении нагрузки на валу скорость ротора п2 уменьшается. Скольжение при номинальной нагрузке Sн у асинхронных двигателей равно от 1 до 6%; меньшая цифра относится к мощным двигателями

ЧАСТОТА Э. Д. С. И ТОКА В ОБМОТКЕ РОТОРА

Магнитный поток вращается со скоростью п1, ротор — со скоростью п2. Частота э. д. с. и тока в роторе, очевидно, пропорциональна скорости вращения потока относительно ротора, т. е. величине п1п2 . Тогда

f2 = (p( п1 ))/60 = pn1s/60 = f1s

При неподвижном роторе f2 = f1 • 1 = f1 если ротор вращается синхронно, то f2 = f1 • 0 = 0. При номинальной скорости вращения, т. е. при sH ≈ 2—4%, частота f2 очень мала: f2 = f1s = 50 • 0,02÷50 • 0,04, т. е. 1—2 гц.

Читайте также:  Реферат тему опасность поражения электрическим током 1

ЭЛЕКТРОДВИЖУЩИЕ СИЛЫ ОБМОТОК СТАТОРА И РОТОРА

Если ротор неподвижен, то в обмотках статора и ротора, как в первичной и вторичной обмотках трансформатора, наводятся э. д. с:

Отличие только в том, что коэффициентами Ʀ1 и Ʀ2 приходится учитывать особенности обмоток, распределенных по цилиндрической поверхности статора и ротора. При вращении ротора его э. д. с. все время меняется, так как f2 = f1s. Тогда э. д. с. вращающегося ротора

Эту э. д. с. принято выражать через э. д. с. неподвижного ротора

Следовательно, э. д. с. ротора сильно меняется в процессе работы двигателя. При s = 1, E2s = Е2, а при s = 0, E 2 s = 0.

СОПРОТИВЛЕНИЯ В ОБМОТКЕ РОТОРА

Как и в трансформаторе, часть потока статора замыкается по путям рассеяния, т. е. вокруг проводов статора, не заходя в ротор (рис. 10-19). Известно, что эти потоки обусловливают реактивное (индуктивное) сопротивление обмотки x1. Такие же потоки рассеяния существуют и вокруг проводов обмотки ротора, когда в ней протекает ток. Ими обусловлено реактивное сопротивление ротора x2.

При неподвижном роторе

При вращающемся роторе

Отсюда следует, что реактивное сопротивление ротора непрерывно и сильно меняется при изменении режима работы двигателя от величины x2s = х2 • 1 = х2 при неподвижном роторе до величины x2s = х2 • 0 = 0, если бы ротор вращался синхронно.

В двигателях нормального исполнения изменением активного сопротивления ротора при изменении частоты от 50 гц до 0 можно пренебречь и считать r2 = const.

ТОК В ОБМОТКЕ РОТОРА

Из сказанного выше об изменении э. д. с. и реактивного сопротивления обмотки ротора можно заключить, что ток в роторе I2 = E2s/√(r 2 2 + x 2 2s)

тоже меняется при изменении скорости вращения. Пусковой ток I2п должен быть велик и отставать от э. д. с. на большой угол Ψ2, так как Е2 велика, а реактивное сопротивление обмотки х2 обычно в 8—10 раз больше активного r2. При вращении ротора уменьшаются E2s и x2s. Вследствие этого уменьшаются ток I2и угол Ψ 2. Указанное обстоятельство очень важно, так как в этом существенная разница между трансформатором и асинхронным двигателем.

Статья на тему Работа асинхронного двигателя

Источник

В чем опасность пропадания одной фазы для трехфазного двигателя

Современное производство неразрывно связано с применением трехфазных асинхронных электродвигателей, питаемых от трехфазной электрической сети 380 В, 50 Гц. Это простой и наиболее доступный способ получения крутящего момента для любого технологического оборудования, правда, особенностью трехфазных асинхронных двигателей является высокая критичность к ситуациям, когда происходят обрывы фаз.

Причинами пропадания фазы могут быть:

  • элементарный обрыв одного из фазных проводов;
  • перегорание плавкого предохранителя;
  • выход из строя контактной группы пускателя схемы включения.

Но по каким бы причинам не происходило исчезновение одной из фаз, трехфазный двигатель переходит в однофазный режим работы.

Нештатная ситуация может происходить при разных эксплуатационных условиях:

  • фаза может исчезнуть при отключенном двигателе или в момент вращения ротора;
  • двигатель может работать в недогруженном состоянии или на полную мощность;
  • электродвигатель может быть подключен по схеме «звезда» или «треугольник».

Рассмотрим, что происходит при этом в работе трехфазных электродвигателей и чем это может для них обернуться.

Чем грозит пропадание фазы?

В нормальном трехфазном режиме во всех трех обмотках статора текут фазные токи, одинаковые по значению, но сдвинутые относительно друг друга на 120°, это создает вращающееся магнитное поле, обеспечивающее вращение ротора. В случае обрыва одной из фаз сбалансированная система нарушается и происходит перераспределение токов и напряжений, при этом в случае соединения «звездой» две обмотки оказываются включенными последовательно и по ним протекает общий ток, в третьей обмотке ток отсутствует.

Магнитное поле в такой ситуации просто меняет свой знак чего для запуска электродвигателя недостаточно, такое возможно в случае подключения трехфазных двигателей «звездой» с нулевой точкой, присоединенной к нейтрали, однако успех запуска будет зависеть от величины нагрузки. Если нагрузка не обеспечивает вращения вала, это приводит к быстрому перегреву обмоток статоров за счет возрастающих пусковых токов, разрушению изоляции и выходу трехфазных двигателей из строя.

Не меньшую опасность двигателю несет отключение фазы в момент работы электродвигателя. Не зависимо от схемы подключения асинхронного двигателя в однофазном режиме ему обычно хватает крутящего момента для продолжения работы, правда в отличие от режима с трехфазным питанием скорость вращения на валу двигателя несколько падает, а его работа сопровождается характерным гулом. Работа двигателя в таком режиме часто остается незамеченной малоопытным персоналом, а продолжительный нагрев работающих обмоток приводит к их перегреву с последующей поломкой электромотора.

Асинхронный электродвигатель один из самых надежных представителей электрооборудования, при соответствующем обращении сохраняющий свою работоспособность десятилетиями, хотя неумолимая статистика показывает, что от случайной потери одной из фаз гибнет более половины электромоторов. Для защиты асинхронных двигателей от подобных неприятностей разработаны различные схемы подключения, обеспечивающие отключения электродвигателя в аварийных ситуациях.

Тепловая защита электродвигателя инерционна и не всегда успевает сработать при токовых перегрузках, более эффективны многочисленные схемы релейной защиты, которые срабатывают практически мгновенно при исчезновении одной из фаз. Как правило, контакты реле размыкают цепи питания магнитных пускателей, а контакты магнитных пускателей разрывают цепь питания двигателя. Надежную защиту обеспечивает применение реле контроля фаз.

Источник

Adblock
detector