Меню

Изменение силы тока катушки в колебательном контуре происходит по закону



Решение задач по теме «Электромагнитные колебания и волны» на примере разбора задач ЕГЭ

Презентация к уроку

Назад Вперёд

Цели урока:

  • Образовательные: обобщение и систематизация знаний по теме, проверка знаний, умений, навыков. В целях повышения интереса к теме работу вести с помощью опорных конспектов.
  • Воспитательные: воспитание мировоззренческого понятия (причинно-следственных связей в окружающем мире), развитие у школьников коммуникативной культуры.
  • Развивающие: развитие самостоятельности мышления и интеллекта, умение формулировать выводы по изученному материалу, развитие логического мышления, развитие грамотной устной речи, содержащей физическую терминологию.

Тип урока:систематизация и обобщение знаний.

Техническая поддержка урока:

  • Демонстрации:
  • Плакаты.
  • Показ слайдов с помощью информационно – компьютерных технологий.
  • Дидактический материал:
  • Опорные конспекты с подробными записями на столах.
  • Оформление доски:
  • Плакат с кратким содержанием опорных конспектов (ОК);
  • Плакат – рисунок с изображением колебательного контура;
  • Плакат – график зависимости колебаний заряда конденсатора, напряжения между обкладками конденсатора, силы тока в катушке от времени, электрической энергии конденсатора, магнитной энергии катушки от времени.

План урока:

1. Этап повторения пройденного материала. Проверка домашнего задания.
Четыре группы задач по теме:

  • Электромагнитные колебания.
  • Колебательный контур.
  • Свободные колебания. Свободные колебания – затухающие колебания
  • Характеристика колебаний.

2. Этап применения теории к решению задач.
3. Закрепление. Самостоятельная работа.
4. Подведение итогов.

Учитель: Темой урока является «Решение задач по теме: «Электромагнитные колебания и волны» на примере разбора задач ЕГЭ»

К доске вызываются 3 ученика для проверки домашнего задания.

– Задания по этой теме можно разделить на четыре группы.

Четыре группы задач по теме:

1. Задачи с использованием общих законов гармонических колебаний.
2. Задачи о свободных колебаниях конкретных колебательных систем.
3. Задачи о вынужденных колебаниях.
4. Задачи о волнах различной природы.

– Мы остановимся на решении задач 1 и 2 групп.

Урок начнем с повторения необходимых понятий для данной группы задач.

Электромагнитные колебания – это периодические и почти периодические изменения заряда, силы тока и напряжения.

Колебательный контур – цепь, состоящая из соединительных проводов, катушки индуктивности и конденсатора.

Свободные колебания – это колебания, происходящие в системе благодаря начальному запасу энергии с частотой, определяемой параметрами самой системы: L, C.

Скорость распространения электромагнитных колебаний равна скорости света: С = 3 . 10 8 (м/с)

Основные характеристики колебаний

Амплитуда (силы тока, заряда, напряжения) – максимальное значение (силы тока, заряда, напряжения): Im, Qm, Um
Мгновенные значения (силы тока, заряда, напряжения) – i, q, u

Схема колебательного контура

Учитель: Что представляют электромагнитные колебания в контуре?

Электромагнитные колебания представляют периодический переход электрической энергии конденсатора в магнитную энергию катушки и наоборот согласно закону сохранения энергии.

Задача №1 (д/з)

Колебательный контур содержит конденсатор емкостью 800 пФ и катушку индуктивности индуктивностью 2 мкГн. Каков период собственных колебаний контура?

Задача № 2 (д/з)

Колебательный контур состоит из конденсатора емкостью С и катушки индуктивности индуктивностью L. Как изменится период свободных электромагнитных колебаний в этом контуре, если электроемкость конденсатора и индуктивность катушки увеличить в 3р.

Задача № 3 (д/з)

Амплитуда силы тока при свободных колебаниях в колебательном контуре 100 мА. Какова амплитуда напряжения на конденсаторе колебательного контура, если емкость этого конденсатора 1 мкФ, а индуктивность катушки 1 Гн? Активным сопротивлением пренебречь.

Схема электромагнитных колебаний

Ученик 1 наглядно описывает процессы в колебательном контуре.

Ученик 2 комментирует электромагнитные колебания в контуре, используя графическую зависимость заряда, напряжения. Силы тока, электрической энергии конденсатора, магнитной энергии катушки индуктивности от времени.

Уравнения, описывающие колебательные процессы в контуре:

Обращаем внимание, что колебания силы тока в цепи опережают колебания напряжения между обкладками конденсатора на π/2.
Описывая изменения заряда, напряжения и силы тока по гармоническому закону, необходимо учитывать связь между функциями синуса и косинуса.

Задача № 1.

По графику зависимости силы тока от времени в колебательном контуре определите, какие преобразования энергии происходят в колебательном контуре в интервале времени от 1мкс до 2мкс?

1. Энергия магнитного поля катушки увеличивается до максимального значения;
2. Энергия магнитного поля катушки преобразуется в энергию электрического поля конденсатора;
3. Энергия электрического поля конденсатора уменьшается от максимального значения до «о»;
4. Энергия электрического поля конденсатора преобразуется в энергию магнитного поля катушки.

Задача № 2.

По графику зависимости силы тока от времени в колебательном контуре определите:

а) Сколько раз энергия катушки достигает максимального значения в течение первых 6 мкс после начала отсчета?
б) Сколько раз энергия конденсатора достигает максимального значения в течение первых 6 мкс после начала отсчета?
в) Определите по графику амплитудное значение силы тока, период, циклическую частоту, линейную частоту и напишите уравнение зависимости силы тока от времени.

Задача № 3 (д/з)

Дана графическая зависимость напряжения между обкладками конденсатора от времени. По графику определите, какое преобразование энергии происходит в интервале времени от 0 до 2 мкс?

1. Энергия магнитного поля катушки увеличивается до максимального значения;
2. Энергия магнитного поля катушки преобразуется в энергию электрического поля конденсатора;
3. Энергия электрического поля конденсатора уменьшается от максимального значения до «о»;
4. Энергия электрического поля конденсатора преобразуется в энергию магнитного поля катушки.

Задача № 4 (д/з)

Дана графическая зависимость напряжения между обкладками конденсатора от времени. По графику определите: сколько раз энергия конденсатора достигает максимального значения в период от нуля до 2мкс? Сколько раз энергия катушки достигает наибольшего значения от нуля до 2 мкс? По графику определите амплитуду колебаний напряжений, период колебаний, циклическую частоту, линейную частоту. Напишите уравнение зависимости напряжения от времени.

К доске вызываются 2 ученика

Задача № 5, 6

Задача № 7

Заряд на обкладках конденсатора колебательного контура изменяется по закону
q = 3·10 –7 cos800πt. Индуктивность контура 2Гн. Пренебрегая активным сопротивлением, найдите электроемкость конденсатора и максимальное значение энергии электрического поля конденсатора и магнитного поля катушки индуктивности.

Задача № 8

В идеальном колебательном контуре происходят свободные электромагнитные колебания. В таблице показано, как изменяется заряд конденсатора в колебательном контуре с течением времени.

t, 10 –6 (C) 1 2 3 4 5 6 7 8 9
q, 10 –9 (Кл) 2 1,5 –1,5 –2 –1,5 1,5 2 1,5

1. Напишите уравнение зависимости заряда от времени. Найдите амплитуду колебаний заряда, период, циклическую частоту, линейную частоту.

2. Какова энергия магнитного поля катушки в момент времени t = 5 мкс, если емкость конденсатора 50 пФ.

Домашнее задание. Напишите уравнение зависимости силы тока от времени. Найдите амплитуду колебаний силы тока. Постройте графическую зависимость силы тока от времени.

Источник

Электромагнитные колебания

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: свободные электромагнитные колебания, колебательный контур, вынужденные электромагнитные колебания, резонанс, гармонические электромагнитные колебания.

Электромагнитные колебания — это периодические изменения заряда, силы тока и напряжения, происходящие в электрической цепи. Простейшей системой для наблюдения электромагнитных колебаний служит колебательный контур.

Колебательный контур

Колебательный контур — это замкнутый контур, образованный последовательно соединёнными конденсатором и катушкой.

Зарядим конденсатор, подключим к нему катушку и замкнём цепь. Начнут происходить свободные электромагнитные колебания — периодические изменения заряда на конденсаторе и тока в катушке. Свободными, напомним, эти колебания называются потому, что они совершаются без какого-либо внешнего воздействия — только за счёт энергии, запасённой в контуре.

Период колебаний в контуре обозначим, как всегда, через . Сопротивление катушки будем считать равным нулю.

Рассмотрим подробно все важные стадии процесса колебаний. Для большей наглядности будем проводить аналогию с колебаниями горизонтального пружинного маятника.

Начальный момент: . Заряд конденсатора равен , ток через катушку отсутствует (рис. 1 ). Конденсатор сейчас начнёт разряжаться.

Несмотря на то, что сопротивление катушки равно нулю, ток не возрастёт мгновенно. Как только ток начнёт увеличиваться, в катушке возникнет ЭДС самоиндукции, препятствующая возрастанию тока.

Аналогия. Маятник оттянут вправо на величину и в начальный момент отпущен. Начальная скорость маятника равна нулю.

Первая четверть периода : . Конденсатор разряжается, его заряд в данный момент равен . Ток через катушку нарастает (рис. 2 ).

Увеличение тока происходит постепенно: вихревое электрическое поле катушки препятствует нарастанию тока и направлено против тока.

Аналогия . Маятник движется влево к положению равновесия; скорость маятника постепенно увеличивается. Деформация пружины (она же — координата маятника) уменьшается.

Конец первой четверти : . Конденсатор полностью разрядился. Сила тока достигла максимального значения (рис. 3 ). Сейчас начнётся перезарядка конденсатора.

Напряжение на катушке равно нулю, но ток не исчезнет мгновенно. Как только ток начнёт уменьшаться, в катушке возникнет ЭДС самоиндукции, препятствующая убыванию тока.

Аналогия. Маятник проходит положение равновесия. Его скорость достигает максимального значения . Деформация пружины равна нулю.

Вторая четверть: . Конденсатор перезаряжается — на его обкладках появляется заряд противоположного знака по сравнению с тем, что был вначале (рис. 4 ).

Сила тока убывает постепенно: вихревое электрическое поле катушки, поддерживая убывающий ток, сонаправлено с током.

Аналогия. Маятник продолжает двигаться влево — от положения равновесия к правой крайней точке. Скорость его постепенно убывает, деформация пружины увеличивается.

Конец второй четверти . Конденсатор полностью перезарядился, его заряд опять равен (но полярность другая). Сила тока равна нулю (рис. 5 ). Сейчас начнётся обратная перезарядка конденсатора.

Аналогия. Маятник достиг крайней правой точки. Скорость маятника равна нулю. Деформация пружины максимальна и равна .

Третья четверть: . Началась вторая половина периода колебаний; процессы пошли в обратном направлении. Конденсатор разряжается (рис. 6 ).

Аналогия. Маятник двигается обратно: от правой крайней точки к положению равновесия.

Конец третьей четверти: . Конденсатор полностью разрядился. Ток максимален и снова равен , но на сей раз имеет другое направление (рис. 7 ).

Аналогия. Маятник снова проходит положение равновесия с максимальной скоростью , но на сей раз в обратном направлении.

Четвёртая четверть: . Ток убывает, конденсатор заряжается (рис. 8 ).

Аналогия. Маятник продолжает двигаться вправо — от положения равновесия к крайней левой точке.

Конец четвёртой четверти и всего периода: . Обратная перезарядка конденсатора завершена, ток равен нулю (рис. 9 ).

Данный момент идентичен моменту , а данный рисунок — рисунку 1 . Совершилось одно полное колебание. Сейчас начнётся следующее колебание, в течение которого процессы будут происходить точно так же, как описано выше.

Аналогия. Маятник вернулся в исходное положение.

Рассмотренные электромагнитные колебания являются незатухающими — они будут продолжаться бесконечно долго. Ведь мы предположили, что сопротивление катушки равно нулю!

Точно так же будут незатухающими колебания пружинного маятника при отсутствии трения.

В реальности катушка обладает некоторым сопротивлением. Поэтому колебания в реальном колебательном контуре будут затухающими. Так, спустя одно полное колебание заряд на конденсаторе окажется меньше исходного значения. Со временем колебания и вовсе исчезнут: вся энергия, запасённая изначально в контуре, выделится в виде тепла на сопротивлении катушки и соединительных проводов.

Читайте также:  Ток источника напряжения зависит от сопротивления

Точно так же будут затухающими колебания реального пружинного маятника: вся энергия маятника постепенно превратится в тепло из-за неизбежного наличия трения.

Энергетические превращения в колебательном контуре

Продолжаем рассматривать незатухающие колебания в контуре, считая сопротивление катушки нулевым. Конденсатор имеет ёмкость , индуктивность катушки равна .

Поскольку тепловых потерь нет, энергия из контура не уходит: она постоянно перераспределяется между конденсатором и катушкой.

Возьмём момент времени, когда заряд конденсатора максимален и равен , а ток отсутствует. Энергия магнитного поля катушки в этот момент равна нулю. Вся энергия контура сосредоточена в конденсаторе:

Теперь, наоборот, рассмотрим момент, когда ток максимален и равен , а конденсатор разряжен. Энергия конденсатора равна нулю. Вся энергия контура запасена в катушке:

В произвольный момент времени, когда заряд конденсатора равен и через катушку течёт ток , энергия контура равна:

Соотношение (1) применяется при решении многих задач.

Электромеханические аналогии

В предыдущем листке про самоиндукцию мы отметили аналогию между индуктивностью и массой. Теперь мы можем установить ещё несколько соответствий между электродинамическими и механическими величинами.

Для пружинного маятника мы имеем соотношение, аналогичное (1) :

Здесь, как вы уже поняли, — жёсткость пружины, — масса маятника, и — текущие значения координаты и скорости маятника, и — их наибольшие значения.

Сопоставляя друг с другом равенства (1) и (2) , мы видим следующие соответствия:

Опираясь на эти электромеханические аналогии, мы можем предвидеть формулу для периода электромагнитных колебаний в колебательном контуре.

В самом деле, период колебаний пружинного маятника, как мы знаем, равен:

B соответствии с аналогиями (5) и (6) заменяем здесь массу на индуктивность , а жёсткость на обратную ёмкость . Получим:

Электромеханические аналогии не подводят: формула (7) даёт верное выражение для периода колебаний в колебательном контуре. Она называется формулой Томсона. Мы вскоре приведём её более строгий вывод.

Гармонический закон колебаний в контуре

Напомним, что колебания называются гармоническими, если колеблющаяся величина меняется со временем по закону синуса или косинуса. Если вы успели забыть эти вещи, обязательно повторите листок «Механические колебания».

Колебания заряда на конденсаторе и силы тока в контуре оказываются гармоническими. Мы сейчас это докажем. Но прежде нам надо установить правила выбора знака для заряда конденсатора и для силы тока — ведь при колебаниях эти величины будут принимать как положительные, так и отрицательные значения.

Сначала мы выбираем положительное направление обхода контура. Выбор роли не играет; пусть это будет направление против часовой стрелки (рис. 10 ).

Рис. 10. Положительное направление обхода

Сила тока считается положительной 0)’ alt='(I > 0)’/> , если ток течёт в положительном направлении. В противном случае сила тока будет отрицательной .

Заряд конденсатора — это заряд той его пластины, на которую течёт положительный ток (т. е. той пластины, на которую указывает стрелка направления обхода). В данном случае — заряд левой пластины конденсатора.

При таком выборе знаков тока и заряда справедливо соотношение: (при ином выборе знаков могло случиться ). Действительно, знаки обеих частей совпадают: если 0′ alt=’I > 0′/> , то заряд левой пластины возрастает, и потому 0′ alt=’\dot > 0′/> .

Величины и меняются со временем, но энергия контура остаётся неизменной:

Стало быть, производная энергии по времени обращается в нуль: . Берём производную по времени от обеих частей соотношения (8) ; не забываем, что слева дифференцируются сложные функции (Если — функция от , то по правилу дифференцирования сложной функции производная от квадрата нашей функции будет равна: ):

Подставляя сюда и , получим:

Но сила тока не является функцией, тождественно равной нулю; поэтому

Перепишем это в виде:

Мы получили дифференциальное уравнение гармонических колебаний вида , где . Это доказывает, что заряд конденсатора колеблется по гармоническому закону (т.е. по закону синуса или косинуса). Циклическая частота этих колебаний равна:

Эта величина называется ещё собственной частотой контура; именно с этой частотой в контуре совершаются свободные (или, как ещё говорят, собственные колебания). Период колебаний равен:

Мы снова пришли к формуле Томсона.

Гармоническая зависимость заряда от времени в общем случае имеет вид:

Циклическая частота находится по формуле (10) ; амплитуда и начальная фаза определяются из начальных условий.

Мы рассмотрим ситуацию, подробно изученную в начале этого листка. Пусть при заряд конденсатора максимален и равен (как на рис. 1 ); ток в контуре отсутствует. Тогда начальная фаза , так что заряд меняется по закону косинуса с амплитудой :

Найдём закон изменения силы тока. Для этого дифференцируем по времени соотношение (12) , опять-таки не забывая о правиле нахождения производной сложной функции:

Мы видим, что и сила тока меняется по гармоническому закону, на сей раз — по закону синуса:

Амплитуда силы тока равна:

Наличие «минуса» в законе изменения тока (13) понять не сложно. Возьмём, к примеру, интервал времени (рис. 2 ).

Ток течёт в отрицательном направлении: . Поскольку , фаза колебаний находится в первой четверти: . Синус в первой четверти положителен; стало быть, синус в (13) будет положительным на рассматриваемом интервале времени. Поэтому для обеспечения отрицательности тока действительно необходим знак «минус» в формуле (13) .

А теперь посмотрите на рис. 8 . Ток течёт в положительном направлении. Как же работает наш «минус» в этом случае? Разберитесь-ка, в чём тут дело!

Изобразим графики колебаний заряда и тока, т.е. графики функций (12) и (13) . Для наглядности представим эти графики в одних координатных осях (рис. 11 ).

Рис. 11. Графики колебаний заряда и тока

Обратите внимание: нули заряда приходятся на максимумы или минимумы тока; и наоборот, нули тока соответствуют максимумам или минимумам заряда.

Используя формулу приведения

запишем закон изменения тока (13) в виде:

Сопоставляя это выражение с законом изменения заряда , мы видим, что фаза тока, равная , больше фазы заряда на величину . В таком случае говорят, что ток опережает по фазе заряд на ; или сдвиг фаз между током и зарядом равен ; или разность фаз между током и зарядом равна .

Опережение током заряда по фазе на графически проявляется в том, что график тока сдвинут влево на относительно графика заряда. Сила тока достигает, например, своего максимума на четверть периода раньше, чем достигает максимума заряд (а четверть периода как раз и соответствует разности фаз ).

Вынужденные электромагнитные колебания

Как вы помните, вынужденные колебания возникают в системе под действием периодической вынуждающей силы. Частота вынужденных колебаний совпадает с частотой вынуждающей силы.

Вынужденные электромагнитные колебания будут совершаться в контуре, поключённом к источнику синусоидального напряжения (рис. 12 ).

Рис. 12. Вынужденные колебания

Если напряжение источника меняется по закону:

то в контуре происходят колебания заряда и тока с циклической частотой (и с периодом, соответственно, ). Источник переменного напряжения как бы «навязывает» контуру свою частоту колебаний, заставляя забыть о собственной частоте .

Амплитуда вынужденных колебаний заряда и тока зависит от частоты : амплитуда тем больше,чем ближе к собственной частоте контура .При наступает резонанс — резкое возрастание амплитуды колебаний. Мы поговорим о резонансе более подробно в следующем листке, посвящённом переменному току.

Источник

Колебательный контур принцип работы

Колебательный контур — принцип действия

Колебательный контур — это устройство, предназначенное для генерации (создания) электромагнитных колебаний.

Из чего он состоит?

Колебательный контур состоит из катушки и конденсатора. В нём может присутствовать резистор (элемент с переменным сопротивлением).

Катушка индуктивности (или соленоид) — это стержень, на который наматываются несколько слоёв обмотки медной проволокой. Этот элемент создаёт колебания в колебательном контуре. Стержень, находящийся в середине, называют дросселем, или сердечником.

Катушка колебательного контура создаёт колебания только при наличии запасённого заряда. При прохождении через неё тока она накапливает заряд, который затем отдаёт в цепь, если напряжение падает.

Провода катушки обычно имеют очень маленькое сопротивление, которое всегда остаётся постоянным. В цепи колебательного контура очень часто происходит изменение напряжения и силы тока. Это изменение подчиняется определённым математическим законам:

  • U = U0*cos(w*(t-t0) , где U — напряжение в данный момент времени t, U0 — напряжение во время t0, w — частота электромагнитных колебаний.

Другим неотъемлемым компонентом контура является электрический конденсатор. Это элемент, состоящий из двух обкладок, которые разделены между собой диэлектриком. При этом толщина слоя между обкладками меньше их размеров. Такая конструкция позволяет накапливать на диэлектрике электрический заряд, который потом можно отдать в цепь.

Отличие конденсатора от аккумулятора в том, что в нём не происходит превращения веществ под действием электрического тока, а происходит непосредственное накопление заряда в электрическом поле. Таким образом, с помощью конденсатора можно накопить достаточно большой заряд, отдавать который можно весь сразу. При этом сила тока в цепи сильно возрастает.

Также колебательный контур состоит из ещё одного элемента: резистора. Этот элемент обладает сопротивлением и предназначен для контролирования силы тока и напряжения в цепи. Если при постоянном напряжении увеличивать сопротивление резистора, то сила тока будет уменьшаться по закону Ома:

  • I = U/R , где I — сила тока, U — напряжение, R — сопротивление.

Катушка индуктивности

Давайте подробнее рассмотрим все тонкости работы катушки индуктивности и лучше поймём её функцию в колебательном контуре. Как мы уже говорили, сопротивление этого элемента стремится к нулю. Таким образом, при подключении к цепи постоянного тока произошло бы короткое замыкание. Однако если подключать катушку в цепь переменного тока, она работает исправно. Это позволяет сделать вывод о том, что элемент оказывает сопротивление переменному току.

Но почему это происходит и как возникает сопротивление при переменном токе? Для ответа на этот вопрос нам нужно обратиться к такому явлению, как самоиндукция. При прохождении тока по катушке в ней возникает электродвижущая сила (ЭДС), которая создаёт препятствие изменению тока. Величина этой силы зависит от двух факторов: индуктивности катушки и производной силы тока по времени. Математически эта зависимость выражается через уравнение:

  • E = -L*I'(t) , где E — значение ЭДС, L — величина индуктивности катушки (для каждой катушки она разная и зависит от количества мотков обмотки и их толщины), I'(t) — производная силы тока по времени (скорость изменения силы тока).

Сила постоянного тока со временем не изменяется, поэтому сопротивления при его воздействии не возникает.

Но при переменном токе все его параметры постоянно изменяются по синусоидальному или косинусоидальному закону, вследствие чего возникает ЭДС, препятствующая этим изменениям. Такое сопротивление называют индукционным и вычисляют по формуле:

  • XL = w*L, где w — частота колебаний контура, L — индуктивность катушки.
Читайте также:  Направление тока в проводнике совпадает с направлением упорядоченного движения

Сила тока в соленоиде линейно нарастает и убывает по различным законам. Это значит, что если прекратить подачу тока в катушку, она будет продолжать некоторое время отдавать заряд в цепь. А если при этом резко прервать подачу тока, то будет происходить удар из-за того, что заряд будет пытаться распределиться и выйти из катушки. Это — серьёзная проблема в промышленном производстве. Такой эффект (хотя и не совсем связанный с колебательным контуром) можно наблюдать, например, при вытаскивании вилки из розетки. При этом проскакивает искра, которая в таких масштабах не в силах нанести вред человеку. Она обусловлена тем, что магнитное поле не исчезает сразу, а постепенно рассеивается, индуцируя токи в других проводниках. В промышленных масштабах сила тока во много раз больше привычных нам 220 вольт, поэтому при прерывании цепи на производстве могут возникнуть искры такой силы, что причинят немало вреда как заводу, так и человеку.

Катушка — это основа того, из чего колебательный контур состоит. Индуктивности последовательно включённых соленоидов складываются. Далее мы подробнее рассмотрим все тонкости строения этого элемента.

Что такое индуктивность?

Индуктивность катушки колебательного контура — это индивидуальный показатель, численно равный электродвижущей силе (в вольтах), которая возникает в цепи при изменении силы тока на 1 А за 1 секунду. Если соленоид подключён к цепи постоянного тока, то её индуктивность описывает энергию магнитного поля, которое создаётся этим током по формуле:

  • W=(L*I2)/2, где W — энергия магнитного поля.

Коэффициент индуктивности зависит от многих факторов: от геометрии соленоида, от магнитных характеристик сердечника и от количества мотков проволоки. Ещё одно свойство этого показателя в том, что он всегда положителен, потому что переменные, от которых она зависит, не могут быть отрицательными.

Индуктивность также можно определить как свойство проводника с током накапливать энергию в магнитном поле. Она измеряется в Генри (названа в честь американского учёного Джозефа Генри).

Кроме соленоида колебательный контур состоит из конденсатора, о котором пойдёт речь далее.

Электрический конденсатор

Ёмкость колебательного контура определяется ёмкостью электрического конденсатора. О его внешнем виде было написано выше. Теперь разберём физику процессов, которые протекают в нём.

Так как обкладки конденсатора сделаны из проводника, то по ним может течь электрический ток. Однако между двумя пластинами есть препятствие: диэлектрик (им может быть воздух, дерево или другой материал с высоким сопротивлением. Благодаря тому что заряд не может перейти от одного конца провода к другому, происходит накопление его на обкладках конденсатора. Тем самым возрастает мощность магнитного и электрического полей вокруг него. Таким образом, при прекращении поступления заряда вся электроэнергия, скопившаяся на обкладках, начинает передаваться в цепь.

Каждый конденсатор имеет номинальное напряжение, оптимальное для его работы. Если долго эксплуатировать этот элемент при напряжении выше номинального, срок его службы значительно сокращается. Конденсатор колебательного контура постоянно подвержен влиянию токов, и поэтому при его выборе следует быть предельно внимательным.

Кроме обычных конденсаторов, о которых шла речь, есть также ионисторы. Это более сложный элемент: его можно описать как нечто среднее между аккумулятором и конденсатором. Как правило, диэлектриком в ионисторе служат органические вещества, между которыми находится электролит. Вместе они создают двойной электрический слой, который и позволяет накапливать в этой конструкции в разы больше энергии, чем в традиционном конденсаторе.

Что такое ёмкость конденсатора?

Ёмкость конденсатора представляет собой отношение заряда конденсатора к напряжению, под которым он находится. Посчитать эту величину можно очень просто с помощью математической формулы:

  • C = (e0*S)/d, гдеe0 — диэлектрическая проницаемость материала диэлектрика (табличная величина), S — площадь обкладок конденсатора, d — расстояние между пластинами.

Зависимость ёмкости конденсатора от расстояния между обкладками объясняется явлением электростатической индукции: чем меньше расстояние между пластинами, тем сильнее они влияют друг на друга (по закону Кулона), тем больше заряд обкладок и меньше напряжение. А при уменьшении напряжения увеличивается значение ёмкости, так как её также можно описать следующей формулой:

  • C = q/U, гдеq — заряд в кулонах.

Стоит поговорить о единицах измерения этой величины. Ёмкость измеряется в фарадах. 1 фарад — достаточно большая величина, поэтому существующие конденсаторы (но не ионисторы) имеют ёмкость, измеряемую в пикофарадах (одна триллионная фарада).

Резистор

Ток в колебательном контуре зависит также от сопротивления цепи. И кроме описанных двух элементов, из которых состоит колебательный контур (катушки, конденсатора), имеется ещё и третий — резистор. Он отвечает за создание сопротивления. Резистор отличается от других элементов тем, что имеет большое сопротивление, которое в некоторых моделях можно изменять. В колебательном контуре он выполняет функцию регулятора мощности магнитного поля. Можно соединить несколько резисторов последовательно или параллельно, тем самым увеличив сопротивление цепи.

Сопротивление этого элемента зависит также от температуры, поэтому следует быть внимательным к его работе в цепи, так как при прохождении тока он нагревается.

Сопротивление резистора измеряется в Омах, а его значение можно вычислить по формуле:

  • R = (p*l)/S, где p — удельное сопротивление материала резистора (измеряется в (Ом*мм2)/м); l — длина резистора (в метрах); S — площадь сечения (в квадратных миллиметрах).

Как связать параметры контура?

Теперь мы вплотную подошли к физике работы колебательного контура. Со временем заряд на обкладках конденсатора изменяется согласно дифференциальному уравнению второго порядка.

Если решить это уравнение, из него следует несколько интересных формул, описывающих процессы, протекающие в контуре. Например, циклическую частоту можно выразить через ёмкость и индуктивность.

Однако наиболее простая формула, которая позволяет вычислить многие неизвестные величины, — формула Томсона (названа в честь английского физика Уильяма Томсона, который вывел её в 1853 году):

  • T = 2*п*(L*C)1/2.T — период электромагнитных колебаний, L и C — соответственно, индуктивность катушки колебательного контура и ёмкость элементов контура, п — число пи.

Добротность

Ещё одна важная величина, характеризующая работу контура, — добротность. Понять, что это, поможет такое явление как резонанс. Объяснить резонанс можно на простом примере: если вы начнёте подталкивать качели в такт их частоте, то они будут ускоряться, а их «амплитуда» будет возрастать. А если будете толкать не в такт, то они будут замедляться. При резонансе очень часто рассеивается много энергии. Для того, чтобы вычислить величины потерь, придумали такой параметр, как добротность. Она представляет собой коэффициент, равный отношению энергии, находящейся в системе, к потерям, происходящим в цепи за один цикл.

Добротность контура вычисляется по формуле:

  • Q = (w0*W)/P, где w0 — резонансная циклическая частота колебаний; W — энергия, запасённая в колебательной системе; P — рассеиваемая мощность.

Этот параметр — безразмерная величина, так как фактически показывает отношение энергий: запасённой к потраченной.

Что такое идеальный колебательный контур

Для лучшего понимания процессов в этой системе физики придумали так называемый идеальный колебательный контур. Это математическая модель, представляющая цепь как систему с нулевым сопротивлением. В ней возникают незатухающие гармонические колебания. Такая модель позволяет получить формулы приближённого вычисления параметров контура.

Один из таких параметров — полная энергия:

Такие упрощения существенно ускоряют расчёты и позволяют оценить характеристики цепи с заданными показателями.

Как это работает?

Весь цикл работы колебательного контура можно разделить на две части.

  • Первая фаза: пластина конденсатора, заряженная положительно, начинает разряжаться, отдавая ток в цепь. В этот момент ток идёт от положительного заряда к отрицательному, проходя при этом через катушку. Вследствие этого в контуре возникают электромагнитные колебания. Ток, пройдя через катушку, переходит на вторую пластину и заряжает её положительно (тогда как первая обкладка, с которой шёл ток, заряжается отрицательно).
  • Вторая фаза: происходит прямо обратный процесс. Ток переходит с положительной пластины (которая в самом начале была отрицательной) на отрицательную, проходя опять через катушку. И все заряды встают на свои места.

Цикл повторяется до тех пор, пока на конденсаторе будет заряд. В идеальном колебательном контуре этот процесс происходит бесконечно, а в реальном неизбежны потери энергии из-за различных факторов: нагрева, который происходит из-за существования сопротивления в цепи (джоулевое тепло), и тому подобное.

Варианты конструкции контура

Кроме простых цепей «катушка-конденсатор» и «катушка-резистор-конденсатор», существуют и другие варианты, использующие в качестве основы колебательный контур. Это, например, параллельный контур, который отличается тем, что существует как элемент электрической цепи (потому как, существуй он отдельно, то являлся бы последовательной цепью, о которой и шла речь в статье).

Также существуют и другие виды конструкции, включающие разные электротехнические компоненты. Например, можно подключать в сеть транзистор, который будет размыкать и замыкать цепь с частотой, равной частотой колебаний в контуре. Таким образом, в системе установятся незатухающие колебания.

Где применяется колебательный контур?

Самое знакомое нам применение составляющих контура — это электромагниты. Они, в свою очередь, используются в домофонах, электродвигателях, датчиках и во многих других не столь обыденных областях. Другое применение — генератор колебаний. На самом деле это использование контура нам очень знакомо: в этом виде он применяется в микроволновке для создания волн и в мобильной и радиосвязи для передачи информации на расстояние. Всё это происходит благодаря тому, что колебания электромагнитных волн можно закодировать таким образом, что станет возможным передавать информацию на большие расстояния.

Катушка индуктивности сама по себе может использоваться как элемент трасформатора: две катушки с разным числом обмоток могут передавать с помощью электромагнитного поля свой заряд. Но так как характеристики соленоидов различаются, то и показатели тока в двух цепях, к которым подключены эти две индуктивности, будут различаться. Таким образом можно преобразовывать ток с напряжением в 220 вольт в ток с напряжением в 12 вольт.

Источник

Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

Слободянюк А.И. Физика 10/18.8

§18. Переменный электрический ток

18.8 Колебательный контур.

18.8.1 Свободные колебания в контуре.

Img Slob-10-18-262.jpg

Рассмотренные в предыдущих разделах цепи переменного тока наводят на мысль, что пара элементов – конденсатор и катушка индуктивности образуют своеобразную колебательную систему. Сейчас мы покажем, что это действительно так, в цепи состоящей только из этих элементов (рис. 262) возможны даже свободные колебания, то есть без внешнего источника ЭДС. Поэтому цепь (или часть другой цепи), состоящая из конденсатора и катушки индуктивности называется колебательным контуром.

Img Slob-10-18-263.jpg

Пусть конденсатор зарядили до заряда q и затем подключили к нему катушку индуктивности. Такую процедуру легко осуществить с помощью цепи, схема которой показана на рис. 263: сначала ключ К замыкают в положении 1, при этом конденсатор заряжается до напряжения, равного ЭДС источника, после чего ключ перебрасывают в положения 2, после чего начинается разрядка конденсатора через катушку.

Читайте также:  Цепь состоит из источник тока источник н

Для определения зависимости заряда конденсатора от времени q(t) применим закон Ома, согласно которому напряжение на конденсаторе \(

U_C = \frac\) равно ЭДС самоиндукции, возникающей в катушке \(

\varepsilon_ = -L \frac<\Delta I> <\Delta t>= LI’\) (здесь, «штрих» означает производную по времени). Таким образом, оказывается справедливым уравнение

В этом уравнении содержится две неизвестных функции – зависимости от времени заряда q(t) и силы тока I(t), поэтому его решить нельзя. Однако сила тока является производной от заряда конденсатора q′(t) = I(t), поэтому производная от силы тока является второй производной от заряда

С учетом этого соотношения, перепишем уравнение (1) в виде

Поразительно, но это уравнение полностью совпадает с хорошо изученным нами уравнением гармонических колебаний (вторая производная от неизвестной функции пропорциональна самой этой функции с отрицательным коэффициентом пропорциональности \(x» = -\omega^2_0 x\))! Следовательно, решением этого уравнения будет гармоническая функция

q = A \cos (\omega_0 t + \varphi)\) (4)

с круговой частотой

Эта формула определяет собственную частоту колебательного контура. Соответственно период колебаний заряда конденсатора (и силы тока в контуре) равен

T = 2 \pi \sqrt\) . (6)

Полученное выражение для периода колебаний называется формулой Дж. Томпсона.

Как обычно, для определения произвольных параметров A, φ в общем решении (4) необходимо задать начальные условия – заряд и силу тока в начальный момент времени. В частности, для рассмотренного примера цепи рис. 263, начальные условия имеют вид: при t = 0 q = q, I = 0, поэтому зависимость заряда конденсатора от времени будет описываться функцией

q = q_0 \cos \omega_0 t\) , (7)

а сила тока изменяется со временем по закону

I = — \omega_0 q_0 \sin \omega_0 t\) . (8)

Img Slob-10-18-264.jpg

Следует отметить, что приведенное рассмотрение колебательного контура является приближенным – любой реальный контур обладает активным сопротивлением (соединительных проводов и обмотки катушки). Поэтому в уравнении (1) следует учесть падение напряжения на этом активном сопротивлении, поэтому это уравнение приобретет вид

который с учетом связи между зарядом и силой тока, преобразуется к форме

Это уравнение нам также знакомо – это уравнение затухающих колебаний \(x» = -\omega^2_0 x — \beta x’\), причем коэффициент затухания, как и следовало ожидать, пропорционален активному сопротивлению цепи \(

Процессы, происходящие в колебательном контуре, могут быть также описаны и с помощью закона сохранения энергии. Если пренебречь активным сопротивлением контура, то сумма энергий электрического поля конденсатора и магнитного поля катушки остается постоянной, что выражается уравнением

которое также является уравнением гармонических колебаний с частотой, определяемой формулой (5). По свое форме это уравнение также совпадает уравнениями, следующими из закона сохранения энергии при механических колебаниях. Так как, уравнения, описывающие колебания электрического заряда конденсатора, аналогичны уравнениям, описывающим механические колебания, то можно провести аналогию между процессами, протекающими в колебательном контуре, и процессами в любой механической системе.

Img Slob-10-18-265.jpg

На рис. 265 такая аналогия проведена для колебаний математического маятника. В этом случае аналогами являются «заряд конденсатора q(t) – угол отклонения маятника φ(t)» и «сила тока I(t) = q′(t) – скорость движения маятника V(t)».

Пользуясь этой аналогией, качественно опишем процесс колебаний заряда и электрического тока в контуре. В начальный момент времени конденсатор заряжен, сила электрического тока равна нулю, вся энергия заключена в энергии электрического поля конденсатора (что аналогично максимальному отклонения маятника от положения равновесия). Затем конденсатор начинает разряжаться, сила тока возрастает, при этом в катушке возникает ЭДС самоиндукции, которая препятствует возрастанию тока; энергия конденсатора уменьшается, переходя в энергию магнитного поля катушки (аналогия – маятник движется к нижней точки с возрастанием скорости движения). Когда заряд на конденсаторе становится равным нулю, сила тока достигает максимального значения, при этом вся энергия превращается в энергию магнитного поля (маятник достиг нижней точки, скорость его максимальна). Затем магнитное поле начинает убывать, при этом ЭДС самоиндукции поддерживает ток в прежнем направлении, при этом конденсатор начинает заряжаться, причем знаки зарядов на обкладках конденсатора противоположны начальному распределению (аналог – маятник движется к противоположному начальному максимальному отклонению). Затем ток в цепи прекращается, при этом заряд конденсатора становится опять максимальным, но противоположным по знаку (маятник достиг максимального отклонения), после чего процесс повторятся в противоположном направлении.

18.8.2 Вынужденные колебания в контуре.

Как уже было сказано, в реальном колебательном контуре колебания будут затухающими [1] из-за неизбежного выделения теплоты на активном сопротивлении (которым мы пренебрегли). Поэтому для поддержания незатухающих колебаний в контуре необходим внешний источник энергии, иными словами нам необходимо рассмотреть вынужденные колебания. Один из возможных вариантов осуществления таких колебаний мы уже рассмотрели при изучении темы «Резонанс напряжений», где мы фактически изучили колебания в контуре, внутрь которого включен источник переменной ЭДС, который может считаться аналогом внешней вынуждающей силы.

Чтобы явным образом показать, что явление резонанса напряжений можно рассматривать как вынужденные колебания, перепишем использованное уравнение закона Ома

\varepsilon(t) = U_R(t) + U_C(t) + U_L(t)\) .

Для чего подставим в него явные выражения для напряжений на элементах цепи \(

U_L = -\varepsilon_ = LI’ = Lq»\) и ЭДС источника \(\varepsilon = U_0 \cos \omega t\):

Lq» + \frac + Rq’ = U_0 \cos \omega t\)

и перепишем его в виде

q» = -\frac<1> q — \frac q’ + \frac \cos \omega t\) ,

который полностью совпадает с уравнением вынужденных колебаний \(x» = -\omega^2_0 x — \beta x’ + f_0 \cos \omega t\).

Img Slob-10-18-266.jpg

Рассмотрим теперь возможность возникновения вынужденных колебаний в контуре, когда источник переменной ЭДС находится вне контура [2] , как показано на рис. 266. Расчет данной цепи проведем, используя метод векторных диаграмм (которая также представлена на рис. 266). В данном случае нас, прежде всего, будет интересовать сила тока в колебательном контуре.

Так как конденсатор и катушка индуктивности соединены параллельно, то мгновенные напряжения (UC, UL) на этих элементах одинаковы. Обозначим это напряжение U1. Построение диаграммы следует начинать с построения вектора, изображающего колебания этого напряжения. Далее построим векторы, изображающие колебания сил токов через конденсатор IC и катушку индуктивности IL — эти векторы перпендикулярны вектору напряжения U1 и противоположны друг другу. Как обычно, колебания токов через конденсатор и через катушку индуктивности происходят в противофазе. Колебательный контур соединен последовательно с резистором, поэтому сумма токов IC и IL (конечно, их мгновенных значений) равна силе тока через резистор IR. Вектор изображающий напряжение на резисторе UR, сонаправлен с вектором суммарного тока. Наконец сумма векторов напряжения на резисторе UR и напряжения на контуре U1 равна ЭДС источника.

Построенная векторная диаграмма позволяет рассчитать амплитудные значения токов и напряжений на элементах данной цепи. Выразим традиционным образом амплитудные значения сил токов через конденсатор и катушку через амплитуду напряжения на контуре

Амплитуда силы тока через резистор (и через источник) определяется из векторной диаграммы и равна

I_ = (I_ — I_) = U_ <10>\left( \omega C — \frac<1> <\omega L>\right)\) . (2)

Теперь можно записать выражение для амплитуды напряжения на резисторе

U_ = I_R = U_ <10>\left( \omega C — \frac<1> <\omega L>\right) R\) . (3)

Далее, глядя на диаграмму напряжений, запишем теорему Пифагора для вектора ЭДС источника ⎟ ⎟

U^2_0 = U^2_ + U^2_ <10>= U^2_ <10>\left( 1 + \left( \omega C — \frac<1> <\omega L>\right)^2 R^2 \right) = U^2_ <10>R^2 \left( \frac<1> + \left( \omega C — \frac<1> <\omega L>\right)^2 \right)\) , (4)

здесь U — амплитуда ЭДС источника.

Из этого уравнения легко определить напряжение на резисторе

Наконец, с помощью формул (1), (2), (3), запишем выражения для сил токов в рассматриваемой цепи

Проанализируем зависимость этих величин от частоты источника ЭДС. Во всех формулах под корнем имеется два положительных слагаемых, причем только второе зависит от частоты. При частоте

равной собственной частоте колебательного контура второе слагаемое под корнем обращается в ноль, поэтому можно ожидать, что вблизи этой частоты силы токов через конденсатор и катушку достигают максимального значения. Понятно, что максимумы функций IL0(ω) и IC0(ω) несколько смещены от частоты ω, потому, что частота источника ω присутствует и вне корня. Однако, если первое слагаемое под корнем (\(\frac<1>\)), мало, то сдвиг максимума от значения ω = ω будет незначительным. Отметим, также, что при \(

\omega = \omega_0 = \frac<1><\sqrt>\) амплитуды токов через конденсатор и катушку оказываются равными. Действительно, в этом случае

Img Slob-10-18-267.jpg

Но самое неожиданное, что при ω = ω сила тока через резистор обращается в нуль! Соответственно, напряжение на колебательном контуре становится равным ЭДС источника, что также следует и из полученных формул для токов в контуре. Схематические графики зависимостей [3] амплитуд токов от частоты источника показаны на рис.267. Понятно, что при ω → 0 и ω → ∞ сопротивление контура стремится к нуля и в этом случае сила тока через резистор стремится к своему предельному значению \(

Таким образом, мы показали, что в рассмотренной цепи при частоте источника стремящейся к собственной частоте контура амплитуда силы тока в контуре резко возрастает, наблюдается явление резонанса, следовательно, колебательный контур можно использовать для выделения колебаний требуемой частоты. Интересно, отметить, что острота пика возрастает с ростом сопротивления резистора, находящегося вне контура.

В заключение данного раздела, обсудим, почему при ω = ω сила тока во внешней для контура цепи обращается в нуль. Колебания токов через конденсатор IC и через катушку индуктивности происходят в противофазе IL, а в случае ω = ω амплитуды этих токов сравниваются, в результате чего формально и получается нулевое значение для суммарного тока. Фактически в этом случае электрический ток циркулирует в колебательном контуре, не выходя из него. Подчеркнем, что наш анализ проведен для установившегося режима колебаний – в переходном режиме ток через резистор (и через источник идет) обеспечивая контур энергией. Когда колебания установятся, подкачка энергии становится излишней, так как мы пренебрегли потерями энергии в контуре. Обратите внимание, что при ω = ω сила тока в контуре не зависит сопротивления внешнего резистора, а полностью определяется параметрами контура.

Вспомните, что вынужденные колебания механических систем обладают тем же свойством – при точном резонансе и при отсутствии сил сопротивления работа внешней силы также обращается в нуль.

Если же рассмотреть реальный контур, обладающий активным сопротивлением, то между током в контуре и напряжением на нем разность фаз будет отлична от нуля, поэтому энергия источника будет поступать в контур, компенсируя потери. В этом случае также будет отличен от нуля и ток во внешней цепи.

Источник