Меню

Источник тока в цепи синусоидального тока



Переменный (синусоидальный) ток и основные характеризующие его величины.

ads

Переменный ток (англ. alternating current — AC) — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.

В быту для электроснабжения переменяется переменный, синусоидальный ток.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (Рисунок 1):

Синусоидальный ток

Рисунок 1

Формула переменного синусоидального тока

Максимальное значение функции называют амплитудой. Её обозначают с помощью заглавной (большой) буквы и строчной буквы m — максимальное значение. К примеру:

  • амплитуду тока обозначают lm;
  • амплитуду напряжения Um.

Период Т— это время, за которое совершается одно полное колебание.

Частота f равна числу колебаний в 1 секунду (единица частоты f — герц (Гц) или с -1 )

f = 1/T

Угловая частота ω (омега) (единица угловой частоты — рад/с или с -1 )

ω = 2πf = 2π/T

Аргумент синуса, т. е. (ωt + Ψ), называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой (ω) и начальной фазой Ψ (пси)

В странах СНГ и Западной Европе наибольшее распространение получили установки синусоидального тока частотой 50 Гц, принятой в энергетике за стандартную. В США стандартной является частота 60 Гц. Диапазон частот практически применяемых синусоидальных токов очень широк: от долей герца, например в геологоразведке, до миллиардов герц в радиотехнике.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью ламповых или полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j (или e(t) и j(t)).

Читайте также:  Инверторные источники тока схема

Обратите внимание! При обозначении величин на схемах или в расчетах важен регистр букв, то есть заглавные буквы (E,I,U…) или строчные (e, i ,u…). Так как строчными буквами принято обозначать мгновенное значение, а заглавными могут обозначаться действующее значение величины (подробнее о действующем значении в следующей статье).

Источник

Элементы электрических цепей синусоидального тока

Основные элементы электрических цепей синусоидального тока:

— источники электрической энергии (источники ЭДС и источники тока); резистивные элементы (резисторы, реостаты, нагревательные элементы и т.д.);

— емкостные элементы (конденсаторы);

— индуктивные элементы (катушки индуктивности).

3.2.1 Резистивный элемент (РЭ). На рисунке 3.4, а изображен РЭ, по которому течет ток

По закону Ома напряжение РЭ

Из формул (3.18) и (3.19) следует вывод: ток и напряжение в рези-стивном элементе совпадают по фазе (изменяются синфазно). Это положение наглядно иллюстрируется на рисунке 3.4,б,в. Из формул (3.19) следует другой вывод: закон Ома выполняется как для амплитудных значений тока и напряжения:

так и для действующих значений тока и напряжения:

Выразим мгновенную мощность р через мгновенные значения тока iи напряжения u:

Рисунок 3.4. – Резистивный элемент: а) изображение на схеме; б) векторы тока и напряжения; в) графики тока и напряжения; г) график мгновенной мощности

График изменения мощности р со временем представлен на рисунке 3.4, г. Анализ графика и формулы (3.22) позволяют сделать выводы:

— мгновенная мощность р имеет постоянную составляющую

и переменную составляющую , изменяющуюся с частотой

— мощность в любой момент времени положительна . Это значит, что в резистивном элементе происходит необратимое преобразование электрической энергии в другие виды энергии («потребление» энергии).

— постоянная составляющая в формуле (3.22) есть среднее значение мгновенной мощности за промежуток времени равный периоду Т. Следовательно, энергия W, преобразуемая в резистивном элементе в течение периода, подсчитывается по формуле

Читайте также:  Номинал измерительных трансформаторов тока

Энергия, преобразуемая в резистивном элементе за любой промежуток времени от 0 до t определяется по формуле

3.2.2 Индуктивный элемент. Классическим примером индуктивного элемента (ИЭ) является катушка индуктивности — провод, намотанный на изоляционный каркас (рис.3.5,а)

На рисунке 3.5,6 изображен индуктивный элемент, по которому течет ток

Согласно закону электромагнитной индукции напряжение на индуктивном элементе

где – магнитный поток, сконцентрированный внутри индуктивного элемента (катушки индуктивности);

– индуктивность элемента (коэффициент пропорциональности между магнитным потоком и током в индуктивном элементе), для линейного индуктивного элемента индуктивность L = const.

Подставляя в (3.26) выражение (3.25), получим:

Величина называется индуктивным сопротивлением, измеряется в омах и зависит от частоты .

Сопоставляя выражения (3.25) и (3.27) сделаем важный вывод: ток в индуктивном элементе отстает по фазе от напряжения на

Это положение иллюстрируется на рисунке 3.5,в,г. Из формулы (3.27) следует также:

— индуктивный элемент оказывает синусоидальному (переменному) току сопротивление, модуль которого , прямо пропорционален частоте.

— «Закон Ома» выполняется как для амплитудных значений тока и напряжения:

так и для действующих значений:

Рисунок 3.5 – Индуктивный элемент: а) схема конструкции катушки индуктивности; б) изображение ИЭ на схеме; в) векторы тока и напряжения; г) графики тока и напряжения; д) график мгновенной мощности

Выразим мгновенную мощность через i и u:

График изменения мощности р со временем построен на основании формул (3.30) на рисунке 3.5,д. Анализ графика и (3.30) позволяют сделать выводы:

— мгновенная мощность на индуктивном элементе имеет только переменную составляющую , изменяющуюся с двойной частотой ( ).

— мощность периодически меняется по знаку: то положительна, то отрицательна. Это значит, что в течение одних полупериодов, когда , энергия запасается в индуктивном элементе (в виде энергии магнитного поля), а в течение других полупериодов, когда , энергия возвращается в электрическую цепь.

Запасаемая в индуктивном элементе энергия за время dt равна:

Читайте также:  Ток какого напряжения считается безопасным

Максимальная энергия, запасенная в индуктивном элементе, опреде­лится по формуле:

Подставляя в (3.32) , получим:

3.2.3 Емкостный элемент. Примером емкостного элемента является плоский конденсатор — две параллельные пластины, находящиеся на небольшом расстоянии друг от друга (рис.3.6,а).

Пусть к емкостному элементу приложено напряжение (рис.3.6,б)

На пластинах емкостного элемента появится заряд q, пропорциональный приложенному напряжению:

Тогда ток в емкостном элементе

Таким образом, получим важные соотношения:

где – емкостное сопротивление, измеряется в Омах и зависит

Сопоставляя выражения (3.36) и (3.34), приходим к выводу: ток в емкостном элементе опережает по фазе напряжение, приложенное к нему, на 90°.

Это положение иллюстрируется на рисунке 3.6,в,г.

Анализ выражений (3.36) и (3.38) позволяет сделать и другие выводы:

— емкостный элемент оказывает синусоидальному (переменному) току сопротивление, модуль которого обратно пропорционален частоте.

— «закон Ома» выполняется как для амплитудных значений тока и напряжения:

так и для действующих значений:

Рисунок 3.6. — Емкостный элемент: а) схема конструкции плоского конденсатора; б) изображение емкостного элементе на схеме; в) векторы тока и напряжения на емкостном элементе; г) графики мгновенных значений тока и напряжения; д) график мгновенной

Выразим мгновенную мощность р через i и u:

График изменения мощности р со временем построен на рисунке 3.6,д. Анализ графика и (3.41) позволяют сделать выводы:

— мгновенная мощность на емкостном элементе имеет только переменную составляющую

изменяющуюся с двойной частотой ( ).

— мощность периодически меняется по знаку – то положительна, то отрицательна. Это значит, что в течение одних четверть периодов, когда , энергия запасается в емкостном элементе (в виде энергии электрического поля), а в течение других четверть периодов, когда , энергия возвращается в электрическую цепь.

Запасаемая в емкостном элементе энергия за время равна

Максимальная энергия, запасенная в емкостном элементе, определится по формуле:

Учитывая, что получим:

Дата добавления: 2015-04-16 ; просмотров: 71 ; Нарушение авторских прав

Источник