Меню

Измерение тока при помощи осциллографа



Проведение измерений с помощью осциллографа

Проведение измерений с помощью осциллографаЦифровой осциллограф, конечно, намного совершеннее обычного электронного, позволяет запоминать осциллограммы, может подключаться к персональному компьютеру, имеет математическую обработку результатов, экранные маркеры и многое другое. Но при всех достоинствах эти приборы нового поколения обладают одним существенным недостатком, — это высокая цена.

Именно она делает цифровой осциллограф недоступным для любительских целей, хотя существуют «карманные» осциллографы стоимостью всего в несколько тысяч рублей, которые продаются на Алиэкспресс, но пользоваться ими не особенно удобно. Ну, просто интересная игрушка. Поэтому пока речь пойдет об измерениях с помощью электронного осциллографа.

На тему выбора осциллографа для использования в домашней лаборатории в интернете можно найти достаточное количество форумов. Не отрицая достоинств цифровых осциллографов, на многих форумах советуют остановить выбор на простых малогабаритных и надежных осциллографах отечественной разработки С1-73 и С1-101 и подобных, с которыми мы ранее познакомились в этой статье.

При достаточно демократичной цене эти приборы позволят выполнить большинство радиолюбительских задач. А пока познакомимся с общими принципами измерений с помощью осциллографа.

Осциллограф С1-73

Рисунок 1. Осциллограф С1-73

Что измеряет осциллограф

Измеряемый сигнал подается на вход канала вертикального отклонения Y, который имеет большое входное сопротивление, как правило, 1MΩ, и малую входную емкость, не более 40pF, что позволяет вносить минимальные искажения в измеряемый сигнал. Эти параметры часто указываются рядом с входом канала вертикального отклонения.

Осциллограф С1-101

Рисунок 2. Осциллограф С1-101

Высокое входное сопротивление свойственно вольтметрам, поэтому можно с уверенностью сказать, что осциллограф измеряет напряжение. Применение внешних входных делителей позволяет снизить входную емкость и увеличить входное сопротивление. Это также снижает влияние осциллографа на исследуемый сигнал.

Здесь следует вспомнить, что существуют специальные высокочастотные осциллографы, входное сопротивление которых всего 50 Ом. В радиолюбительской практике такие приборы не находят применения. Поэтому далее речь пойдет об обычных универсальных осциллографах.

Полоса пропускания канала Y

Осциллограф измеряет напряжения в очень широких пределах: от напряжений постоянного тока, до напряжений достаточно высокой частоты. Размах напряжения может быть достаточно разнообразным, — от десятков милливольт до десятков вольт, а при использовании внешних делителей вплоть до нескольких сотен вольт.

При этом следует иметь в виду, что полоса пропускания канала вертикального отклонения Y д.б. не менее, чем в 5 раз выше частоты сигнала, который будет измеряться. То есть усилитель вертикального отклонения должен пропускать не ниже пятой гармоники исследуемого сигнала. Особенно это требуется при исследовании прямоугольных импульсов, которые содержат множество гармоник, как показано на рисунке 3. Только в этом случае на экране получается изображение с минимальными искажениями.

Синтез прямоугольного сигнала из гармонических составляющих

Рисунок 3. Синтез прямоугольного сигнала из гармонических составляющих

Кроме основной частоты на рисунке 3 показаны третья и седьмая гармоники. С увеличением номера гармоники возрастает ее частота: частота третьей гармоники в три раза выше основной, пятой гармоники в пять раз, седьмой в семь и т.д. Соответственно амплитуда высших гармоник падает: чем выше номер гармоники, тем ниже ее амплитуда. Только если усилитель вертикального канала без особого ослабления сможет пропустить высшие гармоники, изображение импульса получится прямоугольным.

На рисунке 4 показана осциллограмма меандра при недостаточной полосе пропускания канала Y.

осциллограмма меандра

Примерно так выглядит меандр частотой 500 КГц на экране осциллографа ОМШ-3М с полосой пропускания 0…25 КГц. Как будто прямоугольные импульсы пропущены через интегрирующую RC цепочку. Такой осциллограф выпускался советской промышленностью для лабораторных работ на уроках физики в школах. Даже напряжение питания этого прибора в целях безопасности было не 220, а всего 42В. Совершенно очевидно, что осциллограф с такой полосой пропускания позволит почти без искажений наблюдать сигнал с частотами не более 5КГц.

У обычного универсального осциллографа полоса пропускания чаще всего составляет 5 МГц. Даже при такой полосе можно увидеть сигнал до 10 МГц и выше, но полученное на экране изображение позволяет судить лишь о наличии или отсутствии этого сигнала. О его форме что-либо сказать будет затруднительно, но в некоторых ситуациях форма не столь уж и важна: например есть генератор синусоиды, и достаточно просто убедиться, есть эта синусоида или ее нет. Как раз такая ситуация показана на рисунке 4.

Современные вычислительные системы и линии связи работают на очень высоких частотах, порядка сотен мегагерц. Чтобы увидеть столь высокочастотные сигналы полоса пропускания осциллографа должна быть не менее 500 МГц. Такая широкая полоса очень «расширяет» цену осциллографа.

В качестве примера можно привести цифровой осциллограф U1610A показанный не рисунке 5. Его полоса пропускания 100МГц, при этом цена составляет почти 200 000 рублей. Согласитесь, не каждый может позволить себе купить столь дорогой прибор.

цифровой осциллограф U1610A

Пусть читатель не сочтет этот рисунок за рекламу, поскольку все координаты продавца не закрашены: на месте этого рисунка мог оказаться любой подобный скриншот.

Виды исследуемых сигналов и их параметры

Наиболее распространенным видом колебаний в природе и технике является синусоида. Это та самая многострадальная функция Y=sinX, которую проходили в школе на уроках тригонометрии. Достаточно много электрических и механических процессов имеют синусоидальную форму, хотя достаточно часто в электронной технике применяются и другие формы сигналов. Некоторые из них показаны на рисунке 6.

Формы электрических колебаний

Рисунок 6. Формы электрических колебаний

Периодические сигналы. Характеристики сигналов

Универсальный электронный осциллограф позволяет достаточно точно исследовать периодические сигналы. Если же на вход Y подать реальный звуковой сигнал, например, музыкальную фонограмму, то на экране будут видны хаотично мелькающие всплески. Естественно, что детально исследовать такой сигнал невозможно. В этом случае поможет применение цифрового запоминающего осциллографа, который позволяет сохранить осциллограмму.

Колебания, показанные на рисунке 6, являются периодическими, повторяются, через определенный период времени T. Подробнее это можно рассмотреть на рисунке 7.

Периодические колебания

Рисунок 7. Периодические колебания

Колебания изображены в двухмерной системе координат: по оси ординат отсчитывается напряжение, а по оси абсцисс время. Напряжение измеряется в вольтах, время в секундах. Для электрических колебаний время чаще измеряется в миллисекундах или микросекундах.

Кроме компонентов X и Y осциллограмма содержит еще компонент Z – интенсивность, или попросту яркость (рисунок 8). Именно она включает луч на время прямого хода луча и гасит на время обратного хода. Некоторые осциллографы имеют вход для управления яркостью, который так и называется вход Z. Если на этот вход подать импульсное напряжение от образцового генератора, то на экране можно увидеть частотные метки. Это позволяет точнее отсчитывать длительность сигнала по оси X.

Три компонента исследуемого сигнала

Рисунок 8. Три компонента исследуемого сигнала

Современные осциллографы имеют, как правило, калиброванные по времени развертки, позволяющие точно отсчитывать время. Поэтому пользоваться внешним генератором для создания меток практически не приходится.

В верхней части рисунка 7 располагается синусоида. Нетрудно видеть, что начинается она в начале координатной системы. За время T (период) выполняется одно полное колебание. Далее все повторяется, идет следующий период. Такие сигналы называются периодическими.

Ниже синусоиды показаны прямоугольные сигналы: меандр и прямоугольный импульс. Они также периодические с периодом T. Длительность импульса обозначена как τ (тау). В случае меандра длительность импульса τ равна длительности паузы между импульсами, как раз половина периода T. Поэтому меандр является частным случаем прямоугольного сигнала.

Скважность и коэффициент заполнения

Для характеристики прямоугольных импульсов используется параметр, называемый скважностью. Это есть отношение периода следования импульсов T к длительности импульса τ. Для меандра скважность равна двум, — величина безразмерная: S= T/τ.

В англоязычной терминологии как раз все наоборот. Там импульсы характеризуются коэффициентом заполнения, соотношением длительности импульса к периоду следования Duty cycle: D=τ/T. Коэффициент заполнения выражается в %%. Таким образом, для меандра D=50%. Получается, что D=1/S, коэффициент заполнения и скважность величины взаимно обратные, хотя характеризуют собой один и тот же параметр импульса. Осциллограмма меандра показана на рисунке 9.

Осциллограмма меандра D=50%

Рисунок 9. Осциллограмма меандра D=50%

Здесь вход осциллографа подключен к выходу функционального генератора, показанного тут же в нижнем углу рисунка. И вот тут внимательный читатель может задать вопрос: «Амплитуда выходного сигнала с генератора 1В, чувствительность входа осциллографа 1В/дел., а на экране прямоугольные импульсы с размахом 2В. Почему?»

Читайте также:  Устройства с током фуко

Дело в том, что функциональный генератор выдает двухполярные прямоугольные импульсы относительно уровня 0В, примерно так же, как синусоида, с положительной и отрицательной амплитудой. Поэтому на экране осциллографа наблюдаются импульсы с размахом ±1В. На следующем рисунке изменим коэффициент заполнения Duty cycle, например, до 10%.

Прямоугольный импульс D=10%

Рисунок 10. Прямоугольный импульс D=10%

Нетрудно видеть, что период следования импульсов составляет 10 клеток, в то время, как длительность импульса всего одна клетка. Поэтому D=1/10=0,1 или 10 %, что видно по настройкам генератора. Если воспользоваться формулой для подсчета скважности, то получится S = T / τ = 10 / 1 = 1 – величина безразмерная. Вот здесь можно сделать вывод, что Duty cycle намного наглядней характеризует импульс, чем скважность.

Собственно сам сигнал остался такой же, как на рисунке 9: прямоугольный импульс амплитудой 1В и частотой 100Гц. Изменяется только коэффициент заполнения или скважность, уж это как кому привычней и удобней. Но для удобства наблюдения на рисунке 10 длительность развертки снижена в два раза по сравнению с рисунком 9 и составляет 1мс/дел. Поэтому период сигнала занимает на экране 10 клеток, что позволяет достаточно легко убедиться, что Duty cycle составляет 10%. При пользовании реальным осциллографом длительность развертки выбирается примерно также.

Измерение напряжения прямоугольного импульса

Как было сказано в начале статьи, осциллограф измеряет напряжение, т.е. разность потенциалов между двумя точками. Обычно измерения проводятся относительно общего провода, земли (ноль вольт), хотя это необязательно. В принципе возможно измерение от минимального до максимального значения сигнала (пиковое значение, размах). В любом случае действия по измерению достаточно просты.

Прямоугольные импульсы чаще всего бывают однополярными, что характерно для цифровой техники. Как измерить напряжение прямоугольного импульса, показано на рисунке 11.

Измерение амплитуды прямоугольного импульса

Рисунок 11. Измерение амплитуды прямоугольного импульса

Если чувствительность канала вертикального отклонения выбрана 1В/дел, то получается, что на рисунке показан импульс с напряжением 5,5В. При чувствительности 0,1В/дел. Напряжение будет всего 0,5В, хотя на экране оба импульса выглядят совершенно одинаково.

Что еще можно увидеть в прямоугольном импульсе

Прямоугольные импульсы, показанные на рисунках 9, 10 просто идеальные, поскольку синтезированы программой Electronics WorkBench. Да и частота импульсов всего 100Гц, поэтому проблем с «прямоугольностью» изображения возникнуть не может. В реальном устройстве при высокой частоте следования импульсы несколько искажаются, прежде всего, появляются различные выбросы и всплески, обусловленные индуктивностью монтажа, как показано на рисунке 12.

Реальный прямоугольный импульс

Рисунок 12. Реальный прямоугольный импульс

Если не обращать внимания на подобные «мелочи», то прямоугольный импульс выглядит так, как показано на рисунке 13.

Параметры прямоугольного импульса

Рисунок 13. Параметры прямоугольного импульса

На рисунке показано, что передний и задний фронты импульса возникают не сразу, а имеют какое-то время нарастания и спада, несколько наклонены относительно вертикальной линии. Этот наклон обусловлен частотными свойствами микросхем и транзисторов: чем более высокочастотный транзистор, тем менее «завалены» фронты импульсов. Поэтому длительность импульса определяется по уровню 50% от полного размаха.

По этой же причине амплитуда импульса определяется по уровню 10…90%. Длительность импульса, так же, как и напряжение, определяется умножением числа делений горизонтальной шкалы на значение деления, как показано на рисунке 14.

Пример измерений

На рисунке показан один период прямоугольного импульса, несколько отличного от меандра: длительность положительного импульса составляет 3,5 деления горизонтальной шкалы, а длительность паузы 3,8 деления. Период следования импульса составляет 7,3 деления. Такая картинка может принадлежать нескольким разным импульсам с различной частотой. Все будет зависеть от длительности развертки.

Предположим, что длительность развертки 1мс/дел. Тогда период следования импульса 7,3*1=7,3мс, что соответствует частоте F=1/T=1/7.3= 0,1428КГц или 143ГЦ. Если длительность развертки будет 1мкс/дел, то частота получится в тысячу раз выше, а именно 143КГЦ.

Пользуясь данными рисунка 14 нетрудно подсчитать скважность импульса: S=T/τ=7,3/3,5=2,0857, получается почти, как у меандра. Коэффициент заполнения Duty cycle D=τ/T=3,5/7,3=0,479 или 47.9%. При этом следует обратить внимание, что эти параметры ни в коем случае не зависят от частоты: скважность и коэффициент заполнения были подсчитаны просто по делениям на осциллограмме.

С прямоугольными импульсами все вроде бы понятно и просто. Но мы совсем забыли о синусоиде. В сущности, там то — же самое: можно измерить напряжения и временные параметры. Один период синусоиды показан на рисунке 15.

Параметры синусоиды

Рисунок 15. Параметры синусоиды

Очевидно, что для показанной на рисунке синусоиды чувствительность канала вертикального отклонения составляет 0,5В/дел. Остальные параметры нетрудно определить умножив число делений на 0,5В/дел.

Синусоида может быть и другой, которую придется измерять при чувствительности, например, 5В/дел. Тогда вместо 1В получится 10В. Однако, на экране изображение обеих синусоид выглядит абсолютно одинаково.

Временные параметры показанной синусоиды неизвестны. Если предположить, что длительность развертки 5мс/дел., период составит 20мс, что соответствует частоте 50ГЦ. Цифры в градусах на оси времени показывают фазу синусоиды, хотя для одиночной синусоиды это не особо важно. Чаще приходится определять сдвиг по фазе (непосредственно в миллисекундах или микросекундах) хотя бы между двумя сигналами. Лучше всего это делать с помощью двухлучевого осциллографа. Как это делается, будет показано чуть ниже.

Как осциллографом измерить ток

В некоторых случаях требуется измерение величины и формы тока. Например, переменный ток, протекающий через конденсатор, опережает напряжение на ¼ периода. Тогда в разрыв цепи включают резистор с небольшим сопротивлением (десятые доли Ома). На работу схемы такое сопротивление не влияет. Падение напряжения на этом резисторе покажет форму и величину тока, протекающего через конденсатор.

Примерно так же устроен обычный стрелочный амперметр, который включатся в разрыв электрической цепи. При этом измерительный резистор находится внутри самого амперметра.

Схема для измерения тока через конденсатор показана на рисунке 16.

Измерение тока через конденсатор

Рисунок 16. Измерение тока через конденсатор

Синусоидальное напряжение частотой 50 Гц амплитудой 220 В с генератора XFG1 (красный луч на экране осциллографа) подается на последовательную цепь из конденсатора C1 и измерительного резистора R1. Падение напряжения на этом резисторе покажет форму, фазу и величину тока через конденсатор (синий луч). Как это будет выглядеть на экране осциллографа, показано на рисунке 17.

Ток через конденсатор опережает напряжение на ¼ периода

Рисунок 17. Ток через конденсатор опережает напряжение на ¼ периода

При частоте синусоиды 50 Гц и развертке 5 ms/Div один период синусоиды занимает 4 деления по оси X, что очень удобно для наблюдения. Нетрудно видеть, что синий луч опережает красный ровно на 1 деление по оси X, что соответствует ¼ периода. Другими словами ток через конденсатор опережает по фазе напряжение, что полностью соответствует теории.

Чтобы рассчитать ток через конденсатор достаточно воспользоваться законом Ома: I = U/R. При сопротивлении измерительного резистора 0,1Ом падение напряжения на нем 7мВ. Это амплитудное значение. Тогда максимальный ток через конденсатор составит 7/0,1=70мА.

Измерение формы тока через конденсатор не является какой-то очень актуальной задачей, тут все ясно и без измерений. Вместо конденсатора может быть любая нагрузка: катушка индуктивности, обмотка электродвигателя, транзисторный усилительный каскад и многое другое. Важно, что именно таким методом можно исследовать ток, который в некоторых случаях значительно отличается по форме от напряжения.

Источник

Для чего нужен осциллограф и как им выполнять измерения тока, напряжения, частоты и сдвига фаз

Осциллограф — устройство, демонстрирующие силу тока, напряжение, частоты и сдвиг фаз электрической цепи. Прибор отображает соотношение времени и интенсивности электрического сигнала. Все значения изображены при помощи простого двумерного графика.

Осциллограф цифровой запоминающий GW Instek GDS-71104B.

Для чего предназначен осциллограф

Осциллограф используется электронщиками и радиолюбителями для того, чтобы измерить:

  • амплитуду электрического сигнала — соотношение напряжения и времени;
  • проанализировать сдвиг фаз;
  • увидеть искажение электрического сигнала;
  • на основе результатов вычислить частоту тока.
Читайте также:  Чем различается постоянный ток от переменного

Несмотря на то, что осциллограф демонстрирует характеристики анализируемого сигнала, чаще его используют для выявления процессов происходящих в электрической цепи. Благодаря осциллограмме специалисты получают следующую информацию:

  • форму периодического сигнала;
  • значение положительной и отрицательной полярности;
  • диапазон изменения сигнала во времени;
  • длительность положительного и отрицательного полупериода.

Большинство из этих данных можно получить при помощи вольтметра. Однако тогда придётся производить замеры с частотностью в несколько секунд. При этом велик процент погрешности вычислений. Работа с осциллографом значительно экономит время получения необходимых данных.

Принцип действия осциллографа

Осциллограф выполняет замеры при помощи электронно-лучевой трубки. Это лампа, которая фокусирует анализируемый ток в луч. Он попадает на экран прибора, отклоняясь в двух перпендикулярных направлениях:

  • вертикальное – показывает исследуемое напряжение;
  • горизонтальное – демонстрирует затраченное время.

Электронная трубка осциллографа.

За отклонение луча отвечают две пары пластин электронно-лучевой трубки. Те, что расположены вертикально, всегда находятся под напряжением. Это помогает распределять разнополюсные значения. Положительное притяжение отклоняется вправо, отрицательное — влево. Таким образом, линия на экране прибора движется слева направо с постоянной скоростью.

На горизонтальные пластины также действует электрический ток, что отклоняет демонстрирующий показатель напряжения луча. Положительный заряд — вверх, отрицательный — вниз. Так на дисплее устройства появляется линейный двухмерный график, который называется осциллограммой.

Расстояние, которое проходит луч от левого до правого края экрана называется развёрткой. Линия по горизонтали отвечает за время измерения. Помимо стандартного линейного двухмерного графика существует также круглые и спиральные развёртки. Однако пользоваться ими не так удобно как классическими осциллограммами.

Классификация и виды

Различают два основных вида осциллографов:

  • аналоговые — аппараты для измерения средних сигналов;
  • цифровые — приборы преобразовывают получаемое значение измерений в «цифровой» формат для дальнейшей передачи информации.

По принципу действия существуют следующая классификация:

  1. Универсальные модели.
  2. Специальное оборудование.

Наиболее популярными являются универсальные устройства . Эти осциллографы используют для анализа различных видов сигналов:

  • гармонических;
  • одиночных импульсов;
  • импульсных пачек.

Универсальные приборы предназначены для разнообразных электрических устройств. Они позволяют измерять сигналы в диапазоне от нескольких наносекунд. Погрешность измерений составляет 6-8%.

Универсальные осциллографы делятся на два основных вида:

  • моноблочные — имеют общую специализацию измерений;
  • со сменными блоками — подстраиваются под конкретную ситуацию и тип прибора.

Специальные устройства разрабатываются под определённый вид электрической техники. Так существуют осциллографы для радиосигнала, телевизионного вещания или цифровой техники.

Универсальные и специальные устройства делятся на:

  • скоростные – применяются в быстродействующих приборах;
  • запоминающие — аппараты, сохраняющие и воспроизводящие ранее сделанные показатели.

При выборе устройства следует внимательно изучить классификации и виды, чтобы приобрести прибор под конкретную ситуацию.

Устройство и основные технические параметры

Каждый прибор имеет ряд следующих технических характеристик:

  1. Коэффициент возможной погрешности при измерении напряжения (у большинства приборов это значение не превышает 3%).
  2. Значение линии развёртки устройства — чем больше эта характеристика, тем дольше временной промежуток наблюдения.
  3. Характеристика синхронизации, содержащая в себе: диапазон частот, максимальные уровни и нестабильность системы.
  4. Параметры вертикального отклонения сигнала с входной ёмкостью оборудования.
  5. Значения переходной характеристики, показывающие время нарастания и выброс.

Помимо перечисленных выше основных значений, у осциллографов присутствуют дополнительные параметры, в виде амплитудно-частотная характеристики, демонстрирующей зависимость амплитуды от частоты сигнала.

Цифровые осциллографы также обладают величиной внутренней памяти. Этот параметр отвечает за количество информации, которую аппарат может записать.

Как выполняются измерения

Экран осциллографа поделён на небольшие клетки, которые называются делениями. В зависимости от прибора каждый квадрат будет равен определённому значению. Наиболее популярное обозначение: одно деление – 5 единиц. Также на некоторых приборах присутствует ручка для управления масштабом графика, чтобы пользователям было удобнее и точнее производить измерения.

Прежде чем начать измерение любого рода следует присоединить осциллограф к электрической цепи. Щуп подключается на любой из свободных каналов (если в приборе, больше чем 1 канал) или на генератор импульсов, при его наличии в устройстве. После подключения на дисплее аппарата появятся различные изображения сигналов.

Если сигнал получаемый прибором обрывистый, то проблема заключается в присоединении щупа. Некоторые из них оборудованы миниатюрными винтами, которые необходимо закрутить. Также в цифровых осциллографах решает проблему обрывистого сигнала фикция автоматического позиционирования.

Источник

ИЗМЕРЕНИЕ НАПРЯЖЕНИЙ И ТОКОВ И ЧАСТОТ ПРИ ПОМОЩИ

ЭЛЕКТРОННОГО ОСЦИЛЛОГРАФА

11.1. Цель работы.

11.1.1. Изучить устройство и правила эксплуатации электронных осциллографов;

11.1.2. Изучить методы измерения с помощью осциллографа амплитуды непрерывных и импульсных сигналов.

11.2. Основные теоретические положения.

В основу работы электронного осциллографа (ЭО) положено управление движением пучка электронов воздействием на него исследуемым напряжением. Структурная схема ЭО осциллографа дана на рис. 11.1.

Исследуемое напряжение является функцией времени, отображаемой в прямоугольных координатах графиком U = ¦(t). Две пары пластин ЭЛТ отклоняют луч в двух взаимно перпендикулярных направлениях, которые являются координатными осями. Для получения равномерной оси времени необходимо, чтобы луч электронов отклонялся в горизонтальном направлении с постоянной скоростью. С этой целью к горизонтально отклоняющим пластинам (Х) подводят от генератора пилообразное напряжение. Исследуемое напряжение подается к вертикально — отклоняющим пластинам ЭЛТ. Наблюдаемое на экране ЭЛТ изображение называется осциллограммой.

Чувствительность ЭЛТ определяется по формуле:

S = DL/DU, мм/В,

где DL — смещение пятна на экране ЭЛТ при изменении напряжения (U) на пластинах Y на 1В.

Для получения неподвижного изображения на экране ЭЛТ необходимо его синхронизировать напряжением генератора развертки, т.е. добиться равенства периода развертки периоду исследуемого сигнала.

11.2.1. Измерение напряжений.

Для измерения напряжений осциллографом применяется метод сравнения и метод калиброванной чувствительности канала вертикального отклонения (Y).

Первый метод основан на линейной зависимости между напряжением, поданным на вход осциллографа, и получаемым отклонением луча ЭЛТ по вертикали. Процесс измерения напряжения методом сравнения сводится к выполнению двух операций:

а) получению изображения измеряемого напряжения Uх и измерению размаха изображения по вертикали Lх;

б) замене измеряемого напряжения известным (калиброванным) напряжением и регулировкой его до получения изображения с размахом по вертикали Lх, близкого к Lх. При этом:

Uх = Uк —- * Кд,

где Кд — коэффициент деления входного делителя.

В качестве источника известного напряжения используется специальный источник, помещаемый в осциллограф, называемый калибратором напряжения.

Для измерения напряжений методом калиброванной чувствительности на вход канала У подают калиброванное переменное напряжение Uк и с помощью плавной регулировки (ручкой «Усиление») коэффициента усиления канала У добиваются получения на экране ЭЛТ нужного размаха напряжения Lк. При этом номинальная чувствительность S определится как:

В дальнейшем ручку «Усиление» вращать нельзя.

После калибровки на вход Y осциллографа подают измеряемое напряжение Uх, замеряют размер по вертикали Lх и вычисляют искомое значение напряжения:

Точность измерения напряжений с помощью осциллографа составляет 5. 10%.

11.2.2. Измерение частоты переменного тока методом фигур Лиссажу.

Измерение частоты с помощью осциллографа производится путем сравнения частоты исследуемого сигнала с частотой образцового генератора. Для определения частоты методом фигур Лиссажу напряжение образцовой частоты f подается на вход «У» усилителя вертикального отклонения, а напряжение неизвестной частоты f — на вход «Х» усилителя горизонтального отклонения. Внутренний генератор развертки осциллографа выключается. Изменением образцовой частоты добиваются получения неподвижной фигуры Лиссажу. Фигуры зависят от числовых и фазовых соотношений частот.

Для определения отношения сравниваемых частот через наблюдаемую фигуру мысленно проводят две взаимно-перпендикулярные линии — вертикальную и горизонтальную, не проходящие через узлы фигуры, и подсчитывают число пересечений каждой линии с фигурой. Отношение числа пересечений горизонтальной линии Nг и вертикальной линии Nв с фигурой равно отношению периодов сигналов, поданных на отклоняющие пластины ЭЛТ:

или отношению частот этих сигналов:

Синусоидальную развертку не рекомендуется применять при кратности частот свыше 10 ввиду трудности подсчета точек пересечения.

Примеры фигур Лиссажу (см. рис. 11.2.):

11.3. Проведение опыта.

11.3.1. Для проведения измерений напряжения и тока при помощи осциллографа соберите схему поверки ваттметра косвенным методом (Рис. 3.3.) и подключите осциллограф поочередно к выводам R17, R18, R19 (для измерения напряжения) и к выводам токовой обмотки ваттметра W1 или к выводам амперметра А1 (для измерения тока). Изменяя напряжение, установите такую величину тока и напряжения, которые можно достаточно точно измерить.

Читайте также:  Пожар от тока утечки

11.3.2. Повторить измерения с различными величинами сопротивлений (R17, R18, R19). Сравните результаты измерений, полученные с помощью осциллографа с показаниями приборов.

11.3.3. Для измерения частоты необходимо собрать схемы согласно рис.11.3. Включить сиенд тумблером «СЕТЬ». Для включения ГНЧ необходимо установить тумблер S4 в верхнее положение.

Измеряемой является частота, получаемая с выхода генератора низкой частоты. Включите осциллограф и генератор. Плавно регулируя частоту выходного сигнала генератора добейтесь устойчивого рисунка на экране осциллографа и произведите подсчет вершин на вертикальной и горизонтальной сторонах рисунка.

11.3.3. Повторите опыты, поворачивая ручку «Частота» до получения на экране осциллографа следующего устойчивого изображения.

11.3.4. По окончании работы верните все аппараты в исходное положение и отключите стенд.

11.4. Обработка результатов опыта.

11.4.1. Произведите вычисление величины исследуемой частоты по формуле:

где — частота сигнала на входе У;

fХ — частота сигнала на входе Х;

m — число вершин в горизонтальной плоскости;

n — число вершин в вертикальной плоскости.

11.5. Вопросы для самопроверки.

11.5.1. Какие параметры синусоидальных сигналов можно измерять электронным осциллографом?

11.5.2. Для какой цели применяют в осциллографе синхронизирующее напряжение?

11.5.3. Для какой цели в осциллографе применяют развертывающее напряжение?

11.5.4. Какую форму имеет напряжение на выходе генератора развертки?

11.5.5. На какие электроды ЭЛТ подается исследуемое напряжение?

11.5.6. Какие способы применяются для измерения частоты осциллографом?

11.5.7. Исходя из какого условия определяют частоту неизвестного сигнала при помощи осциллографа?

Источник

Как следует пользоваться осциллографом

Как следует пользоваться осциллографом

Человек, знающий как пользоваться осциллографом, получает прекрасный инструмент. С помощь него можно искать неисправности в различных электронных устройствах, настраивать и отлаживать электрические схемы с переменными сигналами сложной формы.

А также контролировать их форму, временные и фазовые соотношения. Профессиональному разработчику и регулировщику без него не обойтись, но и на бытовом уровне этот прибор может быть очень полезен.

Конструкция и принцип действия осциллографа

Конструкция и принцип действия осциллографа

Но вне зависимости от модели и конструкции главной особенностью осциллографа, отличающей его от других измерительных приборов, является то, что он позволяет визуально наблюдать форму переменного электрического сигнала в динамике.

Классическая конструкция осциллографа представляет собой индикатор на электронно-лучевой трубке. На горизонтальную отклоняющую систему которой подается пилообразная развертка от встроенного генератора, а на вертикальную — изучаемый сигнал.

Если входной сигнал периодический, то можно подобрать такую частоту горизонтальной развертки, чтобы она была кратна частоте периодического сигнала. Тогда на экране можно будет наблюдать неподвижную картину, повторяющую форму входного напряжения. Эта операция называется синхронизацией, а максимальная частота, с которой может работать прибор, является одной из его основных характеристик.

Постоянное напряжение на индикаторе будет отображаться в виде линии на уровне, зависящим от амплитуды, и осциллограф в этом случае работает как вольтметр.

Для удобства измерения на стекло индикатора нанесена градуировочная сетка с единицей измерения по вертикали (Y) амплитуды в вольтах, а по горизонтали (X) длительности (периода) в мс/мкс как обратной величины частоты. Соотношение периода колебаний и их частоты описывается формулами f = 1/t и t=1/f, где f — частота, а t — длительность. Периоду 1 мс (ms) соответствует частота 1 кГц, а 1 мкс (µs) — 1 МГц.

Подключение прибора

Для подключения осциллографа к исследуемой электрической цепи прибор комплектуется коаксиальным кабелем со щупом, содержащим «земляной» вывод. Оснащенный, как правило, зажимом типа «крокодил». А также сигнальный провод («фаза»), обычно с игольчатым контактом, позволяющим воткнуться в контактную площадку маленького размера.

Щупы могут быть сменными. Помимо стандартных, популярны аттенюаторные щупы, содержащие дополнительный резистор большого сопротивления. Он нужен для ослабления входного сигнала и расширения возможностей по измерению высоких напряжений без риска сжечь входной усилитель.

Управление и настройка осциллографа

Управление и настройка осциллографа

У подавляющего большинства моделей настройка организована таким образом, что одна группа устанавливает амплитудные режимы, а вторая управляет разверткой.

Самым крупным и заметным органом амплитудной настройки является регулятор масштаба сигнала по оси Y, маркируемый «V/дел». Его функция — установить масштаб таким образом, чтобы изображение соответствовало размеру экрана.

Например, для измерения сигналов амплитудой 30V необходимо установить масштаб 10V на деление, тогда сигнал на экране будет достигать 3 делений. Конструктивно регулировка выполнена в виде вращающейся рукоятки со ступенчатым переключением. Имеется риска, указывающая на значение, выбранное из тех, которые расположены вокруг рукоятки.

Обычно присутствует еще дополнительная рукоятка плавной подстройки, скомпонованная с основной. Второй по важности орган управления — регулятор вертикального сдвига, перемещающий изображение сигнала вверх-вниз по вертикали. Это нужно как для калибровки прибора, так и для более точного измерения амплитуды. Смещение позволяет использовать для измерения весь экран и совмещать сигнал с линиями сетки.

На любом осциллографе также имеется тумблер переключения с прямого входа на емкостной (через конденсатор). Использование последнего позволяет отсечь постоянную составляющую и работать только с переменной составляющей сигнала. Что очень полезно, например, при оценке уровня шумов блока питания.

Настройка осциллографа, как пользоваться

В группе управления разверткой центральным элементом является переключатель скорости развертки, маркируемый «Время/дел». Конструктивно он аналогичен переключателю масштаба сигнала, с ручками ступенчатого переключения и плавной подстройки. Этим переключателем выставляется значение в ms или µs на деление в соответствии с частотой исследуемого сигнала таким образом, чтобы на экране помещался один или несколько периодов.

Всегда имеется рукоятка горизонтального сдвига луча, маркируемая обычно стрелками вправо-влево. Используя эту рукоятку, можно подвести исследуемый участок под линии сетки для более точного измерения.

Все модели осциллографов имеют возможность вместо внутреннего генератора использовать внешний источник развертки. Именно с его помощью на экране получаются фигуры Лиссажу, по которым можно видеть соотношение частот и фаз двух сисусоид. Вход для внешней развертки маркируется «Вход Х» и располагается в группе управления разверткой.

Отдельную группу составляют настройки синхронизации. В нее входят переключатель «внутренняя-внешняя синхронизация», вход для внешней синхронизации и ручка точной подстройки.

Помимо этого, присутствуют технические органы управления:

  • кнопка включения/выключения прибора;
  • регулировка яркости и фокусировки луча электронно-лучевой трубки;
  • включение подсветки шкалы экрана.

Измерение сигнала

Измерение сигнала осциллографа

Порядок измерения параметров периодического сигнала следующий:

  • Зажим «земля» фиксируется на общем проводе схемы, а сигнальный щуп присоединятся в контролируемое место схемы, где будут сниматься показания.
  • С помощью регулятора устанавливаем масштаб по вертикали таким образом, чтобы полезная информация помещалась на экране целиком и занимала большую ее часть.
  • Регулятором частоты добиваемся того, чтобы на экране помещалось несколько периодов сигнала.
  • Точной подстройкой частоты добиваемся стабильного изображения, чтобы картинка не плыла.
  • Теперь, когда на экране установлено стабильное изображение, можно определить по экранной шкале его форму, амплитуду и период.
  • Для более точного измерения можно использовать ручки смещения по вертикали и по горизонтали, подводя интересующие элементы изображения под перекрестье линий сетки.

Для того чтобы быть уверенным в точности показаний, необходимо соблюдать несколько простых требований:

  • после включения осциллографа на ЭЛТ необходимо дать ему прогреться в течение 10-15 минут;
  • после каждого включения прибор необходимо откалибровать. Большинство моделей имеет встроенный калибровочный генератор, выдающий прямоугольный сигнал с фиксированной амплитудой и частотой;
  • прибор должен быть заземлен;
  • сигнал с очень низкой частотой (до 10 Гц) при подключении через емкостный вход сильно искажается. Работа в этом режиме не рекомендуется.

Лучший способ обучения — практическая работа. Получив первые навыки работы с простым аналоговым осциллографом, в дальнейшем можно будет приступать к более сложным устройствам. Которые будут иметь дополнительные функции и расширенные возможности. Главное — наличие желания и интереса к электронной технике.

Как пользоваться осциллографом — видео

Уникальная статья на нашем сайте — electricity220.ru.

Источник