- Что такое трансформатор тока, его конструкция и принцип работы
- Конструкция и принцип действия
- Классификация
- Расшифровка маркировки
- Схемы подключения
- Технические параметры
- Коэффициент трансформации
- Класс точности
- О назначении
- Видео по теме
- Все о трансформаторах тока. Классификация, конструкция, принцип действия
- Конструкция и принцип действия трансформатора тока
- Классификация трансформаторов тока
- Трансформаторы тока разных производителей
- Трансформаторы тока ТОЛ-НТЗ-10-01
- Расположение вторичных выводов:
- Требования к надежности
- Пример условного обозначения опорного трансформатора тока с литой изоляцией
- Опорные трансформаторы тока TОП-0,66
- Проходные шинные трансформаторы тока для внутренней установки BB, BBO
- ЭЛЕКТРОлаборатория
- Добавить комментарий Отменить ответ
- Изоляция аппаратов высокого напряжения — Расчет и конструкция изоляции трансформаторов тока
- Содержание материала
- 15-1. Общие сведения
- 2. Фарфоровая изоляция трансформаторов тока
Что такое трансформатор тока, его конструкция и принцип работы
Для нормального функционирования устройств обеспечивающих релейную защиту высоковольтных ЛЭП, требуется контролировать параметры электрической линии. Снимать показания с высоковольтных проводов напрямую – опасно и не эффективно. Режим работы обычного трансформатора не позволяет контролировать изменение тока. Решает эту проблему трансформатор тока, у которого показатели вторичной цепи изменяются пропорционально величине тока первичной обмотки.
Конструкция и принцип действия
Внешний вид типичного трансформатора тока представлен на рисунке 1. Характерным признаком этих моделей является наличие у них диэлектрического корпуса. Формы корпусов могут быть разными – от прямоугольных до цилиндрических. В некоторых конструкциях отсутствуют проходные шины в центре корпуса. Вместо них проделано отверстие для обхвата провода, который выполняет функции первичной обмотки.
Рис. 1. Трансформатор тока
Материалы диэлектриков выбирают в зависимости от величины напряжений, для которых предназначено устройство и от условий его эксплуатации. Для обслуживания промышленных энергетических систем изготавливают мощные ТТ с керамическими корпусами цилиндрической формы (см. рис. 2).
Рис. 2. Промышленный керамический трансформатор тока
Особенностью трансформатора является обязательное наличие нагрузочного элемента (сопротивления) во вторичной обмотке (см. рис. 3). Резистор необходим для того, чтобы не допускать работы в режиме без вторичных нагрузок. Функционирование трансформатор тока с ненагруженными вторичными обмотками недопустимо из-за сильного нагревания (вплоть до разрушения) магнитопровода.
Рис. 3. Принципиальная схема трансформатора тока
В отличие от трансформаторов напряжения, ТТ оснащены только одним витком первичной обмотки (см. рис. 4). Этим витком часто является шина, проходящая сквозь кольцо сердечника с намотанными на него вторичными обмотками (см. рис. 5).
Рис. 4. Схематическое изображение ТТ
Рис. 5. Устройство ТТ
Иногда в роли первичной обмотки выступает проводник электрической цепи. Для этого конструкция сердечника позволяет применить шарнирное соединение частей трансформатора для обхвата провода (см. рис. 6).
Рис. 6. ТТ с разъемным корпусом
Сердечники трансформаторов выполняются способом шихтования кремнистой стали. В моделях высокого класса точности сердечники изготовляют из материалов на основе нанокристаллических сплавов.
Принцип действия.
Основная задача токовых трансформаторов понизить (повысить) значение тока до приемлемой величины. Принцип действия основан на свойствах трансформации переменного электрического тока. Возникающий переменный магнитный поток улавливается магнитопроводом, перпендикулярным направлению первичного тока. Этот поток создается переменным током первичной катушки и наводит ЭДС во вторичной обмотке. После подключения нагрузки начинает протекать электрический ток по вторичной цепи.
Зависимости между обмотками и токами выражены формулой: k = W2 / W1 = I1 / I2 .
Поскольку ток во вторичной катушке обратно пропорционален количеству витков в ней, то путем увеличения (уменьшения) коэффициента трансформации, зависящего от соотношения числа витков в обмотках, можно добиться нужного значения выходного тока.
На практике, чаще всего, эту величину устанавливают подбором количества витков во вторичной обмотке, делая первичную обмотку одновитковой.
Линейная зависимость выходного тока (при номинальной мощности) позволяет определять параметры величин в первичной цепи. Численно эта величина во вторичной катушке равна произведению реального значения тока на номинальный коэффициент трансформации.
В идеале I1 = kI2 = I2W2/W1. С учетом того, что W1 = 1 (один виток) I1 = I2W2 = kI2. Эти несложные вычисления можно заложить в программу электронного измерителя.
Рис. 7. Принцип действия трансформатора тока
На рисунке 7 не показан нагрузочный резистор. При измерениях необходимо учитывать и его влияние. Все допустимые погрешности в измерениях отображает класс точности ТТ.
Классификация
Семейство трансформаторов тока классифицируют по нескольким признакам.
- По назначению:
- защитные;
- линейки измерительных трансформаторов тока;
- промежуточные (используются для выравнивания токов в системах дифференциальных защит);
- лабораторные.
- По способу монтажа:
- наружные (см. рис. 8), применяются в ОРУ;
- внутренние (размещаются в ЗРУ);
- встраиваемые;
- накладные (часто совмещаются с проходными изоляторами);
- переносные.
Рис. 8. Пример наружного использования ТТ
- Классификация по типу первичной обмотки:
- многовитковые, к которым принадлежат катушечные конструкции, и трансформаторы, с обмотками в виде петель;
- одновитковые;
- шинные.
- По величине номинальных напряжений:
- До 1 кВ;
- Свыше 1 кВ.
Трансформаторы тока можно классифицировать и по другим признакам, например, по типу изоляции или по количеству ступеней трансформации.
Расшифровка маркировки
Каждому типу трансформаторов присваиваются буквенно-цифровые символы, по которым можно определить его основные параметры:
- Т — трансформатор тока;
- П — буква указывающая на то, что перед нами проходной трансформатор. Отсутствие буквы П указывает, что устройство принадлежит к классу опорных ТТ;
- В — указывает на то, что трансформатор встроен в конструкцию масляного выключателя или в механизм другого устройства;
- ВТ — встроенный в конструкцию силового трансформатора;
- Л— со смоляной (литой) изоляцией;
- ФЗ — устройство в фарфоровом корпусе. Звеньевой тип первичной обмотки;
- Ф — с надежной фарфоровой изоляцией;
- Ш — шинный;
- О — одновитковый;
- М — малогабаритный;
- К — катушечный;
- 3 — применяется для защиты от последствий замыкания на землю;
- У — усиленный;
- Н — для наружного монтажа;
- Р — с сердечником, предназначенным для релейной защиты;
- Д — со вторичной катушкой, предназначенной для питания электричеством дифференциальных устройств защиты;
- М — маслонаполненный. Применяется для наружной установки.
- Номинальное напряжение (в кВ) указывается после буквенных символов (первая цифра).
- Числами через дробь обозначаются классы точности сердечников. Некоторые производители вместо цифр проставляют буквы Р или Д.
- следующие две цифры «через дробь» указывают на параметры первичного и вторичного токов;
- после позиции дробных символов — код варианта конструкционного исполнения;
- буквы, расположенные после кода конструкционного варианта, обозначают тип климатического исполнения;
- цифра на последней позиции — категория размещения.
Схемы подключения
Первичные катушки трансформаторов тока включаются в цепь последовательно. Вторичные катушки предназначены для подключения измерительных приборов или используются системами релейной защиты.
Во вторичную цепь включаются выводы измерительных приборов и устройства релейной защиты. С целью обеспечения безопасности, сердечник магнитопровода и один из зажимов вторичной катушки должны заземляться.
При подключении трехфазных счетчиков, в сетях с изолированной нейтралью обмотки трансформатора соединяются по схеме «Неполная звезда». При наличии нулевого провода применяется схема полной звезды.
Выводы трансформаторов маркируются. Для первичной обмотки применяются обозначения Л1 и Л2, а для вторичной – И1 и И2. При подключении измерительных приборов следует соблюдать полярность обмоток.
Схема «неполная звезда» применяется для двухфазного соединения.
В дифференциальных защитах, используемых в силовых трансформаторах, обмотки включаются треугольником.
Основные схемы подключения:
Основные схемы подключения
- В сетях с глухозаземленной нейтралью ТТ подключается к каждой фазе. Соединение обмоток трансформатора – полная звезда.
- Подключение по схеме неполной звезды. Применяется в сетях с изолированными нулевыми точками.
- Схема восьмерки. Симметрично распределяет нагрузки при трехфазном КЗ.
- Соединение ТТ в фильтр токов нулевой последовательности. Применяется для защиты номинальной нагрузки от коротких замыканиях на землю.
Технические параметры
Очень важной характеристикой трансформатора тока является класс точности. Этот параметр характеризует погрешность измерения, то есть показывает, на сколько номинальный (идеальный) коэффициент трансформации отличается от реального.
Коэффициент трансформации
Так как в реальном коэффициенте трансформации присутствует синфазная и квадратурная составляющая, то значения коэффициента всегда отличаются от номинального. Разницу (погрешность) необходимо учитывать при измерениях. На результаты измерений влияют также угловые погрешности.
У всех ТТ погрешность отрицательна, так как у них всегда присутствуют потери от намагничивания и нагревания токовых катушек. С целью устранения отрицательного знака погрешности, для смещения параметров трансформации в положительную сторону, применяют витковую коррекцию. Поэтому в откорректированных устройствах привычная формула для вычислений не работает. Поэтому коэффициенты трансформации в таких аппаратах производители определяют опытным путем и указывают их в техпаспорте.
Класс точности
Токовые погрешности искажают точность измерения электрического тока. Поэтому для измерительных трансформаторов высокие требования к классу точности:
- 0,1;
- 0,5;
- 1;
- 3;
- 10P.
Трансформатор может находиться в пределах заявленного класса точности, только если сопротивление максимальной нагрузки не превышает номинального, а ток в первичной цепи не выходит за пределы 0,05 – 1,2 величины номинального тока трансформатора.
О назначении
Основная сфера применения трансформаторов – защита измерительного и другого оборудования от разрушительного действия предельно высоких токов. ТТ применяются для подключения электрического счетчика, изоляции реле от воздействия мощных токовых нагрузок.
Видео по теме
Источник
Все о трансформаторах тока. Классификация, конструкция, принцип действия
Трансформаторами тока (ТТ) принято называть электротехнические устройства, предназначенные для трансформирования величин токов (с больших на меньшие) до требуемых значений, с целью подключения приборов измерения, устройств РЗиА. Трансформаторы тока получили широкое применение в энергетике и являются составным элементом любой электростанции или подстанции.
Установка в силовых электроустановках трансформаторов низкой мощности позволяет также обезопасить производство работ, поскольку их использование разделяет цепи высокого / низкого напряжения, упрощает конструктивное исполнение дорогостоящих измерительных приборов, реле.
- Конструкция и принцип действия трансформатора тока
- Классификация трансформаторов тока
- Трансформаторы тока разных производителей
- Трансформаторы тока ТОЛ-НТЗ-10-01
- Расположение вторичных выводов:
- Требования к надежности
- Пример условного обозначения опорного трансформатора тока с литой изоляцией
- Опорные трансформаторы тока TОП-0,66
- Проходные шинные трансформаторы тока для внутренней установки BB, BBO
Конструкция и принцип действия трансформатора тока
Трансформаторы тока конструктивно состоят из:
- замкнутого магнитопровода;
- 2-х обмоток (первичной, вторичной).
Поскольку сопротивление измерительных устройств незначительно, то принято считать, что все трансформаторы тока работают в режиме близком к КЗ.
Это означает, что геометрическая сумма магнитных потоков равна разности потоков, генерируемых обеими обмотками.
Традиционно трансформаторы тока выпускают с несколькими группами вторичных обмоток, одна из которых предназначена для подключения аппаратов защиты, другие – для включения приборов контроля, диагностики и учета.
К этим обмоткам в обязательном порядке должна быть подключена нагрузка.
Ее сопротивление строго регламентируется, так как даже незначительное отклонение от нормируемой величины может привести к увеличению погрешности и как следствие снижению качества измерения, неселективной работе РЗ.
Интересное видео о трансформаторах тока смотрите ниже:
Погрешность ТТ определяется в зависимости от:
- сечения магнитопровода;
- проницаемости используемого для производства магнитопровода материала;
- величины магнитного пути.
Значительное возрастание сопротивления нагрузки во вторичной цепи генерирует повышенное напряжение во вторичной цепи, что приводит к пробою изоляции и, как следствие, выходу из строй трансформатора.
Предельное значение сопротивление нагрузки указывается в справочных материалах.
Классификация трансформаторов тока
Трансформаторы тока принято классифицировать по следующим признакам:
- В зависимости от назначения их разделяют на:
- защитные;
- измерительные;
- промежуточные, используемые для подключения устройств измерения в токовые цепи, выравнивания токов в системах диф. защит и т. п.);
- лабораторные.
- По типу установки разделяют устройства:
- наружной установки (размещаемые в ОРУ);
- внутренней установки (размещаемые в ЗРУ);
- встроенные в электрические машины, коммутационные аппараты: генераторы, трансформаторы, аппараты и пр.;
- накладные — устанавливаемые сверху на проходные изоляторы;
- переносные (для лабораторных испытаний и диагностических измерений).
- Исходя из конструктивного исполнения первичной обмотки ТТ разделяют на:
- многовитковые (катушечные, с обмоткой в виде петли или восьмерки);
- одновитковые;
- шинные.
- По способу исполнения изоляции ТТ разбивают на устройства:
- с сухой изоляцией (из фарфора, литой изоляции из эпоксида, бекелита и т. п.);
- с бумажно-масляной либо конденсаторной бумажно-масляной изоляцией;
- имеющие заливку из компаунда.
- По количеству ступеней трансформации ТТ бывают:
- одноступенчатые;
- двухступенчатые (каскадные).
- Исходя из номинального напряжения различают:
- ТТ с номинальным напряжением — выше 1 кВ;
- ТТ с напряжением – до 1 кВ.
Ещё одно интересное видео о схемах включения трансформаторов тока:
Трансформаторы тока разных производителей
Рассмотрим несколько трансформаторов тока разных производителей:
Трансформаторы тока ТОЛ-НТЗ-10-01
Производитель ООО «Невский трансформаторный завод «Волхов», предназначены для передачи сигнала измерительной информации измерительным приборам и устройствам защиты и управления, для изолирования цепей вторичных соединений от высокого напряжения в комплектных устройствах внутренней и наружной установки (КРУ, КРУН, КСО) переменного тока на класс напряжения до 10 кВ и являются комплектующими изделиями.
Трансформаторы изготавливаются в виде опорной конструкции, в климатических исполнениях «УХЛ» и «Т», категории размещения «2» по ГОСТ 15150-69.
Рабочее положение трансформатора в пространстве – любое.
Трансформаторы работают в электроустановках, подвергающихся воздействию грозовых перенапряжений и имеют:
- класс нагревостойкости «В» по ГОСТ 8865-93;
- уровень изоляции «а» и «б» по ГОСТ 1516.3-96.
Варианты исполнения трансформатора: «Б» — оснащён изолирующими барьерами.
Расположение вторичных выводов:
- «А» — параллельно установочной поверхности;
- «В» — перпендикулярно установочной поверхности;
- «С» — из гибкого провода, параллельно установочной поверхности;
- «D» — из гибкого провода, перпендикулярно установочной поверхности.
Требования к надежности
Для трансформаторов установлены следующие показатели надежности:
- средняя наработка до отказа – 2´105 ч.;
- полный срок службы – 30 лет.
Пример условного обозначения опорного трансформатора тока с литой изоляцией
ТОЛ-НТЗ-10-01АБ-0,5SFs5/10Р10–5/15-300/5 31,5 кА УХЛ2
- 10 — номинальное напряжение;
- «0» — конструктивный вариант исполнения;
- «1» — исполнение по длине корпуса;
- «А» — вторичные выводы расположенные параллельно установочной поверхности;
- «Б» — изолирующие барьеры;
- 0,5S — класс точности измерительной вторичной обмотки;
- (Fs)5 — коэффициент безопасности приборов вторичной обмотки для измерения;
- 10Р — класс точности защитной вторичной обмотки;
- 10 — номинальная предельная кратность вторичной обмотки для защиты;
- 5 — номинальная вторичная нагрузка обмотки для измерения;
- 15 — номинальная вторичная нагрузка обмотки для защиты;
- 300 — номинальный первичный ток;
- 5 — номинальный вторичный ток;
- 31,5 — односекундный ток термической стойкости;
- «УХЛ» — климатическое исполнение;
- 2 – категория размещения ГОСТ 15150-69 при его заказе и в документации другого изделия.
Опорные трансформаторы тока TОП-0,66
Трансформаторы предназначены для передачи сигнала измерительной информации измерительным приборам в установках переменного тока частоты 50 или 60 Гц с номинальным напряжением до 0,66 кВ включительно. Испытательное одноминутное напряжение промышленной частоты — 3 кВ.
Трансформаторы класса точности 0,2; 0,5; 0,2S и 0,5S применяются в схемах учета для расчета с потребителями, класса точности 1,0 — в схемах измерения.
Корпус трансформаторов выполнен из самозатухающих трудногорючих материалов. Трансформаторы изготавливаются в исполнении «У» или «Т» категории 3 по ГОСТ 15150, предназначены для работы в следующих условиях:
- высота над уровнем моря не более 1000 м;
- температура окружающей среды: при эксплуатации — от минус 45°С до плюс 50°С, при транспортировании и хранении — от минус 50°С до плюс 50°С;
- окружающая среда невзрывоопасная, не содержащая пыли, химически активных газов и паров в концентрациях, разрушающих покрытия металлов и изоляцию;
- рабочее положение — любое.
Первичная шина трансформаторов ТОП-0,66 и ТШП-0,66 медная, покрытая оловом. Трансформаторы ТШП-0,66 могут комплектоваться медными шинами, покрытыми оловом.
Проходные шинные трансформаторы тока для внутренней установки BB, BBO
Изготовитель — Фирма ООО «ABB»
Проходные шинные трансформаторы тока BB и BBO изготовлены в корпусе из эпоксидного компаунда и предназначены для установки в РУ напряжением до 24 кВ (25 кВ).
Трансформатор тока без первичного проводника, но с собственной первичной изоляцией может использоваться в качестве втулки.
Трансформаторы спроектированы и изготовлены согласно следующим стандартам:
- МЭК, VDE, ANSI, BS, ГОСТ и CSN.
- Максимальное напряжение — 3.6 кВ — 25 кВ
- Первичный ток — 600 A – 5000 A
- Сухой трансформатор с изоляцией из эпоксидного компаунда для внутренней установки
- Предназначены для измерения и защиты, могут иметь до трех вторичных обмоток
- Исполнения с возможностью переключения коэффициента трансформации на стороне первичной или вторичной обмоток.
Источник
ЭЛЕКТРОлаборатория
Доброе время суток, дорогие друзья!
Вот и пришел новый 2015 год. Надеюсь, что этот год будет не хуже предыдущего. В общем, с Новым Годом, друзья!
Хочу начать год со статьи о трансформаторах тока. Конечно, мой рассказ будет скорее общим, чем научным.
Для досконального изучения вопроса предлагаю воспользоваться технической литературой или хотя бы ИНСТРУКЦИУЙ ПО ПРОВЕРКЕ ТРАНСФОРМАТОРОВ ТОКА, ИСПОЛЬЗУЕМЫХ В СХЕМАХ РЕЛЕЙНОЙ ЗАЩИТЫ И ИЗМЕРЕНИЯ (РД 153-34.0-35.301-2002).
Итак, приступим.
Простейший и самый распространенный трансформатор тока (ТТ) — двухобмоточный. Он имеет одну первичную обмотку с числом витков w1 и одну вторичную обмотку с числом витков w2. Обмотки находятся на общем магнитопроводе, благодаря которому между ними существует хорошая электромагнитная (индуктивная) связь.
Первичная обмотка, изолированная от вторичной обмотки на полное рабочее напряжение аппарата, включается последовательно в рассечку цепи контролируемого первичного тока, а вторичная обмотка замыкается на нагрузку (измерительные приборы и реле), обеспечивая в ней протекание вторичного тока, практически пропорционального переменному первичному току. Чем меньше полное сопротивление нагрузки zн и полное сопротивление вторичной обмотки zT2, тем точнее соблюдается пропорциональность между первичным и вторичным токами, т.е. тем меньше погрешности ТТ. Идеальный режим работы ТТ — это режим КЗ вторичной обмотки. Один вывод вторичной обмотки обычно заземляется, поэтому он имеет потенциал, близкий к потенциалу контура заземления электроустановки.
Вот внешний вид ТТ до 1000 В:
А вот внешний вид ТТ выше 1000 В:
Трансформаторы тока для защиты предназначены для передачи измерительной информации о первичных токах в устройства защиты и автоматики. При этом они обеспечивают:
1) масштабное преобразование переменного тока различной силы в переменный вторичный ток приемлемой силы (чаще всего это 1 или 5А) для питания устройств релейной защиты;
2) изолирование вторичных цепей и реле, к которым имеет доступ обслуживающий персонал, от цепей высокого напряжения. Аналогичные функции выполняют и ТТ для измерений, предназначенные для передачи информации измерительным приборам.
Между ТТ для защиты и для измерений нет принципиальной разницы. Существующие различия заключаются в неодинаковых требованиях к точности и к диапазонам первичного тока, в которых погрешности ТТ не должны превышать допустимых значений. К ТТ для измерений предъявляется требование ограничения сверху действующего значения вторичного тока при протекании тока КЗ по первичной обмотке, для них устанавливается номинальный коэффициент безопасности приборов. Это требование не предъявляется к ТТ для защиты, которые должны обеспечивать необходимую точность трансформации тока и при КЗ. Номинальный коэффициент безопасности фактически является верхним пределом для номинальной предельной кратности ТТ для измерений. Поэтому в стандартах некоторых стран (например, в германских правилах VDE 0414 «Regeln für Meßwandler») для всех ТТ нормируется номинальная предельная кратность (Nenn Überstromziffer «n»), причем ее ограничение для измерительных ТТ задается в форме n … .
При анализе явлений в ТТ необходимо учитывать положительные направления первичного и вторичного токов в соответствующих обмотках, а также ЭДС, индуктируемой во вторичной обмотке, от которых зависят знаки (плюс или минус) в формулах и углы векторов на векторных диаграммах.
В технике релейной защиты приняты положительные направления для токов и ЭДС, показанные на рисунке 1. Звездочками отмечены однополярные зажимы обмоток, например их начала, которые по ГОСТ обозначаются символами Л1 у первичной обмотки и И1 у вторичной обмотки.
а, б — схемы условных обозначении; в — схема замещения
Рисунок 1 — Схемы ТТ
Приняты положительными: направление для первичного тока от начала к концу первичной обмотки и направление для вторичного тока от начала вторичной обмотки (по внешней цепи нагрузки) к концу вторичной обмотки, соответственно этому внутри вторичной обмотки — направление вторичного тока и вторичной ЭДС (от конца к началу обмотки).
При указанных положительных направлениях векторы первичного и вторичного токов совпадают по фазе при отсутствии угловой погрешности, а мгновенная вторичная ЭДС равна взятой со знаком «плюс» первой производной по времени от потокосцепления вторичной обмотки.
По причине существенной нелинейности характеристики намагничивания ферромагнитного магнитопровода к анализу явлений в ТТ неприменим принцип наложения (суперпозиции). Даже при номинальном первичном токе и номинальной нагрузке индукция в магнитопроводе не равна разности индукций, которые были бы созданы отдельно взятыми первичным и вторичным токами. Результирующий магнитный поток в магнитопроводе ТТ определяется только совместным одновременным действием первичного и вторичного токов и даже гипотетически не может корректно рассматриваться как разность потоков, раздельно созданных первичным и вторичным токами.
Классификация ТТ
По ГОСТ 7746-89 ТТ подразделяются по следующим основным признакам:
— по роду установки:
для работы на открытом воздухе (категория размещения 1 по ГОСТ 15150-69 [22]);
для работы в закрытых помещениях (категории размещения 3 и 4 по ГОСТ 15150-69);
для работы в подземных установках (категория размещения 5 по ГОСТ 15150-69);
для работы внутри оболочек электрооборудования
— по принципу конструкции: опорные (О), проходные (П), шинные (Ш), встроенные (В), разъемные (Р). Допускается по ГОСТ 7746-89 [14] сочетание нескольких перечисленных принципов, а также конструктивное исполнение, не подпадающее под перечисленные признаки;
— по виду изоляции: с литой изоляцией (Л), с фарфоровой покрышкой (Ф), с твердой изоляцией (кроме фарфоровой и литой) (Т), маслонаполненные (М), газонаполненные (Г);
— по числу ступеней трансформации: одноступенчатые и каскадные;
— по числу магнитопроводов со вторичными обмотками, называемых кернами, объединенных общей первичной обмоткой: с одним керном, с несколькими кернами;
— по назначению кернов: для измерения, для защиты, для измерения и защиты, для работы с нормированной точностью в переходных режимах;
— по числу коэффициентов трансформации: с одним коэффициентом трансформации; с несколькими коэффициентами трансформации, получаемыми путем изменения числа витков первичной или(и) вторичной обмоток, а также путем применения вторичных обмоток с отпайками.
Структура условного обозначения ТТ по ГОСТ 7746-89
В стандартах на трансформаторы отдельных видов ГОСТ 7746-89 [14] допускает ввод в буквенную часть обозначения дополнительных букв. Допускается исключение или замена отдельных букв, кроме Т, для обозначения особенностей конкретного ТТ.
Основные (номинальные) параметры ТТ
По ГОСТ 7746-89 к номинальным параметрам ТТ относятся:
— номинальное напряжение ТТ Uном — номинальное напряжение цепей, для которых предназначен данный аппарат. Встроенные ТТ не имеют паспортного параметра номинального напряжения;
— номинальный первичный ток ТТ I1ном;
— номинальный вторичный ток ТТ I2ном;
— номинальный коэффициент трансформации ТТ (коэффициент трансформации – отношение первичного номинального тока ко вторичному. Обычно записывается, например, 150/5 и тогда равен 30, т.е. при любом первичном токе вторичный будет в тридцать раз меньше);
— номинальная вторичная нагрузка с номинальным коэффициентом мощности cosj (1 или 0,8 индуктивный). Обозначается zн. ном (сопротивление нагрузки) или Sн. ном (номинальная мощность нагрузки);
— номинальный класс точности ТТ (керна для ТТ с несколькими кернами) (обычно для измерений класс точности не хуже 0,5, а для систем РЗиА не хуже 10);
— номинальная предельная кратность ТТ, обслуживающего релейную защиту — К10ном, К5ном;
— номинальный коэффициент безопасности для приборов — Кd ном;
— номинальная частота ТТ — fном.
Испытания измерительных трансформаторов тока.
Объектом испытания в измерительных трансформаторах тока и напряжения являются, прежде всего, изоляция трансформаторов, обмотки трансформаторов как первичная, так и вторичная, а также трансформаторное железо сердечника.
Трансформаторы тока изготавливаются со следующим исполнением внутренней изоляции:
· Бумажно-бакелитовая (трансформаторы серии ТП 6-35кВ); керамическая (трансформаторы тока 6-10кВ типов ТПОФ, ТПФ и др).
· Литая эпоксидная (трансформаторы тока типов ТПОЛ, ТПШЛ, ТШЛ и др. 6-35кВ).
Объём испытаний трансформаторов тока:
1) измерение сопротивления изоляции первичной и вторичной (вторичных) обмоток (К, М)
2) испытание повышенным напряжением изоляции обмоток (М)
3) снятие характеристик намагничивания трансформаторов (К)
4) измерение коэффициента трансформации (К).
Примечание : К – капитальный ремонт, испытание при приёмке в эксплуатацию; М – межремонтные испытания
Сопротивление изоляции.
В процессе эксплуатации измерения проводятся:
на трансформаторах тока 3-35кВ – при ремонтных работах в ячейках (присоединениях), где они установлены.
Измеренные значения сопротивления изоляции должны быть не менее значений, приведённых в таблице 1.
для трансформаторов напряжения 3-35кВ – при проведении ремонтных работ в ячейках, где они установлены, если работы не проводятся – не реже 1 раза в 4 года.
Испытание повышенным напряжением.
Значения испытательного напряжения основной изоляции трансформаторов тока и напряжения приведены в таблице 2. Длительность испытания трансформаторов тока и напряжения с фарфоровой изоляцией – 1 минута, с органической изоляцией – 5 минут.
Допускается проведение испытаний трансформаторов тока совместно с ошиновкой. При совместном испытании измерительных трансформаторов с элементами ошиновки или другими аппаратами, продолжительность испытания принимается равной времени испытания для тех элементов сети, к которым подключены трансформаторы. Например, при испытании трансформаторов тока установленных в ячейке КРУ продолжительность испытания устанавливается равной 1 минуте (изоляторы ошиновки ячейки – фарфоровые).
Значение испытательного напряжения для изоляции вторичных обмоток, вместе с присоединёнными к ним цепями, принимается равным 1кВ.
Продолжительность приложения испытательного напряжения – 1 минута.
Измерение сопротивления обмоток постоянному току.
Отклонение измеренного сопротивления обмотки постоянному току от паспортных значений, или от измеренных на других фазах не должно превышать 2%. При сравнении измеренных значений с паспортными данными измеренные значения сопротивления должны приводиться к заводской температуре. При сравнении с другими фазами измерения должны производиться при одинаковой температуре.
Измерения сопротивления обмоток постоянному току производятся у трансформаторов тока на напряжение 110кВ и выше и у связующих обмоток каскадных трансформаторов напряжения.
В качестве дополнительных измерений при комплексных испытаниях данный вид измерения может использоваться и для трансформаторов тока и напряжения всех типономиналов.
Измерение коэффициента трансформации.
Отклонение измеренного коэффициента трансформации от указанного в паспорте или от измеренного на исправном трансформаторе тока или напряжения, однотипном с проверяемыми, не должно превышать 2%.
Для проверки коэффициента трансформации трансформаторов тока собирают схему, представленную на рисунке 8. У встроенных трансформаторов тока коэффициент трансформации проверяется только на рабочих ответвлениях — остальные части обмоток не проверяются.
Ток в первичной цепи трансформатора пропорционален току во вторичной цепи. Коэффициент пропорциональности токов и будет искомым коэффициентом трансформации.
Разделительный трансформатор создаёт на своей вторичной обмотке напряжение порядка 5В и ток прядка 1000А (в зависимости от испытуемого трансформатора тока).
Снятие характеристик намагничивания трансформаторов тока.
Характеристика снимается методом повышения напряжения на вторичных обмотках до начала насыщения (но не выше 1800В), с одновременным измерением тока в испытуемой обмотке с помощью амперметра.
При наличии у обмоток ответвлений характеристика снимается на рабочем ответвлении, при этом на нерабочих ответвлениях замеры не производятся.
Снятая характеристика сопоставляется с типовой характеристикой намагничивания или с характеристиками намагничивания исправных трансформаторов тока, однотипных с проверяемыми.
Отличия от значений, измеренных на заводе-изготовителе или от измеренных на исправном трансформаторе тока, однотипном с проверяемыми, не должны превышать 10%.
Характеристики намагничивания снимаются для проверки исправности трансформаторов тока. При этом убеждаются в том, что нет накоротко замкнутых витков и повреждения сердечника, оцениваются возможности использования трансформатора в схеме релейной защиты в конкретных условиях.
Характеристика намагничивания представляет собой зависимость подводимого ко вторичной обмотке напряжения от тока в этой обмотке. Схема для снятия характеристики намагничивания представлена на рисунке 7.
Характеристику намагничивания снимают до номинального тока трансформатора (тока вторичной обмотки), в тех случаях, если это требуется (для особо ответственных трансформаторов) характеристику снимают до начала насыщения трансформатора тока (для 5-амперных трансформаторов – до достижения тока 10А).
Если при снятии характеристики необходимо напряжение выше 250В используют повышающие трансформаторы с более высоким напряжением.
Вольт-амперная характеристика является основной при оценке исправности ТТ. Используются такие характеристики и для определения погрешностей ТТ.
Наиболее распространенная неисправность ТТ — витковое замыкание — выявляется по резкому снижению ВАХ и изменению ее крутизны. Снятая характеристика сопоставляется с типовой характеристикой намагничивания или с характеристиками намагничивания исправных ТТ, однотипных с проверяемым, чаще всего с характеристиками ТТ других фаз того же присоединения. Для такого сравнения достаточно совпадения характеристик с точностью в пределах их заводского разброса.
а — ТТ ТВ-35, 300/5 А; б — ТТ ТВД-500, 2000/1;
1 — исправный трансформатор тока; 2 — закорочен один виток;
3 — закорочены два витка; 4 — закорочены восемь витков
Рисунок. Вольт-амперные характеристики при витковых замыканиях во вторичной обмотке
На этом у меня на сегодня все.
Будут вопросы, постараюсь на них ответить.
Добавить комментарий Отменить ответ
Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.
Источник
Изоляция аппаратов высокого напряжения — Расчет и конструкция изоляции трансформаторов тока
Содержание материала
- Изоляция аппаратов высокого напряжения
- Требования к изоляции аппаратов
- Требования ГОСТ к изоляции
- Воздух, плотность и влажность
- Пробивное напряжение воздуха
- Прочность сжатого воздуха
- Координация изоляции при 50Гц
- Защита краев обкладок
- Корона
- Скользящие разряды
- Применение защитной арматуры
- Мокроразрядное напряжение
- Влияние конструкции
- Опытные данные о мокроразрядном
- Мoкрoразрядное напряжение ПТ
- Влияние проводящих осадков
- Повышение мокроразрядного загрязнения
- Применение полупроводящей глазури
- Конструкция опорных изоляторов
- Опорные изоляторы внутренней
- Опорные изоляторы наружной
- Специальные опорные изоляторы
- Покрышки, опорные колонны
- Изоляционные колонны выключателей
- Изоляционные воздуховоды
- Отпотевание изоляторов
- Тяги и валы
- Оперативные штанги, рычаги
- Трубки
- Проходные изоляторы
- Фарфоровые проходные наружной
- Аппаратные проходные изoлятoры
- Маслобарьерные вводы
- Бакелитовые вводы
- Вводы с бумажно-масляной
- Детали изоляторов
- Механическое крепление арматуры
- Крепления покрышек, колонн
- Уплотнения и прокладки
- Мacлopacшиpители
- Маслоуказатели
- Выводы измерения нaпpяжения
- Роль масла в выключателях
- Обшивка масляных выключателей
- Изоляция дугогасительных
- Расчет внутренних изоляционных
- Изоляция ТТ
- ТТ наружной с бумажно-масляной
- ТТ наружной с конденсаторной
- Расчет изоляции ТН
- Витковая изоляция ТН
- Главная изоляция ТН
- Изоляция реакторов
- Литая изоляция
- Эпоксидная изоляция
- Технология эпоксидной изоляции
- ТН и ТТ с литой
РАСЧЕТ И КОНСТРУКЦИЯ ИЗОЛЯЦИИ ТРАНСФОРМАТОРОВ ТОКА
15-1. Общие сведения
В изоляции трансформаторов тока различают:
А. Главную изоляцию — между первичной обмоткой и вторичной, а также между первичной обмоткой и землей.
Б. Междувитковую изоляцию как в первичной, так и во вторичной обмотках.
Для трансформаторов тока наружной установки, кроме того, различают:
а) внешнюю изоляцию, которая обычно представляет собою полый фарфоровый изолятор (покрышку), вмещающий обмотки трансформаторов тока;
б) внутреннюю изоляцию, т. е. изоляцию обмоток; она не подвержена атмосферным воздействиям, поскольку защищена внешней изоляцией.
Внешняя изоляция определяется требованиями к сухо- и мокроразрядному напряжениям трансформатора тока. Внутренняя изоляция его первичной обмотки должна иметь запас прочности по отношению к сухоразрядному напряжению, указанный в гл. I.
Требования к изоляции вторичных обмоток трансформаторов тока обычно сводятся к тому, что они должны выдерживать испытательное напряжение относительно земли (2 кВ, а для шинных трансформаторов тока на 0,5 кВ, у которых сердечник имеет потенциал шины, — 3 кВ; см. ГОСТ 1516-60 и ГОСТ 7746-55) и не должны иметь витковых замыканий.
В ряде конструкций трансформаторов тока на зажимах вторичной обмотки может появиться повышенное напряжение, опасное для обслуживающего персонала и для прочности изоляции обмотки (когда по первичной обмотке аппарата проходит ток, а вторичная обмотка по каким-либо причинам оказалась разомкнутой). Это напряжение достигает подчас нескольких киловольт.
В стандартах некоторых стран выдвигается требование, чтобы вторичные обмотки трансформаторов тока выдерживали режим холостого хода, т. е. собственное напряжение на разомкнутых концах, когда первичная обмотка находится под током. При этом иногда оговаривается допустимое время нахождения трансформатора тока в таком режиме.
Напряжение на зажимах первичной обмотки в рабочем режиме очень мало и может быть подсчитано по формуле: (15-1)
где L1— индуктивность первичной обмотки.
Данные об этой индуктивности для некоторых трансформаторов тока приведены в табл. 15-1 [Л. 15-1].
Таблица 15-1
Индуктивности первичных обмоток некоторых типов трансформаторов тока
При падении на первичную обмотку трансформатора тока импульсной волны междувитковая изоляция обмотки подвергается воздействию значительных напряжений.
Для защиты от таких воздействий применялись шунтирующие нелинейные сопротивления (разрядники).
Однако сейчас от них отказались. Опыт эксплуатации показывает что случаи междувитковых замыканий в трансформаторах тока наблюдаются исключительно редко.
2. Фарфоровая изоляция трансформаторов тока
До последнего времени в качестве главной изоляции трансформаторов тока на относительно низкие и средние напряжения особенно широко применялась фарфоровая изоляция.
Можно было бы отметить, что по данным ОРГРЭС трансформаторы тока на напряжение 3—10 кВ составляют 92,5% всего количества трансформаторов тока на все напряжения [Л. 15-2]. Именно для трансформаторов тока на эти напряжения и используется в основном фарфоровая изоляция.
Широко распространенным типом трансформаторов тока (особенно для промышленной энергетики) являются катушечные трансформаторы тока. Один из выпускаемых нашей промышленностью катушечных трансформаторов тока (тип ТКФ) показан на рис. 15-1.
Рис. 15-1. Катушечный трансформатор тока типа ТКФ.
1 — первичная обмотка; 2 — фарфоровой изолятор; 3 — вторичная обмотка; 4 — сердечник; 5 — шайба с вырезом.
Выгодной особенностью катушечных трансформаторов тока, обеспечивающей их дешевизну, является то обстоятельство, что намотка как первичной, так и вторичной обмотки может быть механизирована.
Электрическая прочность данной изоляционной конструкции невелика. Это обусловлено весьма сжатыми габаритами, малыми расстояниями между первичной обмоткой и внутренней поверхностью окна сердечника, а также наличием в электрическом поле узких воздушных зазоров, включенных последовательно с фарфоровой изоляцией.
Прочность промежутка между первичной обмоткой и внутренней поверхностью окна сердечника может быть рассчитана так же, как для промежутка «острие — плоскость».
Электрическую прочность воздушных зазоров между обмоткой и фарфором, а также между фарфором и боковой внутренней поверхностью окна сердечника, можно рассчитать по формуле для плоского диэлектрика.
Указанные особенности катушечных трансформаторов тока приводят к тому, что они применяются при относительно низких напряжениях (500 3000 в).
С целью увеличения электрической прочности катушечных трансформаторов тока в зазор между катушкой и внутренней поверхностью окна сердечника вкладывается П-образный изоляционный барьер.
Соединение барьера с телом фарфоровой изоляции привело к тому, что появился новый тип изоляции трансформаторов тока — фарфоровый изолятор со взаимно перпендикулярными каналами (тип ТФФ, рис. 15-2).
Дальнейшее развитие этого принципа приводит к более сложным конфигурациям фарфора, в которых первичная обмотка находится в закрытом фарфоровом канале на всем своем протяжении. Так, рис. 15-3 показывает трансформатор тока типа ТФ-10 на 10 кВ с подобной фарфоровой изоляцией сложной формы. Рис. 15-4 дает представление о фарфоровом изоляторе для трансформатора тока указанного типа.
Изоляция подобного рода удовлетворительно работает при условии исключения из электрического поля узких воздушных зазоров, которые могут вызывать раннюю ионизацию.
Рис. 15-2. Схема катушечного трансформатора тока типа ТФФ.
1 — первичная обмотка: 2 — фарфоровый изолятор; 3 — вторичная обмотка; 4 — сердечник; 5 — изоляционная прокладка.
Рис. 15-3. Трансформатор тока ΤΦ-ΐυ.
Рис. 15-4. Фарфоровый изолятор для трансформатора тока ТФ-10.
Рис. 15-5. Трансформатор тока типа ТПФ-10.
Для этой цели близко лежащие к первичной обмотке поверхности фарфора должны быть металлизированы или покрыты проводящей краской, полупроводящей глазурью и т. п. Применяется также заполнение внутренней полости изолятора графитированным песком.
Для повышения напряжения скользящих разрядов на фарфоре сделаны «козырьки», т. е. выступы с закруглениями, покрытыми проводящим слоем. Таким образом, заземленная поверхность изолятора заканчивается закруглением относительно большого радиуса, прикрытым фарфором.
Рис. 15-7. Проходной изолятор для трансформатора тока типа ТПОФ-10.
Рис. 15-6. Электрическое иоле проходного изолятора трансформатора тока типа ТПФ-10. 1 — проводящая поверхность; потенциал земли; 2 — проводящая поверхность; потенциал первичной обмотки.
Перенесение электрической нагрузки полностью на фарфор повышает требования к электрической прочности фарфора и ограничивает применение подобной изоляции напряжениями 6—10 кВ.
Следует отметить, что в силу этого она не получила массового распространения.
Другой конструктивный принцип воплощен в проходных трансформаторах тока с фарфоровой изоляцией типа ТПФ-10 на 10 кВ. Чертеж такого трансформатора тока (рис. 15-5) показывает, что здесь используются два фарфоровых проходных изолятора, через которые последовательно пропускаются витки первичной обмотки.
Поскольку трансформаторы этого типа являются предметом массового выпуска, в конструкции их максимально сокращена длина изоляторов, что дает экономию меди первичной обмотки.
Развитие скользящих разрядов на этих изоляторах предотвращается наличием фарфоровых «козырьков» (А и Б, рис. 15-6) на краях электродов. На рис. 15-6 показана примерная форма электрического поля в изоляторах ТПФ-10 и поверхности, которые не глазуруются, а покрываются проводящей графитовой краской. Наружная поверхность фарфора в средней части изолятора заземляется.
На каждом конце изолятора также имеется проводящий слой. Он электрически соединяется с проводящим слоем на внутренней поверхности проходного изолятора и с первичной обмоткой трансформатора тока (ввод Л2). Эти проходные изоляторы весьма экономичны и производство их хорошо освоено, несмотря на сложную форму фарфора.
При больших номинальных токах (400—1500 а) широко применяются так называемые одновитковые или стержневые трансформаторы тока с фарфоровой изоляцией (типа ТПОФ на 10 и 20 кВ). Проходной изолятор трансформатора тока ТПОФ-10 показан на рис. 15-7. В этих трансформаторах тока первичной обмоткой является прямолинейный стержень (или труба), проходящий внутри изолятора и образующий часть единственного первичного витка трансформатора.
Фланец такого трансформатора тока при токах свыше 600— 750 а во избежание нагрева сильным магнитным полем стержня изготовляется из немагнитного материала и закрепляется на средней части изолятора при помощи механического крепления.
Длина изолятора у одновитковых трансформаторов тока может быть различной в связи с тем, что набор сердечников у них может иметь различную высоту, зависящую от их количества (1 или 2), от класса точности и от номинального тока.
Источник