Меню

Изменение тока в обмотке возбуждения



Изменение тока в обмотке возбуждения

При постоянной величине механической нагрузки на валу двигателя активная мощность, потребляемая двигателем из сети, остается также постоянной (если не учитывать разницы в величине потерь мощности в самом двигателе). Отсюда следует, что при любом cos φ активная составляющая тока I1, потребляемого двигателем из сети, будет постоянной (рис. 286):

Рис. 286. Векторная диаграмма синхронного двигателя при М = const и Iр = var
Рис. 286. Векторная диаграмма синхронного двигателя при М = const и Iр = var

В создании результирующего магнитного потока синхронного двигателя принимают участие как обмотка статора, так и обмотка ротора. Доля участия той или иной обмотки в создании результирующего магнитного потока зависит от величины тока этих обмоток. Так же как у трансформаторов и асинхронных двигателей, результирующий поток синхронного двигателя при постоянном напряжении (Uc = const) остается практически постоянным. Поэтому при изменении тока возбуждения синхронного двигателя ток статорной обмотки, т. е. ток, потребляемый двигателем из сети, будет также изменяться.

На рис. 287 дана векторная диаграмма магнитных потоков синхронного двигателя. Результирующий магнитный поток Φрез индуктирует в обмотке статора двигателя э.д.с. Eрез, отстающую от потока на 90°.

Рис. 287. Векторная диаграмма магнитных потоков синхронного двигателя
Рис. 287. Векторная диаграмма магнитных потоков синхронного двигателя

Если сопротивления обмотки статора принять равными нулю, то э.д.с. Ерез будет уравновешена напряжением сети U. Если пренебречь влиянием гистерезиса и вихревых токов, то магнитный поток статора (якоря) Φя будет совпадать по фазе с током якоря I.

Геометрическая сумма магнитных потоков статора Φя и ротора Φв даёт результирующий поток Φрез.

На диаграмме магнитные потоки представлены для трех случаев: ток якоря I1 совпадает по фазе с напряжением U; ток якоря I2 отстает от напряжения U, и ток якоря I3 опережает по фазе напряжение U.

Из рис. 287 видно, что при недовозбуждении двигатель работает как индукционная катушка, потребляя из сети ток I2, отстающий на фазе от напряжения сети Uc на угол φ2. Активная составляющая тока равна I2 cos φ2. С увеличением тока возбуждения статорный ток будет уменьшаться и при φ = 0 величина тока I1 будет наименьшей. Если продолжать увеличивать ток возбуждения, то двигатель начнет работать с опережающим током I3, т. е. будет подобен емкости (конденсатору). Активная составляющая тока I3 cos φ3 будет по-прежнему постоянна, но за счет увеличения реактивной составляющей тока I3 sin φ3 статорный ток будет увеличиваться.

Способность перевозбужденного синхронного двигателя работать с опережающим током часто используют для увеличения коэффициента мощности электрической установки.

Зависимость тока I в обмотке статора синхронного двигателя от тока возбуждения Iв при постоянном вращающем моменте М и постоянном напряжении U на зажимах двигателя, т. е.

выражается при помощи так называемых U-образных кривых, которые даны на рис. 288.

Рис. 288. U-образные характеристики синхронного двигателя
Рис. 288. U-образные характеристики синхронного двигателя

Представленные кривые показывают, что при определенной мощности на валу двигателя минимальная величина статорного тока будет иметь место при определенном токе возбуждения, соответствующем работе с cos φ = 1. Любые изменения тока возбуждения (увеличение или уменьшение) будут сопровождаться увеличением статорного тока.

В некоторых физических приборах, звуковом кино, телемеханических установках и других устройствах, там, где требуется постоянная скорость вращения, нашли себе применение маломощные, (порядка нескольких десятков или сотен ватт) реактивные синхронные двигатели. На статоре этих двигателей располагается обмотка переменного тока, создающая вращающееся магнитное поле. Ротор синхронных реактивных двигателей явнополюсный, имеет короткозамкнутую пусковую обмотку, но не имеет обмотки возбуждения. Различные конструкции роторов синхронных реактивных двигателей показаны на рис. 289.

Рис. 289. Различные конструкции роторов синхронных реактивных двигателей: 1 - сталь, 2 - алюминий
Рис. 289. Различные конструкции роторов синхронных реактивных двигателей: 1 — сталь, 2 — алюминий

За счет асинхронного момента ротор двигателя разгоняется до 95-97% синхронной скорости.

Магнитные линии вращающегося магнитного поля статора стремятся пройти по пути с меньшим магнитным сопротивлением. Поэтому ротор будет поворачиваться так, чтобы оси полюсов совпадали с направлением магнитных линий поля статора. Следовательно, ротор будет вращаться синхронно с полем статора. Вхождение ротора в синхронизм происходит толчком под влиянием реактивного момента за счет которого в дальнейшем работает двигатель.

Источник

Изменение возбуждения. V-oбразные кривые.

Рассмотрим параллельную работу генератора с сетью очень большой мощности при изменении тока в его обмотке возбуждения.

Допустим, что после включения генератора на параллельную работу он работает вхолостую и его э.д.с уравновешивает напряжение сети ; тогда в его статорной обмотке не будет никакого тока. Если теперь увеличить ток в обмотке возбуждения (перевозбудить машину), то напряжение сети не будет уравновешивать э.д.с. , появится избыток э.д.с. (рис. 4-65).

Избыточная э.д.с. вызовет ток в обмотках всех параллельно работающих машин. Его можно принять равным , так как сопротивлением. Обмоток всех других машин можно пренебречь, как и активным сопротивлением рассматриваемой машины. Угол θ при этом не изменится (θ = 0).

Ток есть реактивный ток. Он будет отставать от , а следовательно, и от напряжения генератора Uг на , как это показано на рис. 4-65. Этот ток будет тем больше, чем больше машина перевозбуждена и чем меньше сопротивление xc.

Рис. 4-65. Перевозбуждение машины.

При уменьшении тока возбуждения (при недовозбуждении) напряжение сети будет больше э.д.с. (рис. 4-66). Следовательно, в цепи обмоток параллельно работающих машин будет действовать э.д.с. , которая также создает реактивный ток , но теперь этот ток будет опережать напряжение генератора на , как показано на рис. 4-66.

Рис. 4-66. Недовозбуждение машины.

К тому же самому мы придем, если учтем выводы, полученные нами из рассмотрения реакции якоря в синхронном генераторе (§ 4-3,а).

Так как результирующий поток в машине, как мы выяснили, при Uc = const должен быть постоянным, то при перевозбуждении реакция якоря должна быть размагничивающей. Такую реакцию якоря в генераторе создает отстающий ток. Следовательно, при перевозбуждении генератор работает с отстающим током.

При недовозбуждении для сохранения результирующего потока неизменным реакция якоря должна быть намагничивающей. А такую реакцию якоря создает опережающий ток. Следовательно, при недовозбуждении генератор работает с опережающим током.

То же самое будем иметь при изменении возбуждения генератора, работающего с нагрузкой.

На рис. 4-67 представлена диаграмма генератора, работающего с различными токами и cos φ, но при постоянном напряжении и постоянной мощности, отдаваемой в сеть.

Рис. 4-67. Диаграммы генератора при различных возбуждениях (при U = const и Р = const).

Рассмотрим сначала работу генератора стоком I и cos φ = l. Проекция на линию 0А, перпендикулярную к , равна . Следовательно, эта проекция при постоянных напряжении U и синхронном сопротивлении хс может служить мерой мощности машины, равной .

Если при постоянной мощности (Р = Рэм = const) изменить возбуждение, то изменится э.д.с. Е, но ее проекция на линию, перпендикулярную к U, при этом должна остаться неизменной. Таким образом, при изменении возбуждения конец вектора э.д.с. будет скользить по прямой АВ.

Из рис. 4-67 следует, что при перевозбуждении генератор работает с отстающим током, а при недовозбуждении ) — с опережающим током.

Ток всегда направлен под углом к . Конец вектора при изменении возбуждения будет скользить по прямой CD, так как активная составляющая тока cos φ = const.

Переход от одного установившегося режима к другому при изменении возбуждения протекает следующим образом (рис. 4-67). Допустим, например, что э.д.с. E увеличивается до . Угол θ не может измениться столь же быстро до θ’ вследствие инерции вращающихся частей. Увеличение Е при том же значении угла θ вызовет увеличение электромагнитной мощности, которая в течение некоторого промежутка времени будет больше мощности на валу. Поэтому ротор должен замедлить свое вращение. Угол θ при этом должен уменьшаться. После нескольких затухающих колебаний получается установившийся режим работы при новых значениях и θ’, при которых электромагнитная мощность снова соответствует мощности на валу.

В течение переходного процесса, связанного с небольшим изменением угловой частоты ротора, регуляторы частоты первичных двигателей обычно не успевают подействовать, так как их чувствительность относительно невелика.

Читайте также:  Кт827а блок питания с защитой по току от 0 30в

Следовательно, изменение возбуждения вызовет лишь изменение реактивной составляющей тока.

Для изменения активной составляющей тока или активной мощности, отдаваемой в сеть, необходимо изменить мощность, создаваемую первичным двигателем. Например, для увеличения мощности с Р до Р‘ нужно соответственно увеличить мощность на валу машины. Тогда вектор Е при изменении возбуждения будет скользить по линии АВ‘ (рис. 4-67). Линии , АВ‘, параллельные вектору , называются линиями постоянной мощности синхронного генератора.

Опытным путем можно найти зависимости тока статора от тока возбуждения I = f(Iв) при U = const и Р = const. Соответствующие кривые для различных значений Р показаны на рис. 4-68.

Рис. 4-68. V-образные кривые генератора.

Вследствие их сходства с латинской буквой V они называются V-образными кривыми. На рис. 4-68 видно, что для каждой мощности существует такое возбуждение, при котором ток статора синхронного генератора будет минимальным. Этому току соответствует cosφ = l. На рис. 4-68 кривая минимальных токов показана пунктиром. Она, очевидно, представляет собой регулировочную характеристику при cosφ = l.

V-образные кривые могут быть также найдены при помощи векторных диаграмм, для построения которых должны быть известны характеристика холостого хода и параметры машины.

4-7.3. Параллельная работа двух соизмеримых по мощности генераторов

Рассмотрим параллельную работу генераторов, имеющих одинаковые номинальные величины и одинаковые параметры. Будем считать, что их общая нагрузка определяется двумя векторами U и I, показанными на рис. 4-69.

Рис. 4-69. К параллельной работе генераторов одинаковой мощности (изменение возбуждения).

Допустим, что мощности, подведенные к генераторам со стороны их первичных двигателей, равны между собой и во время работы остаются постоянными и что общее напряжение U также поддерживается постоянным.

Если э.д.с. первого и второго генераторов равны друг другу: , то они будут работать с одинаковыми токами и . При этом их cos φ равны между собой и в то же время равны cos φ общей нагрузки. Оба генератора, следовательно, работают с одинаковыми активной и реактивной мощностями.

Пусть теперь возбуждение первого генератора стало больше, а второго меньше. На рис. 4-69 показано, что при этом cos φ генераторов изменятся, так же, как и токи. Первый генератор, имеющий э.д.с. будет работать с низким cos φ, а второй генератор, имеющий э.д.с. , будет работать с cos φ = 1. Следовательно, всю необходимую для внешней сети реактивную мощность будет вырабатывать только первый генератор ( ).

При дальнейшем увеличении э.д.с. первого генератора до и уменьшении э.д.с. второго генератора до токи их будут и . В этом случае cos φ первого генератора станет еще меньше, тогда как cos φ второго генератора будет соответствовать опережающему току. Первый генератор будет доставлять реактивный ток (или реактивную мощность) не только сети, но и второму генератору, работающему с недовозбуждением.

Таким образом, улучшение cos φ одного из генераторов влечет за собой ухудшение cos φ другого генератора. Путем изменения возбуждения можно как угодно распределять реактивную мощность между параллельно работающими синхронными машинами.

Ранее было показано, что изменение возбуждения параллельно работающих генераторов влечет за собой изменение их реактивных токов, тогда как их активные токи остаются неизменными соответственно практически неизменным механическим мощностям первичных двигателей.

Для изменения нагрузки генератора, т. е. отдаваемой им активной мощности, необходимо воздействовать на первичный двигатель, чтобы создаваемый им вращающий момент, приложенный к валу генератора, изменился. Предположим, что мы увеличили момент на валу одного из генераторов; тогда ротор его забежит несколько вперед, угол θ возрастет и генератор будет работать с большей нагрузкой. Если при этом общая нагрузка сети остается постоянной и если необходимо иметь неизменной частоту тока, то увеличение нагрузки первого генератора должно сопровождаться одновременным уменьшением нагрузки второго генератора. Последнее достигается также путем соответствующего воздействия на его первичный двигатель.

Следовательно, для перевода нагрузки с одного генератора на другой необходимо мощность на валу одного генератора уменьшать, а на валу второго — увеличивать. Если при этом требуется сохранить прежнее напряжение, то нужно одновременно воздействовать и на возбуждение обоих генераторов.

Обратимся к рис. 4-70, который иллюстрирует процесс перевода нагрузки с одного генератора на другой.

Рис. 4-70. К параллельной работе генераторов одинаковой мощности (перевод нагрузки с одного генератора на другой).

Допустим, что вначале генераторы имеют одинаковые э.д.с. и токи как активные, так и реактивные ( ). Увеличим вращающий момент на валу первого генератора; тогда вектор отклонится несколько влево соответственно увеличению угла θ1 (точка А). Вращающий момент на валу второго генератора уменьшим; тогда вектор э.д.с. отклонится вправо соответственно уменьшению угла θ2 (точка В). Далее нужно сделать одинаковыми cos φ генераторов. Для этот необходимо увеличить возбуждение первого генератора, чтобы конец вектора э.д.с. , переместился в точку С, и уменьшить возбуждение второго генератора, чтобы конец вектора э.д.с. переместился в точку D. При этом будут совпадать по фазе.

Дальнейшее должно быть понятным из рис. 4-70. Зигзагообразная линия вверх от соответствует движению вектора э.д.с. первого генератора. Зигзагообразная линия вниз от соответствует движению вектора э.д.с. второго генератора. При и всю нагрузку несет только первый генератор. Напряжение при этом сохраняет свое начальное значение. При и второй генератор не несет никакой нагрузки, ток в его статорной обмотке . Следовательно, отключение второго генератора от общих шин не вызовет никаких нежелательных явлений, так как при этом не будет резкого изменения режима работы первого генератора.

4-7.4. Электромагнитная и синхронизирующая мощности явнополюсной машины

В предыдущем при определении электромагнитной и синхронизирующей мощностей мы исходили из упрощенной диаграммы, не учитывающей ни насыщения машины, ни различия магнитных проводимостей по ее продольной и поперечной осям.

Найдем теперь выражения для Рэм и Pc явнополюсной машины с учетом различия ее параметров по продольной и поперечной осям. При этом будем также пренебрегать активным сопротивлением обмотки статора и насыщением магнитной цепи машины.

Обратимся к видоизмененной диаграмме явнополюсной машины, представленной на рис. 4-71.

Рис. 4-71. Видоизмененная диаграмма явнополюсной машины.

Из этой диаграммы имеем:

Имея в виду, что

из рис. 4-71 найдем:

Подставляя найденные значения в уравнение для Рэм, после преобразований получим:

Полученное выражение для электромагнитной мощности явнополюсной машины показывает, что эта мощность зависит не только от возбуждения, но и от различия хd и xq.

Из (4-75) следует, что явнополюсная машина может работать без возбуждения, т. е. при E=0. В этом случае она называется реактивной машиной, работа которой будет рассмотрена в последующем (§ 4-10).

Разделив (4-75) на синхронную угловую скорость, получим уравнение для электромагнитного вращающего момента, развиваемого явнополюсной машиной:

Второй член правой части этого уравнения равен так называемому реактивному моменту:

Равенства (4-75) и (4-76), очевидно, применимы и для неявнополюсной машины. Для этой машины xq можно считать равным xd , поэтому равенство (4-75) будет точно такое же,

как и ранее полученное равенство (4-69), где хc = хd.

В соответствии с (4-75) на рис. 4-72 построена кривая, выражающая зависимость Рэм от угла θ, т. е. угловая характеристика явнополюсного генератора.

Рис. 4-72. Угловая характеристика явнополюсной машины.

Продифференцировав равенство (4-75) по углу θ, получим выражение для удельной синхронизирующей мощности явнополюсной машины:

Кривая Pc = f(θ) также показана на рис. 4-72.

По предложению проф. Г.Н. Петрова угловую характеристику и максимальную электромагнитную мощность Рэм можно определить с учетом насыщения и активного сопротивления обмотки якоря следующим образом: надо построить несколько регулировочных характеристик Iв = f(I) при U = const и cos φ = const для различных cos φ и кривые θ = f(I) при тех же условиях; затем соответственно номинальному току возбуждения Iв.н = const провести линию, параллельную оси абсцисс; тогда точки пересечения этой линии с указанными кривыми дают величины, необходимые для построения угловой характеристики (регулировочные характеристики и кривые θ = f(I) для различных cos φ должны быть построены при помощи векторных диаграмм и характеристики холостого хода).

Читайте также:  Схема как провести ток по дому

4-7.5. Статическая перегружаемость синхронной машины

Статическая перегружаемость S синхронной машины, так же как и предел ее статической устойчивости, определяется отношением

Это отношение представляет собой долевое значение максимальной электромагнитной мощности при Uн и Iв.н, которое для неявнополюсной машины можно выразить при помощи равенства (4-78) следующим образом:

где и — кратность тока короткого замыкания при номинальном возбуждении ( — э.д.с. по спрямленной характеристике холостого хода при Iв.н) или

где ОКЗ = fк0 — кратность тока короткого замыкания при возбуждении холостого хода (см. § 4-3,а). (Согласно ГОСТ 533-51 на “Генераторы электрические паротурбинные двухполюсные (турбогенераторы)» S не должна быть ниже 1,7.)

Полученное выражение, которое обычно используется при практических расчетах, является приближенным, потому что оно было выведено без учета активного сопротивления обмотки статора и насыщения магнитной цепи машины.

Активным сопротивлением обмотки статора в обычных случаях можно пренебречь, так как оно оказывает ничтожное влияние на Pэм.м. Насыщение магнитной цепи в небольшой степени влияет на Pэм.м, повышая его значение на несколько процентов и увеличивая угол θ, соответствующий Рэм.м до 100 110°.

Если не учитывать насыщения, то Рэм.м явнополюсной машины, как следует из рис. 4-72, получается при θм

Дата добавления: 2016-01-29 ; просмотров: 1720 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

СПОСОБЫ ВОЗБУЖДЕНИЯ ГЕНЕРАТОРОВ ПОСТОЯННОГО ТОКА

Режимы работы машины постоянного тока

Электрическая машина постоянного тока может работать в режиме генератора, двигателя и электромагнитного тормоза.

Если к зажимам обмотки вращающегося якоря присоединить нагрузку, то под действием ЭДС якоря в цепи возникает ток. Машина будет работать в режиме генератора. Напряжение на его зажимах меньше ЭДС якоря на величину падения напряжения на внутреннем сопротивлении якоря

В результате взаимодействия тока якоря и поля возбуждения в машине создается электромагнитный момент. Этот момент будет тормозным по отношению к моменту первичного двигателя, вращающего якорь (ротор).

Если подать напряжение (от какого-нибудь источника) на зажимы обмотки неподвижного якоря, то в цепи якоря начнет протекать ток. Взаимодействие этого тока с полем возбуждения приведет к появлению вращающего момента. Если этот момент больше тормозного момента на валу (вызванного трением в подшипниках, вентиляцией, нагрузкой), то ротор начнет раскручиваться и достигнет установившейся скорости. Машина будет работать в двигательном режиме. Приложенное к якорю напряжение будет больше ЭДС, индуцированной в обмотке якоря, на величину падения напряжения на внутреннем сопротивлении

Итак, одна и та же машина постоянного тока может работать как генератором, так и двигателем. Это есть подтверждение свойства обратимости электрических машин.

Если момент нагрузки (например, при подъеме груза) станет больше вращающего момента двигателя, то он сначала остановится, а затем начнет вращаться в обратном направлении. При этом ЭДС якоря изменит направление. Двигатель окажется в режиме электромагнитного тормоза. Теперь ток в цепи создается суммой прикладываемого напряжения и ЭДС якоря и может существенно возрасти.

Для перевода двигателя в режим электромагнитного тормоза нужно поменять полярность обмотки якоря. Изменяется направление момента, развиваемого машиной, и двигатель быстро затормаживается.

Генераторы постоянного тока могут быть выполнены с магнит­ным и электромагнитным возбуждением. Для создания магнитногопотока в генераторах первого типа используют постоянные магниты,

а в генераторах второго типа — электромагниты. Постоянные, магниты применяют лишь в машинах очень малых мощностей. Таким образом, электромагнитное возбуждение является наиболее широко используемым способом для создания магнитного потока. При этом способе возбуждения магнитный поток создается током, протекающим по обмотке возбуждения.

В зависимости от способа питания обмотки возбуждения генераторы постоянного тока могут быть с независимым возбужде­нием и с самовозбуждением.

При независимом возбуждении (рис. 143, а) обмотка возбуж­дения включается в сеть вспомогательного источника энергии по­стоянного тока. Для регулирования тока возбуждения Iв в цепи обмотки включено сопротивление rр. При таком возбуждении ток Iв не зависит от тока в якоре Iя.

Недостатком генераторов независимого возбуждения является потребность в дополнительном источнике энергии. Несмотря на то что этот источник обычно имеет малую мощность (несколько процентов мощности генераторов), необходимость в нем является большим неудобством, поэтому генераторы независимого возбуж­дения находят очень ограниченное применение только в машинах высоких напряжений, у которых питание обмотки возбуждения от цепи якоря недопустимо по конструктивным соображениям.

Генераторы с самовозбуждением в зависимости от включения обмотки возбуждения могут быть параллельного (рис. 143, б), по­следовательного (рис. 143, в) и смешанного (рис. 143, г) возбуж­дения.

У генераторов параллельного возбуждения ток мал (несколько процентов номинального тока якоря), и обмотка возбуждения имеет большое число витков. При последовательном возбуждении ток возбуждения равен току якоря и обмотка возбуждения имеет малое число витков.

При смешанном возбуждении на полюсах генератора помеща­ются две обмотки возбуждения — параллельная и последователь­ная.

Процесс самовозбуждения генераторов постоянного тока про­текает одинаково при любой схеме возбуждения. Так, например, в генераторах параллельного возбуждения, получивших наиболее широкое применение, процесс самовозбуждения протекает следую­щим образом.

Какой-либо первичный двигатель вращает якорь генератора, магнитная цепь (ярмо и сердечники полюсов) которого имеет не­большой остаточный магнитный поток Ф. Этим магнитным пото­ком в обмотке вращающегося якоря индуктируется э. д. с. Е, со­ставляющая несколько процентов номинального напряжения ма­шины.

Под действием э. д. с. Е в замкнутой цепи, состоящей из якоря и обмотки возбуждения, протекает ток Iв. Намагничивающая сила обмотки возбуждения Iвw (w— число витков) направлена согласно с потоком остаточного магнетизма, увеличивая магнитный поток машины Ф, что вызывает увеличение как э. д. с. в обмотке якоря Е, так и тока в обмотке возбуждения Iв. Увеличение последнего вызывает дальнейшее увеличение Ф, что в свою очередь увели­чивает Е и Iв.

Из-за насыщения стали магнитной цепи машины самовозбуж­дение происходит не беспредельно, а до какого-то определенного напряжения, зависящего от скорости вращения якоря машины и сопротивления в цепи обмотки возбуждения. При насыщении стали Магнитной цепи увеличение магнитного потока замедляется и про­цесс самовозбуждения заканчивается. Увеличение сопротивления в цепи обмотки возбуждения уменьшает как ток в ней, так и маг­нитный поток, возбуждаемый этим током. Поэтому уменьшается э.д. с. и напряжение, до которого возбуждается генератор.

Изменение скорости вращения якоря генератора вызывает из­менение э.д. с, которая пропорциональна скорости, вследствие чего Изменяется и напряжение, до которого возбуждается генератор.

Самовозбуждение генератора будет происходить лишь при определенных условиях, которые сводятся к следующим:

1. >Наличие потока остаточного магнетизма. При отсутствия этого потока не будет создаваться э. д. с. Е, под действием котором в обмотке возбуждения начинает протекать ток, так что возбуждение генератора будет невозможным. Если машина размагничена и не имеет остаточного намагничивания, то по обмотке возбуждения надо пропустить постоянный ток от какого-либо постороннего источника электрической энергии. После отключения обмотки возбуждения машина будет иметь вновь остаточный магнитный поток.

2. Обмотка возбуждения должна быть включена согласно с потоком остаточного магнетизма, т. е. так, чтобы намагничивающая сила этой обмотки увеличивала поток остаточного магнетизма.

При встречном включении обмотки возбуждения ее намагничивающая сила будет уменьшать остаточный магнитный поток и при длительной работе может полностью размагнитить машину. Если обмотка возбуждения оказалась включенной встречно, то необходимо изменить направление тока в ней, т. е. поменять ме­стами провода, подходящие к зажимам этой обмотки.

Читайте также:  Varta silver пусковой ток

3. Сопротивление цепи обмотки возбуждения должно быть чрезмерно большим, при очень большом сопротивлении цепи воз­буждения самовозбуждение генератора невозможно.

4. Сопротивление внешней нагрузки должно быть велико, так как при малом сопротивлении ток возбуждения будет также мал и самовозбуждения не произойдет.

39 ХАРАКТЕРИСТИКИ ГЕНЕРАТОРОВ ПОСТОЯННОГО ТОКА

Характеристики генератора определяют его рабочие свойства и представляют зависимость между основными величинами, которы­ми являются э. д. с. в обмотке якоря Е, напряжение на его зажи­мах и, ток в якоре Iя, ток возбуждения Iв и скорость вращения якоря п.

Характеристики представляют собой зависимости между двумя из указанных основных величин при неизменных остальных. Эти зависимости имеют различный вид для генераторов разных типов.

Снятие всех характеристик машины производится при постоянной скорости вращения якоря, так как при изменении скорости зна­чительно изменяются все характеристики генератора.

Характеристика холостого хода генератора представляет собой зависимость между э. д. с. в якоре и током возбуждения, снятую при отсутствии нагрузки и постоянном числе оборотов.

Для генераторов независимого возбуждения при отсутствий; нагрузки (холостой ход) ток в якоре равен нулю. Так как э.д.с, индуктированная в обмотке якоря, равна Е = СпФ, то при постоян­ной скорости вращения э. д. с. окажется прямо пропорциональной магнитному потоку. Поэтому в измененном масштабе характери­стика холостого хода представляет магнитную характеристику машины.

При Iв=0 магнитная цепь машины (главным образом ярмо) имеет некоторый остаточный магнитный поток Ф, который индукти­рует в обмотке якоря э.д. с. Е (рис. 144, а). Эта э.д.с. составляет несколько процентов (2—5%) номинального напряжения машины. С увеличением тока в обмотке возбуждения увеличивается как магнитный поток, так и э. д. с, индуктированная в обмотке якоря. Таким образом, при постоянном постепенном увеличении Iв увели­чивается и э.д.с. (кривая 1). Если после снятия восходящей ветви зависимости от точки А начать постепенно уменьшать ток возбуж­дения Iв, то э.д. с. также начнет уменьшаться, но за счет намагни­чивания стали нисходящая ветвь (кривая 2) пойдет несколько выше

восходящей ветви этой характеристики. Изменяя Iв не только по величине, но и по направлению, можно снять весь цикл перемагничивания стали машины.

Практически восходящая и нисходящая ветви магнитной харак­теристики имеют крайне незначительное расхождение, и за основ­ную характеристику принимается средняя зависимость (кривая 3).

На рис. 144, б показаны характеристики холостого хода, снятые при различных скоростях вращения якоря генератора.

Кривая 1 соответствует вращению якоря машины с номиналь­ной скоростью пн, указанной в паспорте генератора. Для всех ма­шин нормального типа точка номинального напряжения (точка А) находится на перегибе магнитной характеристики, что соответству­ет наиболее удачным рабочим и регулировочным свойствам гене­ратора.

Выбор точки номинального напряжения на линейном участке Магнитной характеристики приводит к резким изменениям напряже­ния на зажимах генератора при изменениях нагрузки, так как не­значительные изменения намагничивающей силы вызывают резкие изменения э.д. с. Выбор этой точки на пологом участке магнитной Характеристики приводит к ограничению регулирования напряжения на зажимах генератора, так как для изменения э. д. с. требуются очень большие изменения тока возбуждения.

При изменении скорости вращения якоря генератора изменит свое положение характеристика холостого хода, так как э. д. с. про­порциональна скорости. При n’>nн характеристика холостого хода пойдет выше (кривая 2), а при n»

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Синхронный электродвигатель с обмоткой возбуждения

Конструкция синхронного электродвигателя с обмоткой возбуждения

Синхронный электродвигатель с обмоткой возбуждения, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор — неподвижная часть, ротор — вращающаяся часть. Статор обычно имеет стандартную трехфазную обмотку, а ротор выполнен с обмоткой возбуждения. Обмотка возбуждения соединена с контактными кольцами к которым через щетки подходит питание.

Синхронный электродвигатель с обмоткой возбуждения

Принцип работы

Постоянная скорость вращения синхронного электродвигателя достигается за счет взаимодействия между постоянным и вращающимся магнитным полем. Ротор синхронного электродвигателя создает постоянное магнитное поле, а статор – вращающееся магнитное поле.

Работа синхронного электродвигателя основана на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора

Статор: вращающееся магнитное поле

На обмотки катушек статора подается трехфазное переменное напряжение. В результате создается вращающееся магнитное поле, которое вращается со скоростью пропорциональной частоте питающего напряжения. Подробнее о том, как посредством трехфазного напряжения питания образуется вращающееся магнитное поле можно прочитать в статье «Трехфазный асинхронный электродвигатель».

Взаимодействие магнитных полей статора и ротора синхронного двигателя с обмотками возбуждения

Ротор: постоянное магнитное поле

Обмотка ротора возбуждается источником постоянного тока через контактные кольца. Магнитное поле создаваемое вокруг ротора возбуждаемое постоянным током показано ниже. Очевидно, что ротор ведет себя как постоянный магнит, так как имеет такое же магнитное поле (в качестве альтернативы можно представить, что ротор сделан из постоянных магнитов). Рассмотрим взаимодействие ротора и вращающегося магнитного поля. Предположим вы придали ротору начальное вращение в том же направлении как у вращающегося магнитного поля. Противоположные полюса вращающегося магнитного поля и ротора будут притягиваться друг к другу и они будут сцепляться с помощью магнитных сил. Это значит, что ротор будет вращаться с той же скоростью, что и вращающееся магнитное поле, то есть ротор будет вращаться с синхронной скоростью.

Магнитное поле ротора синхронного двигателя с обмотками возбуждения

Синхронная скорость

Скорость с которой вращается магнитное поле может быть вычислена по следующему уравнению:

Ns = 60f/p,

  • где Ns – частота вращения магнитного поля, об/мин,
  • f – частота тока статора, Гц,
  • p – количество пар полюсов.

Это значит, что скорость синхронного электродвигателя может очень точно контролироваться изменением частоты питающего тока. Таким образом эти электродвигатели подходят для высокоточных приложений.

Прямой запуск синхронного двигателя от электрической сети

Почему синхронные электродвигатели не запускаются от электрической сети?

Если ротор не имеет начального вращения, ситуация отличается от описанной выше. Северный полюс магнитного поля ротора будет притягиваться к южному полюсу вращающегося магнитного поля, и начнет двигаться в том же направлении. Но так как ротор имеет определенный момент инерции, его стартовая скорость будет очень низкой. За это время южный полюс вращающегося магнитного поля будет замещен северным полюсом. Таким образом появятся отталкивающие силы. В результате чего ротор начнет вращаться в обратную сторону. Таким образом ротор не сможет запуститься.

Демпферная обмотка — прямой запуск синхронного двигателя от электрической сети

Чтобы реализовать самозапуск синхронного электродвигателя без системы управления между наконечниками ротора размещается «беличья клетка», которая также называется демпферной обмоткой. При запуске электродвигателя катушки ротора не возбуждаются. Под действием вращающегося магнитного поля, индуцируется ток в витках «беличьей клетки» и ротор начинает вращаться подобно тому, как запускаются асинхронные двигатели.

Когда ротор достигает своей максимальной скорости, подается питание на обмотку возбуждения ротора. В результате, как говорилось ранее, полюса ротора сцепляются с полюсами вращающегося магнитного поля и ротор начинает вращаться с синхронной скоростью. При вращении ротора с синхронной скоростью, относительное движение между белечьей клеткой и вращающимся магнитным полем равно нулю. Это значит, что отсутствует ток в короткозамкнутых витках, а следовательно «беличья клетка» не оказывает воздействия на синхронную работу электродвигателя.

Выход из синхронизма

Синхронные электродвигатели имеют постоянную скорость независящую от нагрузки (при условии что нагрузка не превышает макимально допустимую). Если момент нагрузки больше, чем момент создаваемый самим электродвигателем, то он выйдет из синхронизма и остановиться. Низкое напряжение питания и низкое напряжение возбуждения также могут быть причинами выхода двигателя из синхронизма.

Синхронный компенсатор

Синхронные электродвигатели могут также использоваться для улучшения коэффициента мощности системы. Когда единственной целью использования синхронных электродвигателей является улучшение коэффициента мощности их называют синхронными компенсаторами. В таком случае вал электродвигателя не соединяется с механической нагрузкой и вращается свободно.

Источник

Adblock
detector