Меню

Как изменяется сила тока в цепи переменного напряжения



Электрические цепи переменного тока

Переменный ток получил гораздо большее распространение в промышленности и в быту, чем постоянный, так как упрощается конструкция электродвигателей, а синхронные генераторы могут быть выполнены на значительно большие мощности и более высокие напряжения, чем генераторы постоянного тока. Переменный ток позволяет легко изменять величину напряжения с помощью трансформаторов, что необходимо при передаче электроэнергии на большие расстояния.

Электрический ток, возникающий под действием э. д. с, которая изменяется по синусоидальному закону, называют переменным. По существу, переменный ток — это вынужденные колебания тока в электрических цепях.

Амплитудой переменного тока называется наибольшее значение, положительное или отрицательное, принимаемое переменным током.

Периодом называется время, в течение которого происходит полное колебание тока в проводнике.

Частота — величина, обратная периоду.

Фазой называется угол или , стоящий под знаком синуса. Фаза характеризует состояние переменного тока с течением времени. При t=0 фаза называется начальной.

Периодический режим: . К такому режиму может быть отнесен и синусоидальный:

— амплитуда;

— начальная фаза;

— угловая скорость вращения ротора генератора.

При f=50Гц T= 1/f=0,02 с, 314рад/с.

График синусоидальной функции называется волновой диаграммой.

Расчет цепей переменного тока с использованием мгновенных значений тока, напряжения и ЭДС требует громоздкой вычислительной работы. Поэтому изменяющиеся непрерывно во времени токи, напряжения и ЭДС заменяют эквивалентными во времени величинами.

При расчете электрических цепей синусоидальную функцию выражают по формуле Эйлера через экспоненциальные функции:

— поворотный множитель;

— комплексная амплитуда напряжения;

— сопряженная комплексная амплитуда напряжения.

Таким образом, синусоидальное напряжение можно представить на комплексной плоскости вращающимся вектором. Тогда амплитудное значение напряжения будет представлять собой модуль или длину вектора напряжения.

Вектор напряжения на комплексной плоскости

Так как в цепи с синусоидальным напряжением ток тоже будет подчиняться этому закону, то аналогично можно записать

— комплексная амплитуда тока; *

— сопряженная комплексная амплитуда тока.

Разделив напряжение на ток, получим закон Ома в комплексном виде:

При напряжение на сопротивлении согласно закону Ома . Таким образом, следует отметить, что на активном сопротивлении напряжение и ток совпадают по фазе и (см. рисунок).

Кривые напряжения и тока в активном сопротивлении

Величину переменного напряжения или тока можно оценить значением амплитуды или средним значением за полупериод или действующим значением. При изменении напряжения или тока по закону синуса среднее значение напряжения определяется:

При большой частоте вращения ротора генератора, т. е. при большой частоте колебаний э. д. с. и силы тока, измерять их амплитуды на практике крайне неудобно. По этой причине ввели величины, названные действующими значениями э. д. с, силы тока и напряжения.

Действующим значением силы переменного тока называют силу такого постоянного тока, при прохождении которого по той же цепи и за то же время выделяется такое же количество теплоты, как и при прохождении переменного тока.

При синусоидальном законе действующие значения тока и напряжения:

Приборы электромагнитной системы, применяемые для измерений напряжений и токов на переменном токе, регистрируют действующие значения. Соответственно градуируются и шкалы этих приборов.

Ток, протекающий через индуктивность L (рис. 7), меняется по закону синуса /’ = Im sin(co/ + у;).

Кривые напряжения и тока в индуктивном сопротивлении

Напряжение на индуктивности определяется выражением

-индуктивное сопротивленияе

Индуктивное сопротивление выражают в омах, оно играет роль сопротивления в цепи переменного тока с катушкой индуктивности.

В идеальной индуктивности ток отстает от напряжения на 90°.

Если напряжение на емкости меняется по закону синуса , то

-емкостное сопротивление.

Емкостное сопротивление выражается в омах, оно играет роль сопротивления в цепи переменного тока с конденсатором.

Кривые напряжения и тока в емкостном сопротивлении

В идеальной емкости ток опережает напряжение на 90°

Режим — состояние электрической цепи переменного тока описывается дифференциальными уравнениями, представляющими собой уравнения с постоянными коэффициентами и правой частью, например:

Из курса высшей математики известно, что общее решение такого уравнения может быть найдено методом наложения принужденного и свободного режимов:

— ток принужденного режима при di/dt=0

— ток свободного режима.

Свободные процессы исследуются с целью определения устойчивости системы. В устойчивой системе процессы должны затухать. Принужденный и свободный режимы в сумме определяют процессы, которые называются переходными, т.е. осуществляется переход от одного установившегося режима к другому.

При установившемся режиме ток и напряжение сохраняют в течение длительного времени амплитудные значения.

В цепях постоянного тока токи и напряжения остаются неизменными, а в цепях переменного тока остаются неизменными кривые изменения токов и напряжений.

Мощность цепи переменного тока

В периодическом синусоидальном режиме

Используя известное тригонометрическое преобразование

и обозначив , получим

Среднее за период значение гармонической функции удвоенной частоты равно нулю.

Измерение мгновенного значения мощности переменного тока затруднено из-за сравнительно большой частоты колебаний (v = 50 Гц). Поэтому на практике принято пользоваться средней мощностью тока. Средняя мощность — это отношение энергии, потребляемой за один период, к периоду:

— энергетическое значение коэффициента мощности,

Потребляемая на участке цепи с резистором средняя мощность получила название активной мощности. Она необратимо преобразуется в джоулеву теплоту и другие виды энергии. Мощность, потребляемую на участках цепи с емкостным и индуктивным сопротивлениями, называют реактивной мощностью.

При передаче электрической энергии по цепи переменного тока ее необратимые преобразования происходят только на тех участках цепи, которые содержат резисторы. Такие участки цепи называют активной нагрузкой. На активной нагрузке электроэнергия превращается в теплоту или механическую работу.

Участок цепи с индуктивностью или емкостью называют реактивной нагрузкой. На участках цепи, которые состоят из чистых емкостных или индуктивных сопротивлений, электроэнергия не потребляется. В цепи с реактивными нагрузками происходит только перекачка энергии от генератора к нагрузке и обратно с неизбежными потерями в подводящих проводах.

При заданных Р и U ток является функцией cosj. Потери мощности на сопротивлении

В цепи с резистором j=0.

Коэффициент мощности cosj показывает, какая часть полной мощности, вырабатываемой генератором и передаваемой нагрузке, необратимо используется нагрузкой. Он играет важную роль в электротехнике. В самом деле, если в цепи имеется значительный сдвиг по фазе между колебаниями тока и э. д. с, то коэффициент мощности мал и нагрузка потребляет от генератора малую активную мощность. Вместе с тем генератор должен вырабатывать полную мощность S. Эту же мощность должен отдавать генератору первичный двигатель. Таким образом, при низком коэффициенте мощности нагрузка потребляет лишь часть энергии, которую вырабатывает генератор. Оставшаяся часть энергии перекачивается периодически от генератора к потребителю и обратно и рассеивается в линиях электропередачи.

Максимально благоприятные условия передачи электроэнергии создаются в цепи, работающей в режиме резонанса. В самом деле, при приближении к резонансу амплитуда силы тока оказывается максимальной и коэффициент мощности стремится к единице. В этом случае активная мощность приближается к полной мощности, т. е. достигает максимума.

Повышение к. м. является важной народнохозяйственной задачей, от решения которой зависит эффективность использования вырабатываемой электроэнергии.

Уменьшение к. м. в промышленных цепях происходит в основном за счет содержащихся в них трансформаторов и асинхронных электродвигателей, имеющих значительные индуктивные сопротивления. Поэтому повысить к. м. при таких нагрузках можно путем подключения параллельно основной цепи компенсирующих конденсаторов, позволяющих приблизиться к режиму резонанса токов.

С целью повышения к. м. и экономии электроэнергии не следует допускать холостого хода (т. е. работы без нагрузки) трансформаторов и асинхронных электродвигателей, ибо в этом случае они представляют собой чисто индуктивные сопротивления и вызывают дополнительные потери мощности.

Коэффициент мощности (к. м.) ни в коем случае нельзя путать с коэффициентом полезного действия (к. п. д.). Так, например, при определенном соотношении емкости и индуктивности коэффициент мощности в данной цепи может оказаться равным единице. Коэффициент же полезного действия цепи всегда меньше единицы.

Мощность цепи переменного тока

Мощность в активном сопротивлении

Мгновенное значение мощности для цепи с резистором:

Из рисунка видно, что потребляемая резистором мгновенная мощность остается все время положительной, но пульсирует с удвоенной по отношению к силе тока и э. д. с. частотой.

Действующее значение мощности:

Активная мощность в цепи с идеальной катушкой индуктивности и конденсатором равна 0. Реактивная мощность определяется выражением:

Аналогично можно проделать для цепи с идеальным конденсатором:

В произвольной цепи переменного тока потребляемая одновременно активной и реактивной нагрузками суммарная мощность

Но так как , следовательно, . Мы приходим к выводу, что суммарная средняя мощность, потребляемая полной цепью переменного тока, равна активной мощности.

где S — полная мощность, вырабатываемая генератором переменного тока, ВА;

a — сдвиг по фазе между колебаниями э. д. с. и силы тока.

Источник

Переменный ток. 1

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: переменный ток, вынужденные электромагнитные колебания.

Переменный ток — это вынужденные электромагнитные колебания, вызываемые в электрической цепи источником переменного (чаще всего синусоидального) напряжения.

Переменный ток присутствует всюду. Он течёт по проводам наших квартир, в промышленных электросетях, в высоковольтных линиях электропередач. И если вам нужен постоянный ток, чтобы зарядить аккумулятор телефона или ноутбука, вы используете специальный адаптер, выпрямляющий переменный ток из розетки.

Почему переменный ток распространён так широко? Оказывается, он прост в получении и идеально приспособлен для передачи электроэнергии на большие расстояния. Подробнее об этом мы поговорим в листке, посвящённом производству, передаче и потреблению электрической энергии.

А сейчас мы рассмотрим простейшие цепи переменного тока. Будем подключать к источнику переменного напряжения поочерёдно: резистор сопротивлением , конденсатор ёмкости и катушку индуктивности . Изучив поведение этих элементов, мы в следующем листке «Переменный ток. 2» подключим их одновременно и исследуем прохождение переменного тока через колебательный контур, обладающий сопротивлением.

Читайте также:  Начальная сила тока стартера

Напряжение на клеммах источника меняется по закону:

Как видим, напряжение может быть положительным и отрицательным. Каков смысл знака напряжения?

Всегда подразумевается, что выбрано положительное направление обхода контура. Напряжение считается положительным, если электрическое поле зарядов, образующих ток, имеет положительное направление. В противном случае напряжение считается отрицательным.

Начальная фаза напряжения не играет никакой роли, поскольку мы рассматриваем процессы, установившиеся во времени. При желании вместо синуса в выражении (1) можно было бы взять косинус — принципиально от этого ничего не изменится.

Текущее значение напряжения в момент времени называется мгновенным значением напряжения.

Условие квазистационарности

В случае переменного тока возникает один тонкий момент. Предположим, что цепь состоит из нескольких последовательно соединённых элементов.

Если напряжение источника меняется по синусоидальному закону, то сила тока не успевает мгновенно принимать одно и то же значение во всей цепи — на передачу взаимодействий между заряженными частицами вдоль цепи требуется некоторое время.

Между тем, как и в случае постоянного тока, нам хотелось бы считать силу тока одинаковой во всех элементах цепи. К счастью, во многих практически важных случаях мы действительно имеем на это право.

Возьмём, к примеру, переменное напряжение частоты Гц (это промышленный стандарт России и многих других стран). Период колебаний напряжения: с.

Взаимодействие между зарядами передаётся со скоростью света: м/с. За время, равное периоду колебаний, это взаимодействие распространится на расстояние:

Поэтому в тех случаях, когда длина цепи на несколько порядков меньше данного расстояния, мы можем пренебречь временем распространения взаимодействия и считать, что сила тока мгновенно принимает одно и то же значение во всей цепи.

Теперь рассмотрим общий случай, когда напряжение колеблется с циклической частотой . Период колебаний равен , и за это время взаимодействие между зарядами передаётся на расстояние . Пусть — длина цепи. Мы можем пренебречь временем распространения взаимодействия, если много меньше :

Неравенство (2) называется условием квазистационарности. При выполнении этого условия можно считать, что сила тока в цепи мгновенно принимает одно и то же значение во всей цепи. Такой ток называется квазистационарным.

В дальнейшем мы подразумеваем, что переменный ток меняется достаточно медленно и его можно считать квазистационарным. Поэтому сила тока во всех последовательно включённых элементах цепи будет принимать одинаковое значение — своё в каждый момент времени. Оно называется мгновенным значением силы тока.

Резистор в цепи переменного тока

Простейшая цепь переменного тока получится, если к источнику переменного напряжения подключить обычный резистор (мы полагаем, разумеется, что индуктивность этого резистора пренебрежимо мала, так что эффект самоиндукции можно не принимать во внимание) , называемый также активным сопротивлением (рис. 1 )

Рис. 1. Резистор в цепи переменного тока

Положительное направление обхода цепи выбираем против часовой стрелки, как показано на рисунке. Напомним, что сила тока считается положительной, если ток течёт в положительном направлении; в противном случае сила тока отрицательна.

Оказывается, мгновенные значения силы тока и напряжения связаны формулой, аналогичной закону Ома для постоянного тока:

Таким образом, сила тока в резисторе также меняется по закону синуса:

Амплитуда тока равна отношению амплитуды напряжения к сопротивлению :

Мы видим, что сила тока через резистор и напряжение на нём меняются «синхронно», точнее говоря — синфазно (рис. 2 ).

Рис. 2. Ток через резистор совпадает по фазе с напряжением

Фаза тока равна фазе напряжения, то есть сдвиг фаз между током и напряжением равен нулю.

Конденсатор в цепи переменного тока

Постоянный ток через конденсатор не течёт — для постоянного тока конденсатор является разрывом цепи. Однако переменному току конденсатор не помеха! Протекание переменного тока через конденсатор обеспечивается периодическим изменением заряда на его пластинах.

Рассмотрим конденсатор ёмкости , подключённый к источнику синусоидального напряжения (рис. 3 ). Активное сопротивление проводов, как всегда, считаем равным нулю. Положительное направление обхода цепи снова выбираем против часовой стрелки.

Рис. 3. Конденсатор в цепи переменного тока

Как и ранее, обозначим через заряд той пластины конденсатора, на которую течёт положительный ток — в данном случае это будет правая пластина. Тогда знак величины совпадает со знаком напряжения . Кроме того, как мы помним из предыдущего листка, при таком согласовании знака заряда и направления тока будет выполнено равенство .

Напряжение на конденсаторе равно напряжению источника:

Дифференцируя это равенство по времени, находим силу тока через конденсатор:

Графики тока и напряжения представлены на рис. 4 . Мы видим, что сила тока каждый раз достигает максимума на четверть периода раньше, чем напряжение. Это означает, что фаза силы тока на больше фазы напряжения (ток опережает по фазе напряжение на ).

Рис. 4. Ток через конденсатор опережает по фазе напряжение на

Найти сдвиг фаз между током и напряжением можно также с помощью формулы приведения:

Используя её, получим из (3) :

И теперь мы чётко видим, что фаза тока больше фазы напряжения на .

Для амплитуды силы тока имеем:

Таким образом, амплитуда силы тока связана с амплитудой напряжения соотношением, аналогичным закону Ома:

Величина называется ёмкостным сопротивлением конденсатора. Чем больше ёмкостное сопротивление конденсатора, тем меньше амплитуда тока, протекающего через него, и наоборот.

Ёмкостное сопротивление обратно пропорционально циклической частоте колебаний напряжения (тока) и ёмкости конденсатора. Попробуем понять физическую причину такой зависимости.

1. Чем больше частота колебаний (при фиксированной ёмкости ), тем за меньшее время по цепи проходит заряд ; тем больше амплитуда силы тока и тем меньше ёмкостное сопротивление. При ёмкостное сопротивление стремится к нулю: . Это означает, что для тока высокой частоты конденсатор фактически является коротким замыканием цепи.

Наоборот, при уменьшении частоты ёмкостное сопротивление увеличивается, и при имеем . Это неудивительно: случай отвечает постоянному току, а конденсатор для постоянного тока представляет собой бесконечное сопротивление (разрыв цепи).

2. Чем больше ёмкость конденсатора (при фиксированной частоте), тем больший заряд проходит по цепи за то же время (за ту же четверть периода); тем больше амплитуда силы тока и тем меньше ёмкостное сопротивление.

Подчеркнём, что, в отличие от ситуации с резистором, мгновенные значения тока и напряжения в одни и те же моменты времени уже не будут удовлетворять соотношению, аналогичному закону Ома. Причина заключается в сдвиге фаз: напряжение меняется по закону синуса, а сила тока — по закону косинуса; эти функции не пропорциональны друг другу. Законом Ома связаны лишь амплитудные значения тока и напряжения.

Катушка в цепи переменного тока

Теперь подключим к нашему источнику переменного напряжения катушку индуктивности (рис. 5 ). Активное сопротивление катушки считается равным нулю.

Рис. 5. Катушка в цепи переменного тока

Казалось бы, при нулевом активном (или, как ещё говорят, омическом) сопротивлении через катушку должен потечь бесконечный ток. Однако катушка оказывает переменному току сопротивление иного рода.
Магнитное поле тока, меняющееся во времени, порождает в катушке вихревое электрическое поле , которое, оказывается, в точности уравновешивает кулоновское поле движущихся зарядов:

Работа кулоновского поля по перемещению единичного положительного заряда по внешней цепи в положительном направлении — это как раз напряжение . Аналогичная работа вихревого поля — это ЭДС индукции .

Поэтому из (4) получаем:

Равенство (5) можно объяснить и с энергетической точки зрения. Допустим, что оно не выполняется. Тогда при перемещении заряда по цепи совершается ненулевая работа, которая должна превращаться в тепло. Но тепловая мощность равна нулю при нулевом омическом сопротивлении цепи. Возникшее противоречие показывает, что равенство (5) обязано выполняться.

Вспоминая закон Фарадея , переписываем соотношение (5) :

Остаётся выяснить, какую функцию, меняющуюся по гармоническому закону, надо продифференцировать, чтобы получить правую часть выражения (6) . Сообразить это нетрудно (продифференцируйте и проверьте!):

Мы получили выражение для силы тока через катушку. Графики тока и напряжения представлены на рис. 6 .

Рис. 6. Ток через катушку отстаёт по фазе от напряжения на

Как видим, сила тока достигает каждого своего максимума на четверть периода позже, чем напряжение. Это означает, что сила тока отстаёт по фазе от напряжения на .

Определить сдвиг фаз можно и с помощью формулы приведения:

Непосредственно видим, что фаза силы тока меньше фазы напряжения на .

Амплитуда силы тока через катушку равна:

Это можно записать в виде, аналогичном закону Ома:

Величина называется индуктивным сопротивлением катушки. Это и есть то самое сопротивление, которое наша катушка оказывает переменному току (при нулевом омическом сопротивлении).

Индуктивное сопротивление катушки пропорционально её индуктивности и частоте колебаний. Обсудим физический смысл этой зависимости.

1. Чем больше индуктивность катушки, тем большая в ней возникает ЭДС индукции, противодействующая нарастанию тока; тем меньшего амплитудного значения достигнет сила тока. Это и означает, что будет больше.

2. Чем больше частота, тем быстрее меняется ток, тем больше скорость изменения магнитного поля в катушке, и тем большая возникает в ней ЭДС индукции, препятствующая возрастанию тока. При имеем , т. е. высокочастотный ток практически не проходит через катушку.

Наоборот, при имеем . Для постоянного тока катушка является коротким замыканием цепи.

И снова мы видим, что закону Ома подчиняются лишь амплитудные, но не мгновенные значения тока и напряжения. Причина та же — наличие сдвига фаз.

Резистор, конденсатор и катушка, рассмотренные пока что по отдельности, теперь соберутся вместе в колебательный контур, подключённый к источнику переменного напряжения. Читайте следующий листок — «Переменный ток. 2».

Читайте также:  Расчет электрических схем переменного тока

Источник

Как изменяется сила тока в цепи переменного напряжения

§ 50. Основные величины, характеризующие переменный ток

Переменная э. д. с., переменное напряжение, а также переменный ток характеризуются периодом, частотой, мгновенным, максимальным и действующим значениями.
Период. Время, в течение которого переменная э. д. с. (напряжение или ток) совершает одно полное изменение по величине и направлению (один цикл), называется периодом. Период обозначается буквой Т и измеряется в секундах.
Если одно полное изменение переменной э. д. с. совершается за 1/50 сек, то период этой э. д. с. равен 1/50 сек.
Частота. Число полных изменений переменной э. д. с. (напряжения или тока), совершаемых за одну секунду, называется частотой. Частота обозначается буквой f и измеряется в герцах (гц). При измерении больших частот пользуются единицами килогерц (кгц) и мегагерц (Мгц); 1 кгц = 1000 гц, 1 Мгц = 1000 кгц, 1 Мгц = 1 000 000 гц = 10 6 гц. Чем больше частота переменного тока, тем короче период. Таким образом, частота — величина, обратная периоду.

Пример. Длительность одного периода переменного тока равна 1/500 сек. Определить частоту тока.
Решение . Одно полное изменение переменного тока происходит за 1/500 сек. Следовательно, за одну секунду совершится 500 таких изменений. На основании этого частота

Чем больше период переменного тока, тем меньше его частота. Таким образом, период является величиной, обратной частоте, т. е.

Пример. Частота тока равна 2000 гц (2 кгц). Определить период этого переменного тока.
Решение . За 1 сек происходит 2000 полных изменений переменного тока. Следовательно, одно полное изменение тока — один период совершается за 1/2000 долю секунды. Но основании этого период

Угловая частота. При вращении витка в магнитном поле один его оборот соответствует 360°, или 2π радиан. (1 рад = 57° 17′ 44″; π = 3,14.) Если, например, виток за время Т = 3 сек совершает один оборот, то угловая скорость его вращения за одну секунду

Соответственно угловая скорость вращения этого витка выражается в рад/сек и определяется отношением Эта величина называется угловой частотой и обозначается буквой ω.
Таким образом,

Так как частота переменного тока то, подставляя это значение f в выражение угловой частоты, получим:

Угловая частота ω, выраженная в рад/сек, больше частоты тока f, выраженной в герцах, в 2π раз.
Если частота переменного тока f = 50 гц, то угловая частота

ω = 2πf = 2 · 3,14 · 50 = 314 рад/сек

В различных областях техники применяют переменные токи самых разных частот. На электростанциях СССР установлены генераторы, вырабатывающие переменную электродвижущую силу, частота которой f = 50 гц. В радиотехнике и электронике используют переменные токи частотой от десятков до многих миллионов герц.
Мгновенное и максимальное значения. Величину переменной электродвижущей силы, силы тока, напряжения и мощности в любой момент времени называют мгновенными значениями этих величин и обозначают соответственно строчными буквами (e, i, u, p).
Максимальным значением (амплитудой) переменной э. д. с. (или напряжения или тока) называется та наибольшая величина, которой она достигает за один период. Максимальное значение электродвижущей силы обозначается Еm, напряжения — Um, тока — Im.
На рис. 51 видно, что переменная э. д. с. достигает своего значения два раза за один период.

Действующая величина. Электрический ток, протекающий по проводам, нагревает их независимо от своего направления. В связи с этим тепло выделяется не только в цепях постоянного тока, но и в электрических цепях, по которым протекает переменный ток.
Если по проводнику сопротивлением r ом протекает переменный электрический ток, то в каждую секунду выделяется определенное количество тепла. Это количество тепла прямо пропорционально максимальному значению переменного тока.
Можно подобрать такой постоянный ток, который, протекая по такому же сопротивлению, что и переменный ток, выделял бы равное количество тепла. В этом случае можно сказать, что в среднем действие (эффективность) переменного тока по количеству выделенного тепла равно действию постоянного тока.
Действующим (или эффективным) значением переменного тока называется такая сила постоянного тока, которая, протекая через равное сопротивление и за одно и то же время, что и переменный ток, выделяет одинаковое количество тепла.
Электроизмерительные приборы (амперметр, вольтметр), включенные в цепь переменного тока, измеряют соответственно действующее значение тока и напряжения.
Для синусоидального переменного тока действующее значение меньше максимального в 1,41 раз, т. е. в раз.

Аналогично действующие значения переменной электродвижущей силы и напряжения меньше их максимальных значений тоже в 1,41 раза.

По величине измеренных действующих значений силы переменного тока, напряжения или электродвижущей силы можно вычислить их максимальные значения:

Em = E · 1,41; Um = U · 1,41; Im = I · 1,41; (55)

Пример. Вольтметр, подключенный к зажимам цепи, показывает действующее напряжение U = 127 в. Вычислить максимальное значение (амплитуду) этого переменного напряжения.
Решение . Максимальное значение напряжения больше действующего в раз, поэтому

Um = U · = 127 · 1,41 = 179,07 в

Для характеристики каждой переменной электродвижущей силы, переменного напряжения или переменного тока недостаточно знать период, частоту и максимальное значение.

Фаза. Сдвиг фаз. При сопоставлении двух и более переменных синусоидальных величин (э. д. с., напряжения или тока) необходимо также учитывать, что они могут изменяться во времени неодинаково и достигать своего максимального значения в разные моменты времени. Если в электрической цепи ток изменяется во времени так же, как меняется э. д. с., т. е. когда электродвижущая сила равна нулю и ток в цепи равен нулю, а при увеличении э. д. с. до положительного максимального значения одновременно увеличивается и достигает положительной максимальной величины и сила тока в цепи, и далее, когда э. д. с. уменьшается до нуля и сила тока одновременно станет равна нулю и т. д., то в такой цепи переменная электродвижущая сила и переменный ток совпадают по фазе.
На рис. 52 показаны моменты вращения двух проводников в магнитном поле и графики изменения э. д. с. в проводах. Провод 1 и провод 2 смещены на угол φ = 90°. При пересечении магнитного потока в каждом из проводов возникает переменная э. д. с. Когда в проводе 2 электродвижущая сила равна нулю, в проводе 1 она будет максимальной. В проводе 2 э. д. с. постепенно увеличивается и достигает максимального значения в момент t1, а в проводе 1 индуктируемая э. д. с. постепенно убывает и в этот же момент времени равна нулю. Таким образом, индуктируемые в проводах э. д. с. не совпадают по фазе, а сдвинуты одна относительно другой по фазе на 1/4 периода или на угол φ = 90°. Кроме того, э. д. с. в проводе 1 раньше достигает максимума, чем э. д. с. в проводе 2, и поэтому считают, что электродвижущая сила е1 опережает по фазе э. д. с. е2 или э. д. с. е2 отстает по фазе от э. д. с. е1. При расчетах цепей переменного тока важное практическое значение имеет сдвиг фаз между переменными напряжением и током.

Источник

Как изменяется сила тока в цепи переменного напряжения

Закон Ома и вытекающие из него правила Кирхгофа были установлены для постоянных токов. Однако эти законы остаются справедливыми и для мгновенных значений изменяющихся во времени тока или напряжения, если их изменения происходят не слишком быстро. Электромагнитные возмущения распространяются по цепи со скоростью света с. Если за время τ = l/c, которое необходимо для передачи возмущения в самую отдаленную точку цепи l, сила тока изменяется незначительно, то мгновенные значения тока в начале и конце цепи будут практически одинаковыми. Токи, удовлетворяющие такому условию, называются квазистационарными. Для них справедливо неравенство:

где Т – период изменения тока.

При размерах цепи l

3 м τ = 10 -8 с. Таким образом, вплоть до периодов Т

10 -6 с, что соответствует частоте 10 6 Гц, токи в такой цепи можно считать квазистационарными. Ток промышленной частоты 50 Гц будет квазистационарным для цепей длиной l

Рис.3.9.1. Представление переменных токов с помощью векторных диаграмм

Мгновенные значения квазистационарного тока подчиняются закону Ома, и для него справедливы правила Кирхгофа. Пусть к зажимам сопротивления R (Рис.3.9.1), не обладающего индуктивностью или емкостью (такое сопротивление называется активным), приложено напряжение, изменяющееся со временем по закону:

U = U m cosωt,(3.9.2)

где U m – амплитудное значение напряжения. При выполнении условия квазистационарности ток через сопротивление определяется законом Ома:

Здесь введено обозначение амплитудного значения тока:

Удобно при описании переменных токов использовать векторные диаграммы. Выберем произвольное направление, которое назовем осью токов. Отложим вдоль этого направления вектор тока длиной I m. Поскольку напряжение и ток в данном случае изменяются во времени синхронно, вектор напряжения также будет направлен вдоль оси токов. Его длина равна RI m .

3.9.2. Переменный ток, текущий через индуктивность

Рис.3.9.2. Переменный ток, текущий через индуктивность

Подадим переменное напряжение на концы индуктивности L с пренебрежимо малыми сопротивлением и емкостью (Рис.3.9.2). Через индуктивность будет течь переменный ток, вследствие чего возникнет ЭДС самоиндукции:

Используя второе правило Кирхгофа, можем записать:

В данном случае все напряжение приложено к индуктивности. Следовательно, величина

и есть падение переменного напряжения на индуктивности.

Перепишем уравнение (3.9.6) в виде:

Интегрируя (3.9.8), получим:

Постоянный ток в данном примере отсутствует, поэтому const = 0. Следовательно, имеем:

Из сопоставления (3.9.11) и (3.9.4) следует, что роль сопротивления в цепи с индуктивностью играет величина:

X L = ωL,(3.9.12)

которую называют реактивным индуктивным сопротивлением.

Как видно из (3.9.12), величина индуктивного сопротивления растет при увеличении частоты тока. Постоянному току индуктивность сопротивления не оказывает.

Читайте также:  Сварочные источники питания постоянного тока это

Используя (3.9.6) и (3.9.11), падению напряжения на индуктивности можно придать вид:

Из сравнения (3.9.13) и (3.9.10) следует, что между током и напряжением в цепи с индуктивностью существует сдвиг фаз на 90 0 , причем ток отстает по фазе от напряжения. На векторной диаграмме это обстоятельство можно отразить как на Рис.3.9.2б.

3.9.3. Переменный ток, текущий через емкость

Рис.3.9.3. Ток и напряжение в цепи с емкостью

Пусть переменное напряжение подано на емкость С (Рис.3.9.3) Индуктивностью и сопротивлением подводящих проводов пренебрегаем. Емкость непрерывно перезаряжается, благодаря чему через нее протекает переменный ток. Напряжение на конденсаторе можно считать равным внешнему напряжению:

Умножая (3.9.14) на С и дифференцируя по времени, получим ток:

Величина Х С в цепи с емкостью играет роль сопротивления и называется реактивным емкостным сопротивлением.

Для постоянного тока Х С = ±, так как постоянный ток течь через конденсатор не может. Переменный ток через конденсатор проходит, причем сопротивление току тем меньше, чем больше частота.

Заменив в соотношении (3.9.14) амплитуду напряжения, используя (3.9.16), имеем:

Сравнив (3.9.17) и (3.9.15), можно сделать вывод, что между током и напряжением в цепи с емкостью существует сдвиг фаз на 90 0 , причем ток опережает по фазе напряжение. На векторной диаграмме это обстоятельство можно отразить как на Рис. 3.9.3б.

3.9.4. Переменный ток, текущий через цепь с емкостью, индуктивностью и активным сопротивлением

Рис.3.9. 4. Цепь с индуктивностью, емкостью и активным сопротивлением

Рассмотрим цепь, включающую в себя активное сопротивление, индуктивность и емкость (Рис.3.9.4). Подадим на эту цепь переменное напряжение с частотой ω . В цепи возникнет переменный ток с той же частотой. Он вызовет падение напряжения на активном сопротивлении U R . Фаза этого напряжения совпадает с фазой тока, поэтому вектор напряжения откладывают вдоль оси токов. Падение напряжения на индуктивности U L опережает ток по фазе на 90 0 , поэтому вектор, изображающий U L , должен быть повернут относительно оси токов на 90 0 против часовой стрелки. Наконец, падение напряжения на емкости U С отстает по фазе от тока на 90 0 и должно быть изображено вектором U С , повернутым относительно оси токов на 90 0 по часовой стрелки.

Сложив векторы, изображающие U L , U R и U С , получим вектор, изображающий приложенное напряжение U. Его длина равна U m . Этот вектор образует с осью токов угол φ, тангенс которого можно вычислить из Рис.3.9.4:

Угол φ дает разность фаз между напряжением U и силой тока i. Из Рис.3.9.4 следует также, что:

Итак, если напряжение на зажимах цепи изменяется по закону:

то в такой цепи будет течь ток:

называется полным сопротивлением цепи. При этом величина

носит наименование реактивного сопротивления . Поэтому формулу (3.9.23) можно представить в виде:

Ток отстает от напряжения (φ > 0) или опережает его (φ L и Х С .

Если , то φ > 0, и ток отстает от напряжения по фазе;

  • Если , то φ

  • , то φ = 0, и ток и напряжение изменяются синфазно.

    Для выполнения 3 условия необходимо, чтобы частота имела значение:

    Если частота внешнего напряжения имеет значение (3.9.25), полное сопротивление цепи имеет наименьшее значение, равное:

    Z = R.(3.9.26)

    Соответственно, сила тока будет иметь наибольшее значение. При этом падение напряжения на активном сопротивлении равно внешнему напряжению, приложенному к цепи:

    U = U R .(3.9.27)

    Падения напряжения на индуктивности и емкости равны по амплитуде и противоположны по фазе. Это явление называется резонансом напряжений , а частота (3.9.25) – резонансной.

    При ω = ω рез имеем для амплитуд напряжений на индуктивности и емкости :

    Если , то падения напряжения на индуктивности и емкости будут превышать напряжение, приложенное к цепи.

    Если емкость в цепи отсутствует, приложенное напряжение равно сумме напряжений на сопротивлении и индуктивности (Рис. 3.9.5):

    U = U R + U L .(3.9.29)

    Тогда из Рис. 3.9.5 следует, что:

    Эти формулы совпадут с выражениями (3.9.18) и (3.9.20) соответственно, если в последних положить , т.е. С = ± . Таким образом, отсутствие емкости в цепи означает именно условие С = ± . Действительно, постепенный переход от цепи, содержащей емкость, к цепи без емкости можно представить себе как сближение обкладок конденсатора вплоть до их полного соприкосновения. Но в этом случае расстояние между ними уменьшается, а емкость возрастает.

    3.9.5. Мощность, выделяемая в цепи переменного тока

    Рис.3.9.5. Векторная диаграмма для цепи с индуктивностью и сопротивлением

    Мгновенное значение мощности, выделяемой в цепи, равно произведению мгновенных значений напряжения и силы тока:

    P(t) = U(t)I(t) = U m cosωt·I m cos(ωt-φ).(3.9.31)

    соотношению (3.9.31) можно придать вид:

    Практический интерес представляет среднее по времени значение Р(t), которое обозначим через Р. Так как среднее значение cos(2ωt-φ ) = 0, то выполняется:

    Средняя мощность выделяется в активном сопротивлении в виде тепла. Используя векторную диаграмму Рис. 3.9.4, можно получить:

    Подставляя (3.9.34) в (3.9.33) и учитывая, что , получаем:

    Такую же мощность развивает постоянный ток, для которого сила тока равна величине:

    Величина (3.9.36) называется действующим , или эффективным , значением силы тока. Аналогично для напряжения имеем действующее значение:

    Используя (3.9.36) и (3.9.37), формулу (3.9.33) можно представить в виде:

    Входящий в (3.9.38) множитель cosφ называют коэффициентом мощности . Если реактивное сопротивление Х = 0, то, согласно (3.9.34), cosφ = 1, и P = UI (выделяется максимальная мощность). При чисто реактивном сопротивлении цепи R = 0 и cosφ = 0, поэтому средняя мощность также равна нулю. В данном случае невозможно получить выделяемую мощность, отличную от нуля. В электротехнике для сокращения потерь поэтому стремятся сделать значение cosφ как можно больше.

    3.9.6. Свободные колебания тока в электромагнитном контуре без потерь

    В цепи, содержащей параллельно соединенные индуктивность и емкость, возникают электрические колебания. Такая цепь называется колебательным контуром (Рис.3.9.6).

    Рис.3.9.6. Электромагнитные колебания в колебательном контуре

    Для того, чтобы вызвать колебания, можно присоединить отключенный от индуктивности конденсатор к источнику тока, вследствие чего на обкладках возникнут разноименные заряды величиной q m (стадия 1). Между обкладками возникнет электрическое поле, энергия которого равна . Если затем отключить источник тока и замкнуть конденсатор на индуктивность, емкость начнет разряжаться, и в контуре потечет ток. В результате энергия электрического поля начнет уменьшаться, но зато возникнет все возрастающая энергия магнитного поля, обусловленная током, текущим через индуктивность. Эта энергия равна величине .

    Так как считается, что активное сопротивление равно нулю, полная энергия не расходуется на нагревание и будет оставаться постоянной. Поэтому в момент, когда напряжение на конденсаторе и энергия электрического поля в нем равны нулю, энергия магнитного поля и величина тока достигают максимального значения (стадия 2).

    В дальнейшем ток уменьшается и, когда заряды на обкладках конденсатора достигнут первоначальной величины, сила тока становится равной нулю (стадия 3). Отметим, что знаки зарядов на обкладках конденсатора противоположны тем, что были на начальном уровне.

    Затем те же процессы протекают в обратном порядке (стадии 4 и 5), и весь цикл повторяется снова и снова. В ходе описанного процесса периодически изменяются (колеблются) заряд на обкладках, напряжение на конденсаторе, сила тока, текущего через индуктивность.

    Колебаниям в контуре можно сопоставить колебания пружинного маятника.

    Из сопоставления электрических и механических колебаний следует, что энергия электрического поля аналогична потенциальной энергии упругой деформации, а энергия магнитного поля аналогична кинетической энергии. Индуктивность L играет роль массы m, величина, обратная емкости С -1 , — роль коэффициента жесткости k. Наконец, заряду q соответствует смещение маятника х, а силе тока — скорость.

    Во время колебаний внешнее напряжение к контуру не приложено. Поэтому падения напряжения на емкости и на индуктивности в сумме должны дать нуль:

    Разделив (3.9.39) на величину L и используя выражение для тока , получим:

    Если ввести обозначение:

    то уравнение (3.9.40) принимает вид:

    Это дифференциальное уравнение 2 порядка, известное как уравнение колебаний. Его решением является функция:

    Следовательно, заряд на обкладках конденсатора изменяется по гармоническому закону с частотой, определяемой формулой (10.41). Это – собственная частота контура. Для периода колебаний из (10.41) можно получить формулу Томсона :

    3.9.7 Электромагнитные волны

    В процессах преобразования электрической энергии в энергию магнитного поля и обратно, происходящих в электромагнитном контуре, возникают электромагнитные колебания, обусловленные неразрывной связью между переменным магнитным и переменным электрическим полями. Максвелл теоретически вычислил, что такие электромагнитные колебания могут распространяться в свободном пространстве со скоростью света, приобретая при этом свойства электромагнитных волн (Рис.3.9.7).

    Рис.3.9.7. Структура электромагнитной волны

    Как видно из рисунка, векторы электрического и магнитного полей образуют с направлением распространения правовинтовую систему. В фиксированной точке пространства эти векторы изменяются со временем по гармоническому закону. Поскольку волна должна распространяться в пространстве, векторы электрического и магнитного полей должны зависеть от координаты:

    Это – уравнения плоской электромагнитной волны, где

    модуль волнового вектора, совпадающего с направлением распространения электромагнитной волны, ω и λ — циклическая частота и длина волны,

    скорость электромагнитной волны, совпадающая со скоростью света.

    Экспериментальное подтверждение теории Максвелла было сделано Г.Герцем в 1888г. Для получения волн Герц использовал изобретенный им вибратор. В колебательном контуре электрическое поле сосредоточено между обкладками конденсатора, а магнитное – внутри катушки. В окружающее пространство эти поля попасть не могут. Чтобы появилось излучение, нужно модифицировать колебательный контур, сделать его открытым. Этого можно достигнуть, увеличивая расстояние между пластинами конденсатора и между витками катушки (Рис.3.9.8). В пределе можно прийти к вибратору Герца – устройству, которое будет излучать электромагнитные волны, если через вибратор пропускать переменный электрический ток.

    Рис.3.9.8. Открытый колебательный контур

    © ФГОУ ВПО Красноярский государственный аграрный университет, 2015

    Источник