Меню

Измерительные приборы в цепях переменного тока показывают мгновенное значение измеряемой величины



Измерения переменных токов и напряжений

Рабочими средствами измерений переменных токов и напря­жений являются амперметры (микро-, милли-, килоамперметры), вольтметры (микро-, милли-, киловольтметры), компенсаторы переменного тока, универсальные и комбинированные приборы, а также регистрирующие приборы и электронные осциллографы.

Особенностью измерений переменных токов и напряжений является то, что они изменяются во времени. В общем случае изменяющаяся во времени величина может быть полностью пред­ставлена мгновенными значениями в любой момент времени.

Переменные во времени величины могут быть также охарактери­зованы своими отдельными параметрами (например, амплиту­дой) или интегральными параметрами.

К интегральным параметрам относятся:

где x(t) — изменяющаяся во времени величина.

Таким образом, при измерении переменных токов и напряжений могут измеряться их действующие, амплитудные, средневыпрямленные, средние и мгновенные значения. В практике электрических измерений чаще всего приходится измерять синусоидальные переменные токи и напряжения, которые обычно характеризуются действую­щим значением. Поэтому подавляющее большинство средств измерений переменных токов и напряжений градуируются в дей­ствующих значениях для синусоидальной формы кривой тока или напряжения.

Малые переменные токи измеряют цифровыми, элек­тронными и выпрямительными приборами, малые переменные напряжения — электронными вольтметрами. Наиболее широкий диапазон измерений переменных токов при прямом включении средств измерений обеспечивают выпрямительные приборы. Они имеют относительно широкий диапазон и при измерении перемен­ных напряжений. Эти приборы делают, как правило, многопредельными.

Следует также учесть, что эти приборы при отключе­нии выпрямителя используются как магнитоэлектрические приборы для измерений постоянных токов и напряжений. Благодаря такой универсальности и небольшим габаритам выпрямительные приборы широко применяются в лабораторной и производствен­ной практике.

Переменные токи свыше килоампера и переменные напряжения свыше киловольта измеряют с помощью наружных измери­тельных трансформаторов тока или напряжения электромагнитными, выпрямительными и электродинамическими приборами.

Измерения высоких переменных напряжений (до 75 кВ) прямом включении средств измерений позволяют осуществлять электростатические киловольтметры.

Наиболее точные измерения действующих значений синусои­дальных токов и напряжений можно осуществить электродинами­ческими приборами, цифровыми приборами и компенсаторами переменного тока. Однако погрешность измерений переменных токов и напряжений больше, чем постоянных.

Активная мощность измеряется ваттметром, а реактивная мощность измеряется варметром.

Измерение больших мощностей.При измерении больших мощностей используются трансформатор тока и трансформатор напряжения.

Схема подключения показана на рисунке 8.4.

Рисунок 8.4 Схема подключения ваттметра для измерения

8.3 Измерение токов и напряже­ний в трехфазных цепях

В общем случае в несимметричных трехфазных цепях число необходимых средств измерений токов и напряжений соответствует числу измеряемых величин, если каждая измеряемая величина измеряется своим прибором. При измерениях в симметричных трехфазных цепях достаточно про­извести измерение тока или напряжения только в одной линии (фазе), так как в этом случае все линейные (фазные) токи и на­пряжения равны между собой. Связь между линейными и фазны­ми токами и напряжениями зависит от схемы включения нагруз­ки.

В несимметричных трехфазных цепях при измерениях токов и напряжений с помощью измерительных трансформаторов можно сэкономить на количестве исполь­зуемых измерительных трансформаторов.

Для примера на рисунке 8.5приведена схема измерений трех линейных токов с использованием двух измерительных трансформаторов тока, а на рисунке 8.6- аналогичная схема измерений линейных напряжений (V1 — UAB, V2 — UBС, V3 — U СA ).

Эти схемы основаны на известных соотношениях для трехфазных цепей.

Следует иметь в виду, что для правильного суммирования токов необходимо следить за правильностью вклю­чения генераторных зажимов измерительных трансформаторов. Неправильное включение генераторных зажимов одного из транс­форматоров (в первичной или вторичной цепи) приведет к изме­нению фазы одного из суммируемых токов, и результат получится неправильный. Схема для измерений линейных напряжений рабо­тает аналогично. Подобные схемы могут быть использованы для измерения фазных токов и напряжений.

Для измерений токов и напряжений в трехфазных цепях можно использовать средства измерений этих величин, предназначенные для однофазных це­пей. Кроме этих средств, промышленностью выпускаются специ­альные приборы для измерения в трехфазных цепях, позволяю­щие более быстро и удобно выполнить необходимые измерения.

Источник

Раздел 4. Измерение тока и напряжения

Измерение тока и напряжения осуществляется в цепях постоянного, переменного токов широкого диапазона частот и импульсных цепях. В цепях постоянного тока наиболее высокая точность измерений, в цепях переменного тока она понижается с повышением частоты.

Выбор приборов, выполняющих измерения тока и напряжения, определяется совокупностью многих факторов, важнейшие из которых:род измеряемого тока; примерные диапазон частот измеряемой величины и амплитудный диапазон; форма кривой измеряемого напряжения (тока); мощность цепи, в которой осуществляется измерение; мощность потребления прибора; возможная погрешность измерения.

Измерение напряжения выполняют методами непосредственной оценки и сравнения. Если необходимая точность измерения, допустимая мощность потребления и другие требования могут быть обеспечены амперметрами и вольтметрами электромеханической группы, то следует предпочесть этот простой метод непосредственного отсчета. В маломощных цепях постоянного и переменного токов для измерения напряжения обычно пользуются цифровыми и аналоговыми электронными вольтметрами. Если необходимо измерить напряжения с более высокой точностью, следует использовать приборы, действие которых основано на методах сравнения.

Измерение тока возможно прямое (методом непосредственной оценки аналоговыми и цифровыми амперметрами) и косвенное. При этом напряжение измеряется на резисторе с известным сопротивлением. Для исследования формы и определения мгновенных значений напряжения и тока применяют осциллографы.

4.1. Метод непосредственной оценки

Измерение тока этим методом выполняют с помощью амперметров и вольтметров со шкалами, градуированными в единицах измеряемой величины. Амперметр включают последовательно с нагрузкой (в разрыв цепи); вольтметр присоединяют параллельно участку цепи, падение напряжения на котором нужно измерить (рис. 4.1). На схеме: Rн – сопротивление нагрузки; RА – внутреннее сопротивление амперметра; RV – внутреннее сопротивление вольтметра; R – внутреннее сопротивление источника ЭДС.

Определим относительную погрешность, возникающую при включении амперметра в электрическую цепь. Требуется измерить ток в цепи, имеющей сопротивление , к которой приложено напряжение U (рис. 4.1, а). Ток в этой цепи, до включения амперметра, равен

После включения амперметра, имеющего сопротивление , ток в цепи изменится и станет равным:

Амперметр измеряет именно это значение тока. Относительная погрешность измерения тока , вызванная включением амперметра, составит:

Отношение сопротивлений можно заменить отношением мощностей потребления и :

где – мощность, потребляемая амперметром; – мощность, потребляемая в цепи.

Погрешность измерения тем меньше, чем меньше мощность потребления амперметра по сравнению с мощностью потребления цепи , в которой осуществляется измерение. Поэтому амперметр, включаемый последовательно в цепь измерения, должен обладать малым сопротивлением, т. е. 0.

Рассмотрим случай, когда надо измерить падение напряжения на сопротивлении нагрузки (рис. 4.1, б). В этом случае относительная погрешность измерения напряжения (формула дается без вывода):

где U – действительное значение напряжения на нагрузке до включения вольтметра; – измеренное значение напряжения на нагрузке.

Отношение сопротивлений обратно пропорционально отношению мощности потребления вольтметра к мощности цепи , поэтому

( как при , так и при ).

Для уменьшения погрешности измерения напряжения мощность потребления вольтметра должна быть мала, а его внутреннее сопротивление велико ( ).

Таким образом, включенный в цепь прибор оказывает на ее режим определенное влияние, для уменьшения которого необходимо строго выполнять следующие условия: внутреннее сопротивление амперметра RAдолжно быть много меньше сопротивления нагрузки Rн; внутреннее сопротивление вольтметра должно быть много больше сопротивления нагрузки. Невыполнение этих условий приводит к систематической методической погрешности, которая приблизительно совпадает со значениями отношений RA /Rни Rн/RV . Условие RV >> Rнособенно трудно выполнить при измерении напряжения на участках (нагрузках) с большим сопротивлением в так называемых слаботочных цепях. Для этой цели применяют электронные вольтметры с входным сопротивлением до сотен мегаом.

Измерения постоянного тока выполняют с меньшими погрешностями, чем измерения переменного. С повышением частоты погрешность увеличивается.

4.2. Метод сравнения

Этот методобеспечивает более высокую точность измерения. Его осуществляют с помощью приборов – компенсаторов, отличающихся тем свойством, что в момент измерения мощность от измеряемой цепи не потребляется, т. е. входное сопротивление практически бесконечно. Это свойство позволяет применять компенсаторы для измерения ЭДС. Метод сравнения реализуется также в цифровых вольтметрах дискретного действия и аналоговых компенсационных вольтметрах, благодаря чему погрешность измерения составляет десятые, сотые и даже тысячные доли процента.

4.3. Измерение сигналов напряжения и тока произвольной формы электромеханическими приборами

Наиболее распространенными средствами измерений напряжения и тока являются измерительные приборы. Они разнообразны вследствие различных измерительных задач и требований, предъявляемых к приборам. По физическим явлениям,на которых основана работа приборов, их можно разделить на электроизмерительные и электронные приборы. По виду выдаваемой информации различают аналоговые и цифровые приборы. По схеме преобразования различают структурные схемы измерительных приборов прямого действия и сравнения. В приборах прямого действияпреобразование сигнала измерительной информации происходит только в одном направлении, а в приборах сравнения, кроме прямого преобразования, используется обратное преобразование (обратная связь). По способу выдачи измерительной информации измерительные приборы делятся на показывающие и регистрирующие.

Электромеханические приборы, в зависимости от способа преобразования электромагнитной энергии в механическое угловое перемещение подвижной части, делятся на магнитоэлектрические, электромагнитные, электродинамические, ферродинамические и электростатические. Все перечисленные системы приборов, кроме магнитоэлектрической, пригодны для измерения в цепях как постоянного, так и переменного тока. Приборы магнитоэлектрической системы – только для измерения в цепях постоянного тока. Амперметры и вольтметры, в зависимости от их системы, показывают разные значения измеряемых величин. Показания приборов магнитоэлектрической системы соответствуют среднему за период значению измеряемой величины, т. е. измеряют постоянные составляющие тока или напряжения. Показания приборов электромагнитной, электродинамической, ферродинамической и электростатической систем соответствуют действующему значению измеряемой величины.

Читайте также:  Рабочий ток линии электропередач

В связи с этим рассмотрим, как математически описывается сигнал измерительной информации, который несет информацию о величинах тока или напряжения, измеряемых приборами.

Переменный ток (напряжение) промышленной частоты имеет синусоидальную форму и характеризуется мгновенным i (u), среднеквадратичным (действующим) I (U) значением, амплитудой Im (Um)и фазой ψi u):

Синусоидальный сигнал является частным случаем несинусоидального, который можно представить рядом Фурье:

где U – среднее значение сигнала за период Т (постоянная составляющая); Umk амплитуда сигнала k-й гармоники.

На рис. 4.2 представлен несинусоидальный разнополярный периодический сигнал – напряжение (ток), характеристиками которого являются: u(t) – значение сигнала в заданный момент времени; и пиковые значения сигнала – наибольшее мгновенное значение положительной полуволны и наименьшее мгновенное значение отрицательной полуволны сигнала (Um амплитудное значение для синусоидального сигнала); Up (размах) – сумма модулей пиковых значений и .

Постоянная составляющая сигнала U – среднее значение сигнала Ucpза период Т:

Переменная составляющая сигнала за период – разность между мгновенным значением сигнала u(t)и его постоянной составляющей U:

Средневыпрямленным значением сигнала Ucpза период является среднее значение модуля сигнала:

(вводится для сигналов, симметричных относительно оси времени).

Среднеквадратическое значение сигнала за период (время измерения)

Для синусоидального сигнала среднеквадратическое значение называют действующим значением сигнала.

Основная характеристика сложных сигналов – их спектральная функция, дающая информацию об амплитудах и фазах отдельных гармоник.

Среднеквадратическое значение периодического несинусоидального сигнала:

где – среднеквадратическое значение k-й гармоники; k – номер гармоники.

Коэффициенты амплитуды (KA)и формы (KФ) устанавливают связь между указанными выше значениями сигнала:

Для синусоидального сигнала:

Детерминированные сигналы конечной энергии, существенно отличные от нуля в течение ограниченного интервала времени, называются импульсными сигналами. Импульсы бывают различной формы (прямоугольной, треугольной, трапецеидальной и др.), полярности, амплитуды, длительности, частоты следования. Наиболее часто в практике встречаются прямоугольные импульсы (рис. 4.3, а), у которых среднеквадратическое значение и постоянная составляющая вычисляются как

Периодическая последовательность прямоугольных импульсов (рис. 4.3) с амплитудой Um длительностью tu и периодом повторения Т характеризуется скважностью Q = T/tu. При этом . Следовательно, среднеквадратическое значение

Для некоторых часто используемых форм сигнала коэффициенты амплитуды и формы вычислены. Например, для треугольной формы (рис. 4.3, б) ( ). Для меандра (рис. 4.3, в) – ( ).

4.4. Типовые примеры по измерению напряжения и тока

Пример 4.1. Определить относительную методическую погрешность δI измерения тока амперметром, внутреннее сопротивление которого . Амперметр включен последовательно в цепь с источником ЭДС Е и сопротивлением R (рис. 4.4).

Решение. Действительное значение тока в цепи до включения амперметра . Измеренное значение тока в цепи . Относительная погрешность измерения тока

Пример 4.2. Определить относительную методическую погрешность измерения δU напряжения вольтметром с внутренним сопротивлением на нагрузке R в цепи с источником энергии, ЭДС которого Е и внутреннее сопротивление R (рис. 4.5). Вольтметр включен параллельно нагрузке R.

Решение. Действительное значение напряжения U на нагрузке R до включения вольтметра . Измеренное значение напряжения

Относительная погрешность измерения напряжения

Пример 4.3. Определить показания амперметров электромагнитной системы, измеряющих токи, изменяющиеся по законам: 1) i(t) = (Im + Imsin wt) A и 2) i(t) = (2Im + Imsin wt) A. Что покажут в этом случае амперметры магнитоэлектрической и электродинамической систем?

Решение. Для решения задачи следует вычислить действующие значения измеряемых токов по формуле: ,

где I – постоянная составляющая тока, а – действующее значение переменной составляющей тока, определяемое по соотношению А. Показания амперметров будут соответственно равны и А.

Показания амперметра магнитоэлектрической системы соответствуют среднему за период значению измеряемой величины, т. е. он измеряет постоянную составляющую тока. Его показания будут соответственно Im и 2Im.

Показания амперметра электродинамической системы будут те же, что и при измерении амперметром электромагнитной системы.

Пример 4.4.Определить показания электромагнитных приборов, включенных в схемы, представленные на рис. 4.6, если к входным клеммам этих схем приложено синусоидальное напряжение, действующее значение которого равно U = 5 B, а полные сопротивления цепей равны соответственно .

Решение.Показания электромагнитных приборов соответствуют действующему значению измеряемой величины.

Для первой схемы:

Ток в цепи (действующее значение) . Следовательно, амперметр А будет показывать значение .

Падение напряжения на активном сопротивлении R равно . Следовательно, первый вольтметр покажет значение напряжения .

Падение напряжения на индуктивном сопротивлении XL равно . Следовательно, показание второго вольтметра равно .

Для второй схемы: . Ток в цепи (показание амперметра). Падение напряжения на активном сопротивлении (показание первого вольтметра). Падение напряжения на емкостном сопротивлении

(показание второго вольтметра).

Пример 4.5.Ток в цепи имеет форму отдельных периодически повторяющихся импульсов (рис. 4.7), продолжительность каждого из которых составляет tи = 0.1 мс, а период их повторения Т = 20 мс. Определить показания магнитоэлектрического и электродинамического амперметров, включенных в эту цепь, если амплитуда импульса тока Im = 50 A.

Решение.Магнитоэлектрический амперметр показывает величину постоянной составляющей тока, а электродинамический – действующее (или среднеквадратическое) значение тока. Действующее значение и постоянная составляющая для сигналов такой формы вычисляются по формулам

Пример 4.6.Определить показания вольтметров магнитоэлектрической и электродинамической систем, измеряющих напряжения, которые изменяются по законам: 1) u(t) =

Решение.Приборы в первом случае будут показывать соответственно 0 и 2 В (нет постоянной составляющей, а действующее значение напряжения U =

Во втором случае приборы покажут соответственно 20 Ви (постоянная составляющая напряжения в данном случае равна 20 В, а действующее значение напряжения

Источник

Методы измерения мощности в электрических цепях

Очень часто при проектировании электрических схем радиолюбители сталкиваются с проблемой измерения мощности, которую потребляют радиокомпоненты. Специалисты в метрологической сфере рекомендуют два метода, позволяющих вычислить и грамотно рассчитать ее значение. В этом случае нужно разобрать подробнее физический смысл величины, а также ее составляющих, от которых она зависит.

Измерение мощности

Общие сведения

При проектировании устройств нужно уметь правильно рассчитывать мощность электроэнергии электрооборудованием. Это необходимо, прежде всего, для долговечной работы устройства. Если изделие работает на износ, то оно способно выйти из строя сразу или в течение некоторого времени.

Такой вариант считается недопустимым, поскольку существуют виды техники, которые должны работать без отказов (аппарат искусственного дыхания, контроль уровня метана в шахте и так далее), так как от этого зависит человеческая жизнь. К основным характеристикам электрической энергии относятся следующие: мощность, сила тока, напряжение (разность потенциалов) и электропроводимость (сопротивление) материалов.

Мощность потребителя

 измерение мощности в цепях переменного тока

Мощность не следует путать с электрической энергией. Единицей измерения первой является ватт (Вт), название которой произошло от фамилии известного физика Джеймса Уатта. Физическим смыслом 1 Вт является расход электрической энергии за единицу времени, равной 1 секунде (1 Вт = расход 1 джоуля за 1 секунду). Существуют производные единицы измерения: милливатт (1 мВт = 0,001 Вт), киловатт (1 кВт = 1000 Вт), мегаватт (1 МВт = 1000 кВт = 1000000 Вт), гигаватт (1 ГВт = 1000 МВт = 1000000 кВт = 1000000000 Вт) и так далее. Для измерения электрической энергии применяются специальные счетчики, а ее единицей измерения является Вт*ч.

Ватт можно связать с некоторыми физическими величинами: 1 Вт = 1 Дж/с = (1 кг * sqr (м)) / (c * sqr (c)) = 1 Н * м / с = 746 л. с. Последнее числовое значение называется электрической лошадиной силой. Ваттметр — измеритель электрической мощности. Однако ее величину можно определить и другим способом. Для этого следует разобрать физические величины, от которых она зависит.

Сила тока

Измерение электрической энергии

Количество электрического заряда, который проходит через токопроводящий материал за единицу времени, называется силой электрического тока. Сокращенно величину называют силой тока или током. Она обозначается литерами «I» или «i» и имеет направление (векторная величина). Измеряется ток в амперах (А). Существуют также производные единицы, образованные при помощи приставок: 1 мА = 0,001 А, 1 кА = 1000 А и так далее. Измерить его значение можно амперметром. Для этого его нужно подключать последовательно в электрическую цепь.

Физическим смыслом тока в 1 А является прохождение электрического заряда в 1 Кл (кулон) за 1 секунду через площадь поперечного сечения S. В 1 кулоне содержится примерно 6,241*10^(18) электронов.

Ток в научной интерпретации классифицируется на постоянный и переменный. Первый вид не изменяет своего направления за единицу времени, но его амплитудные значения могут изменяться. Направление и амплитуда переменного тока изменяется по определенному закону (синусоидальный и несинусоидальный). Основным параметром считается его частота. Определяется тип переменного тока с помощью осциллографа.

Электрическое напряжение

Электрическое напряжение

Из курса физики известно, что каждое вещество состоит из атомов, которые обладают нейтральным зарядом. Они состоят из субатомных частиц. К ним относятся следующие: протоны, электроны и нейтроны. Первые имеют положительный заряд, вторые — отрицательный, а третьи — не заряжены вообще.

Суммарный заряд протонов компенсирует заряд всех электронов. Однако под действием внешних сил это равенство нарушается, и электрон «вырывается» из атома, который уже обладает положительным зарядом. Он притягивает электрон с соседнего атома, и процесс повторяется до тех пор, пока энергия не будет минимальной (меньше энергии «вырывания» электрона).

При межатомном взаимодействии образуется электромагнитное поле с отрицательной или положительной составляющими. Разность между двумя точками противоположных по знаку составляющих называется электрическим напряжением. Работа электромагнитного поля по перемещению точечного электрического заряда из точки А в точку В называется разностью потенциалов. Физический смысл напряжения (U): разность потенциалов в 1 В между двумя точечными зарядами в 1 Кл, на перемещение которых тратится энергия электромагнитного поля, равная 1 Дж.

Единицей измерения является вольт (В). Определить значение разности потенциалов можно с помощью вольтметра, который подключается параллельно. Производными единицами измерения считаются следующие: 1 мВ = 0,001 В, 1 кВ = 1000 В, 1 МВ = 1000 кВ = 1000000 В и так далее.

Сопротивление электрической цепи

Электропроводимость материала зависит от нескольких факторов: электронной конфигурации, типа вещества, геометрических параметров и температуры. Сведения об электронной конфигурации вещества можно получить из периодической таблицы Д. И. Менделеева. Согласно этой информации вещества бывают:

  1. Проводниками.
  2. Полупроводниками.
  3. Диэлектриками.
Читайте также:  Замена щеток двигателя постоянного тока

К первой группе следует отнести все металлы, электролиты (растворы, проводящие ток) и ионизированные газы. Носителями электрического заряда в металлах являются электроны. В растворах их роль выполняют ионы, которые бывают положительными (анионы) и отрицательными (катионы). Свободными носителями заряженных частиц в газах считаются свободные электроны и положительно заряженные ионы.

Полупроводники проводят электричество только при определенных условиях. Например, при воздействии на него внешних сил. Под их действием кулоновские связи электрона с ядром уменьшаются. При этом отрицательно заряженная частица «вырывается». На ее месте образуется «дырка», обладающая положительным зарядом. Она притягивает соседний электрон, вырывая его с атома. В результате этого осуществляется движение электронов и дырок. Изоляторы или диэлектрики вообще не проводят электричество. К ним относятся материалы без свободных носителей заряда, а также инертные газы.

Сопротивление электрической цепи

В проводниках при повышении температурных показателей происходит рост величины сопротивления. При этом происходит разрушение и искажение кристаллической решетки. Заряженные частицы сталкиваются (взаимодействуют) с атомами и другими частицами материала. В результате их движение замедляется, но потом снова возобновляется под действием электромагнитного поля. Процесс этого «взаимодействия» называется электрической проводимостью вещества. Однако в полупроводниках при повышении температуры эта величина уменьшается. К геометрии материалов следует отнести следующие: длину и площадь поперечного сечения.

Сопротивление измеряется в Омах (Ом) при помощи омметра, который подсоединяется параллельно к участку цепи или радиодетали. Существуют производные единицы измерения: 1 кОм = 1000 Ом, 1 МОм = 1000 кОм = 1000000 Ом.

Методы измерения

Методы измерения тока

Мощность можно определить двумя способами: косвенным и прямым. В первом случае это делается при помощи амперметра и вольтметра, а также осциллографа. Измеряются значения напряжения и тока, а затем по формулам вычисляется мощность. Этот способ имеет один недостаток: величина мощности получается с некоторой погрешностью.

При использовании прямого метода используется специальный прибор-измеритель. Он называется ваттметром и показывает мгновенное значение мощности. У каждого из способов есть свои достоинства и недостатки. Какой из методов наиболее оптимален, определяет сам радиолюбитель. Если проектируется какое-либо изделие, которое отличается надежностью, то следует применять прямой метод. В других случаях рекомендуется воспользоваться косвенным методом.

Косвенный способ

Мощность в цепях постоянного и переменного токов определяется различными способами. Для каждого случая существуют свои законы и формулы. Однако мощность можно не рассчитывать, поскольку она указана на электрооборудовании. Расчет применяется только при проектировании устройств.

Для цепей постоянного тока нужно воспользоваться формулой: P = U * I. Ее можно вывести из закона Ома для участка или полной цепи. Если рассматривается полная цепь, то формула принимает другой вид с учетом ЭДС (е): P = e * I. Основные соотношения для расчета:

  1. Для участка электрической цепи: P = I * I * R = U * U / R.
  2. Для полной цепи, в которой подключен электродвигатель или выполняется зарядка аккумулятора (потребление): P = I * e = I * e — sqr (I) * Rвн = I * (e — (I * Rвн)).
  3. В цепи присутствует генератор или гальванический элемент (отдача): P = I * (e + (I * Rвн)).

Эти соотношения невозможно применять для цепей переменного тока, поскольку он подчиняется другим физическим законам. При измерении мощности в цепях переменного тока следует учитывать ее составляющие (активная, реактивная и полная). Если в цепи присутствует только резистор, то мощность считается активной. При наличии емкости или индуктивности — реактивной. Полная — сумма активной и реактивной составляющих.

Для вычисления первого типа физической величины применяется формула такого вида: Ра = I * U * cos (a). Значения тока и напряжения являются среднеквадратичными, а cos (a) — косинус угла между ними. Для определения реактивной мощности нужно воспользоваться следующей формулой: Qр = I * U * sin (a). Если нагрузка в цепи является индуктивной, то значение будет больше 0. В противном случае — меньше 0. Полная мощность Р определяется по следующему соотношению: P = Pa + Qp.

Прямое определение величины

Для определения значения мощности в цепях переменного и постоянного тока применяются ваттметры. В них используются электродинамические или ферроидальные механизмы. Приборы с электродинамическим механизмом выпускаются в виде переносных приборов. Они обладают высоким классом точности. Измерители мощности рекомендуется применять при выполнении точных расчетов для цепей постоянного и переменного тока с частотой до 5 кГц.

Измерительные приборы

Ферродинамические приборы изготавливаются в виде электронных узлов, которые вставляются в измерительные стенды или щитовые. Основное их назначение — контроль приблизительных параметров потребления мощности электрооборудованием. Они обладают низким классом точности и применяются для измерения значений мощности переменного тока. При постоянном токе погрешность увеличивается, поскольку это обусловлено искажением петли гистерезиса ферромагнитных сердечников.

По диапазону частот приборы можно разделить на две группы: низкочастотные и радиочастотные. Ваттметры низких частот применяются в сетях промышленного питания переменного тока. Радиочастотный тип рекомендуется применять для точных измерений при проектировании различной техники. Они делятся на две категории по мощности:

  1. Проходящие.
  2. Поглощающие.

Первый вид подключается в разрыв линии, а второй — в ее конец в качестве нагрузки согласования. Кроме того, приборы для измерения мощности бывают аналоговыми и цифровыми.

Ваттметр прибор

При измерении мощности на высоких частотах применяются электронные и термоэлектронные ваттметры. Главным узлом считается микроконтроллер и преобразователь активной мощности. Последний преобразовывает переменный ток в постоянный. После этого происходит перемножение в микроконтроллере силы тока и напряжения. Результатом является сигнал на выходе, который зависит от I и U.

Ваттметр состоит из двух катушек. Первая из них подключается последовательно в цепь нагрузки, а другая (подвижная с резистором) — параллельно. В цифровых моделях роль катушек выполняют датчики тока и напряжения. Прибор имеет две пары зажимов. Одна пара применяется для последовательной цепи, а другая — для параллельной. Для правильного включения ваттметра выполняется обозначение * одной из двух пар зажимов.

Таким образом, для измерения мощности электрического тока применяются два метода. Первый из них является косвенным, а второй — прямым. Последний рекомендуется применять при проектировании сложной техники.

Источник

8.1 Основные типы приборов, измеряющих напряжение и силу тока

8.1 Основные типы приборов, измеряющих напряжение и силу тока

Напряжение и силу тока измеряют приборами непосредственной оценки или приборами, использующими метод сравнения (компенсаторами).По структурному построению всевозможные приборы ,измеряющие напряжение и силу тока, условно можно разделить на три ос­новных типа:

Для измерения напряжения и силы тока 5…20 лет назад (иногда еще и в настоящее время) широко применялись электромеханические приборы. При­боры этих систем часто входят в состав и других, более сложных, средств измерений.

По физическому принципу, положенному в основу построения и конст­руктивному исполнению, эти приборы относятся к группе аналоговых средств измерения, показания которых являются непрерывной функцией из­меряемой величины.

Электромеханические приборы непосредственной оценки измеряемой величины представляют класс приборов аналогового типа, обладающих рядом положительных свойств: просты по устройству и в эксплуатации, обладают высокой надежностью и на переменном токе реагируют на среднее квадратическое значение напряжения. Последнее обстоятельство позволяет измерять наиболее информативные параметры сигнала без ме­тодических ошибок. Электромеханические измерительные приборы строят по обобщенной структурной схеме, показанной на рис. 8.2.

Измерительная схема электромеханического прибора состоит из совокупности сопротивлений, индуктивностей, емкостей и других элементов

Рис. 8.2. Структурная схема электромеханического прибора

электрической цепи прибора и осуществляет количественное или качествен­ное преобразование входной величины х в электрическую величину х’, на которую реагирует измерительный механизм. Последний преобразует элек­трическую величину х’ в механическое угловое или линейное перемещение , значение которого отражается на шкале отсчетного устройства, проградуированной в единицах измеряемой величины N(x). Для этого необходимо чтобы каждому значению измеряемой величины соответствовало одно и только одно определенное отклонение . При этом параметры схемы и измерительного механизма не должны меняться при изменении внешних условий: температуры окружающей среды, частоты питающей сети и дру­гих факторов.

Классификацию электромеханических приборов производят на основании типа измерительного механизма. Наиболее распространенными в прак­тике радиотехнических измерений являются следующие системы: магнитоэлектрическая, электромагнитная, электродинамическая, элек­тростатическая.

—магнитоэлектрическая измерительная система;

—электромагнитная измерительная система;

—электродинамическая измерительная система;

—электростатическая измерительная система;

Условное обозначение типа измерительной системы наносится на шкале прибора или средства измерения.

Магнитоэлектрическая система. В этой системе измеритель­ный механизм состоит из проволочной рамки с протекающим в ней током, помещенной в поле постоянного магнита (магнитопровода). Поле в зазоре, где находится рамка, равномерно за счет особой конфигурации магнитопро­вода. Под воздействием тока рамка вращается в магнитном поле, угол пово­рота ограничивают специальной пружиной, поэтому передаточная функция (часто называемая уравнением шкалы) линейна:

где 0 удельное потокосцепление, определяемое параметрами рамки и магнитной индукцией; W—удельный противодействующий момент, созда­ваемый специальной пружиной,

1 – рамка с измеряемым током и стрелкой;2 – неподвижный сердечник;

3 – полюсные наконечники;4 – возвратная пружина

На основе магнитоэлектрического механизма создаются вольтметры, амперметры, миллиамперметры и другие измерительные приборы, и их структурное построение главным образом определяется измерительной схемой. Измерительные приборы магнитоэлектрической системы имеют достаточно высокую точность, сравнительно малое потребление энергии из измерительной цепи, высокую чувствительность, но работают лишь на постоянном токе.

Читайте также:  Что такое ограничение пускового тока в ушм

Для расширения пределов измерения токов амперметрами и напряжений вольтметрами применяют шунты и добавочные сопротивления, которые включают соответственно параллельно и последовательно индикаторам в схемы этих приборов.

Основное использование переносные, лабораторные, многопредельные амперметры и вольтметры постоянного тока.Класс точности 0,05 … 0,5,потребляемая мощность Рсоб 10-5 … 10-4 Вт.

Гальванометры. Особую группу измерителей тока составляют высоко чувствительные магнитоэлектрические приборы — нуль-индикаторы, схемы сравнения, или указатели равновесия, называемые гальванометрами. Их задача показать наличие или отсутствие тока в цепи, поэтому они работают в начальной точке шкалы и должны обладать большой чувствительностью. Гальванометры снабжают условной шкалой и не нормируют по классам точ­ности.

Чувствительность гальванометров выражается в мм или делениях (на­пример, Si 109 мм/А). Такая высокая чувствительность достигается за счет особой конструкции прибора.

Поскольку чувствительность гальванометров очень высока, их градуиро-вочная характеристика нестабильна и зависит от совокупности внешних влияющих факторов. Поэтому при выпуске на производстве чувствительные гальванометры не градуируют в единицах измеряемой физической величины и им не присваивают классы точности. В качестве же метрологических ха­рактеристик гальванометров обычно указывают их чувствительность к току или напряжению и сопротивление рамки.

Современные гальванометры позволяют измерять токи 10 -5 … 10 -12 А и напряжения до 10 -4 В.

Электромагнитная система. Принцип действия электромагнит­ной системы основан на взаимодействии катушки с ферромагнитным сердеч­ником. Ферромагнитный сердечник втягивается в катушку при любой поляр­ности протекающего по ней тока. Это обусловлено тем, что ферромагнетик располагается в магнитном поле катушки так, что поле усиливается. Следова­тельно, прибор электромагнитной системы может работать на переменном токе. Однако электромагнитные приборы являются всё-таки низкочастотны­ми, так как с ростом частоты сильно возрастает индуктивное сопротивление катушки.

Уравнение шкалы или передаточная функция электромагнитной измерительной системы выражается как:

2 ,

где 2 =dt;

– индуктивность катушки

Достоинствами приборов электромагнитной системы являются простота конструкции, способность выдерживать значительные перегрузки, возмож­ность градуировки приборов, предназначенных для измерений в цепях пере­менного тока, на постоянном токе. К недостаткам приборов этой системы можно отнести большое собственное потребление энергии, невысокую точ­ность, малую чувствительность и сильное влияние магнитных полей.

На практике применяют амперметры электромагнитной системы с преде­лами измерения от долей ампера до 200 А, и вольтметры — от долей вольта до сотен вольт. Основное использование в виде щитовых и лабораторных переносных низкочастотных амперметров и вольтметров (f = 0 … 5 кГц).Класс точности 0,5 … 2,5,потребляемая мощность Рсоб =1 … 6 Вт.

Электродинамическая система — измерительный механизм содержит две измерительные катушки: неподвижную и подвижную. Принцип действия основан на взаимодействии катушек, электромагнитные поля кото­рых взаимодействуют в соответствии с формулой:

cos ,

где Mвр — вращающий момент; I1 — ток через неподвижную катушку;I 2 —

ток через подвижную катушку; — фазовый сдвиг между синусоидальными токами; М— коэффициент взаимной индуктивности катушек.

На основе электродинамического механизма в зависимости от схемы соеди­нения обмоток могут выполняться вольтметры, амперметры, ваттметры. Досто- инством электродинамических вольтметров и амперметров является высокая точность на переменном токе. Предел основной приведенной погрешности может быть 0,1.. .0,2 %, что является наилучшим достижимым показателем для измерителыахх приборов переменного тока. По другим показателям электродинамиче­ские приборы близки к электромагнитным. Электродинамические приборы ис­пользуются как образцовые лабораторные низкочастотные высокого класса точности измерительные приборы.

Класс точности 0,1 … 0,2,потребляемая мощность Рсоб = 1 Вт., частотный диапазон 0 … 5кГц.

1 – неподвижная катушка

2 – подвижная катушка

Электростатические приборы — принцип действия электро­статического механизма основан на взаимодействии электрически заряженных проводников. Подвижная алюминиевая пластина, закрепленная вместе со стрелкой, перемещается, взаимодействуя с неподвижной пластиной. Ограничение движения (как и в других электромеханических системах) осуществляется за счет пружинки. Электростатические приборы по принципу действия меха­низма являются вольтметрами. Достоинства этих приборов: широкий частот­ный диапазон (до 30 МГц) и малая мощность, потребляемая из измерительной цепи. Приборы измеряют среднее квадратическое значение напряжения.

Уравнение рамки записывается в виде:

, dt, С – емкость между пластинами.

Основное использование в качестве высокочастотных лабораторных и высоковольтных вольтметров. Класс точности 0,5 … 1,5,потребляемая мощность Рсоб 1 мВт, частотный диапазон 0 … 30 МГц.

8.1 Магнитоэлектрические приборы с преобразователями

переменного тока в постоянный

Описанные выше приборы не решают многих проблем, возникающих при измерении на переменном токе: электромагнитный и электродинамический— низкочастотны, электростатический обладает низкой чувствительностью. Приме­нение магнитоэлектрического механизма в сочетании с преобразователем позво­ляет существенно расширить возможности измерений на переменном токе. По типу преобразователя данные приборы делятся на выпрямительные и термоэлек­трические.

Выпрямительные приборы.Представляют собой сочетание измерительного механизма магнитоэлектрической системы с выпрямителем на полупроводниковых диодах.

Схемы соединений диодов с измерительными механизмами можно разделить на две основные групы: однополупериодные и двухполупериодные.

Наиболее распространены приборы с двухполупериодными схемами выпрямления.

а – трансформаторная; б – мостовая; в, г – мостовая с заменой двух диодов резисторами.

При измерении переменного тока мгновенное значение вращающего момента М(t)=Bsωi, где i -мгновенное значение тока, протекающего через измерительный механизм.

Из-за инерционности подвижной части отклонение её определяется средним значением вращающего момента МСР. Для схемы с однополупериодным выпрямлением если ток , средний за период

вращающий момент равен

, где ICP – средневыпрямленное значение синусоидального тока; T – период.

Для схемы с двухполупериодным выпрямлением вращающий момент увеличивается вдвое.

Угол поворота подвижной части при одно- и двухполупериодном выпрямлении соответственно равен

В силу того, что магнитоэлектрическая измерительная система реагирует на постоянный (средневыпрямленный) ток, показания прибора будут пропорциональны средневыпрямленному значению переменного тока или напряжения. Данное обстоятельство является очень существенным, так как приборы проградуированы всредних квадратических значениях синусоидального тока. Это значит, что на шкале прибора представлено не то значение, на которое реагирует прибор (т.е. средневыпрямленное),а величина, умноженная на коэффициент формы синусоиды Кф= 1,11.

При измерении параметров переменного негармонического сигнала; практически всегда возникает методическая погрешность. Например, при градуировке измерительного прибора на синусоидальном токе точке шкалы 100 В соответствовало средневыпрямленное значение напряжения 90 В. Если на этот измерительный прибор подать напряжение, имеющее форму меандра с амплитудой 90В (напомним, что у такого сигнала: Ка = Кф = 1, т.е. Um = U = U ср.в = 90 В), его показания также будут около 100 В (1,11 U ср.в) и абсолютная погрешность измерения напряжения составит △= 100-90=10В.

Выпрямительные приборы при­меняются как комбинированные измерители постоянного и пере­менного тока и напряжения с пре­делами измерения тока от 1 мА до 600 А, напряжения от 0,1 до 600 В.

Достоинствами выпрямительных приборов являются высокая чуст-вительность, малое собственное потребление энергии и возможность измерения в широком диапазоне частот. Частотный диапазон выпрямительных приборов определяется применяемыми диодами. Так, использование точечных кремниевых диодов обеспечивает измерение переменных токов и напряжений на частотах 50… 105 Гц. Основными источниками погрешностей приборов являются изменения параметров диодов с течением времени, влияние окружающей температуры, а также отклонение формы кривой измеряемого тока или напряжения от той, при которой произведена градуировка прибора. Выпрямительные приборы выполняются в виде многопредельных и многоцелевых лабораторных измерительных приборов .К этому типу измерительных приборов относится так называемыйтестер.

Наименьшие пределы измерения переменных токов и напряжений 0,25-0,3 мА и 0,25-0,3 В , малое собственное потребление мощности, широкий частотный диапазон ( до 10-20 кГц).

Недостатки: невысокая точность ( классы точности 1,0-2,5 ); зависимость показаний от формы кривой измеряемой величины.

Область применения: многопредельные ампервольтметры выпрямительные фазометры и самопишущие частотомеры.

Термоэлектрические приборы.Представляют собой сочетание измерительного механизма магнитоэлектрической системы и одного или нескольких термоэлектрических преобразователей.

а) контактная схема термоэлектрических преобразователей

Термоэлектрическая измерительная система — строится на основе терме электрического преобразователя и магнитоэлектрического микроамперметра. Термопреобразователь включает нагреватель, по которому протекает изме- ряемый ток, и термопару, на концах которой возникает термоЭДС. В цепь термопары включен микроамперметр, измеряющий термоток. Рабочий спай термопары находится в тепловом контакте с нагревателем. Нагреватель пред- ставдяет собой тонкую проволоку из металлического сплава с высоким удельным сопротивлением (нихром, манганин). Еще более тонкие проволоч- ки из термоэлектродных материалов применяют для изготовления термопар.

При прохождении измеряемого тока через нагреватель, место его контакта с термопарой нагревается до температуры нагрева, а холодный спай остается при температуре окружающей среды.

Термо-ЭДС, развиваемая термоэлектрическим преобразователем, пропорциональна количеству теплоты, выделяемой измеряемым током в месте присоединения спая. Количество теплоты в свою очередь пропорционально квадрату измеряемого тока. Значение тока I0, протекающего через измерительный механизм может быть определенно как I0=E/r, где E – термо-ЭДС; R – полное сопротивление цепи постоянного тока. Следовательно, показания термоэлектрического прибора пропорциональны квадрату действующего значения тока в нагревателе, т.е. , где k – постоянный коэффициент, зависящий от конструкции и типа термоэлектрического преобразователя и параметров измерительного механизма.

Функционирование прибора основано на тепловом действии тока, и поэтому магнитоэлектрический прибор с термоэлектрическим преобразователем измеряет среднее квадратическое значение переменного тока любой формы.

Термоэлектрические приборы применяют в основном для измерения токов. В качестве вольтметров они практически не используются, так как их входное сопротивление чрезвычайно мало. Достоинством термоэлектрических приборов является широкий частотный диапазон (до 10 МГц). Недостатки: невысокая чувствительность, низкий класс точности (1,5… 4,0), большое потребление энергии из измерительной цепи, малая перегрузочная способность, неравномерная шкала.

Источник