Меню

Источник тока для питания диодов



Ликбез о питании светодиодов

Очень часто при покупке светодиода задаётся вопрос: «На сколько он вольт?» Разумеется, если речь идёт о LED-лампе, модуле, ленте, панели – законченном устройстве, уже содержащем схему управления или хотя бы просто резистор – то да, они выпускаются на стандартные напряжения. В подавляющем большинстве это 12В постоянного тока или 220 переменного. В промышленной аппаратуре встречаются и другие значения питающего напряжения, но в данной статье мы не будем касаться таких устройств, а рассмотрим, как правильно запитать дискретные светодиоды простейшими средствами – без готовых (и недешёвых) промышленных драйверов.

Прежде всего, следует помнить, что практически для всех электрических процессов в основном важно не напряжение, а ток. Физика описывает механическое действие тока, химическое действие тока, тепловое действие тока. Не напряжения, а именно тока. А какое напряжение необходимо приложить, зависит от требуемого тока и сопротивления нагрузки: U=IR (производное закона Ома).

И вот это самое R (сопротивление) зачастую непостоянно, и зависимость тока от напряжения нелинейная. Даже в обычной лампочке накаливания сопротивление нити возрастает (как и у всех металлов) с повышением температуры. Но такая нелинейность нам на руку: как бы сам собой стабилизируется ток – его увеличение ведёт к разогреву волоска, это повышает сопротивление и, следовательно, противодействует дальнейшему увеличению тока. Именно поэтому лампы накаливания можно питать фиксированным напряжением: необходимый ток установится автоматически.

Вольт-амперная характеристика светодиода

Со светодиодами – сложнее. Их вольтамперная характеристика (ВАХ), как и у всех полупроводниковых диодов, при достижении некоторого напряжения становится очень крутой, почти вертикальной, и малейшее его отклонение может вызвать значительное изменение тока. И даже при очень точном и стабильном напряжении к тем же результатам может привести тепловое смещение характеристики. Наконец, светодиоды имеют разброс параметров, и при одном и том же напряжении ток может сильно отличаться даже у приборов из одной партии.

Рабочий участок характеристики лежит в очень узком диапазоне напряжений и зависит от длины волны излучаемого света и материала светодиода: 1,5. 2,1 В для арсенида галлия (красных, оранжевых, желтых), но более 2,4 В для красных же из AlInGaP. Таблица по всем цветам и материалам обширна, а для расчетов, в общем, не нужна. С достаточной точностью можно считать напряжение светодиодов

  • красных – 2 В,
  • желтых – 2,5 В,
  • зелёных – 3 В,
  • синих и белых – 3,5 В.

В принципе так можно было бы и отвечать на вопрос из первого предложения статьи, но с оговоркой, что любое отклонение напряжения приведет либо к перегоранию светодиода, либо к тому, что он будет излучать лишь несколько процентов своего номинального светового потока.

Таким образом, светодиоды следует питать только фиксированным током (не напряжением!), а уж просто его ограничить или стабилизировать с высокой точностью – зависит от того, какое качество освещения, эффективность и долговечность излучателя необходимы.

Простейший драйвер светодиода

При использовании светодиодов для индикации или подсветки небольшой мощности, вполне допустимо погасить ток до уровня 60-70% максимально допустимого просто последовательно включенным резистором с сопротивлением:

R=(U-U VD )/I, где U – напряжение питания, U VD – рабочее напряжение светодиода (или суммарное нескольких, включенных последовательно), I – необходимый ток.

Мощность, выделяющаяся на резисторе P=I 2 R при питании маломощных светодиодов от низковольтных источников, обычно не превышает 100 мВт и позволяет использовать маленькие детали.

Простейший драйвер светодиода

Максимально допустимый ток практически всех маломощных диодов (полностью пластиковых, не имеющих площадки для радиатора) составляет 20 мА, а мощность – не более 50 мВт. Исключение – квадратные «Пираньи», которые могут содержать несколько кристаллов, включенных параллельно, или кристаллы большой площади, и рассеивать, соответственно, до 200 мВт. Это немного, но в случае близкого расположения нескольких светодиодов может вызвать ощутимый нагрев, что необходимо учитывать в конструкции – обеспечивать конвекцию воздуха, не заливать теплоизолирующими полимерами и т.д.

Из формулы видно, что тот же самый ток можно получить при различном сопротивлении – в зависимости от напряжения и количества светодиодов. Например, около 14 мА будет протекать через диод с рабочим напряжением 3 В при его питании от 12-вольтового источника через резистор 643 Ом. И такой же ток, но через 3 аналогичных диода, обеспечит резистор в 214 Ом. В первом случае существенно меньше будет изменение тока при отклонениях напряжения питания и температурном дрейфе ВАХ, зато во втором – в 9 раз меньше потери энергии на резисторе (относительно потребляемой излучателями). Палка о двух концах: экономичность против стабильности и долговечности. Практически для нормальной работы светодиодов достаточно, чтобы на резисторе падала где-то треть-четверть напряжения питания.

Параллельное включение светодиодов

Если количество светодиодов не укладывается в это условие (их суммарное напряжение превосходит или незначительно меньше напряжения источника), применяют групповое включение нескольких параллельно соединённых последовательных цепочек с резистором в каждой. Просто параллельное соединение светодиодов используется только в дешёвых китайских фонарях и не может гарантировать равномерного распределения тока между излучателями даже одной партии, не говоря уже о раздельно приобретенных компонентах.

Например, необходимо запитать 10 белых маломощных светодиодов от источника в 9 В (достаточно стабильного, не «гуляющего», как бортовая сеть автомобиля на 30-40%). В таком случае можно выбрать ток достаточно близкий к максимально допустимому. Скажем, 17 мА.

Последовательное соединение 3х3,5 В уже неприемлемо: недостаточно напряжения питания. Значит, останавливаемся на схеме из пяти цепочек по 2 диода – как раз треть питания на резисторах, сопротивлением R = (9 В-2*3,5 В)/17 мА=117 Ом. Конечно, не обязательно искать соответствующие прецизионные, вполне подойдёт ближайшее значение из стандартного ряда – 120 Ом.

Ток, потребляемый от источника, составит 5*17=85 мА, а мощность P=U*I=9 В*85 мА=765 мВт. То есть подойдёт блок питания мощностью всего 1 Вт (щелочная батарейка «Крона» прослужит около сотни часов).

Светодиодная лента

Именно так (параллельные группы только не из двух, а из трёх последовательно соединённых диодов и резистора) устроены 12-вольтовые светодиодные ленты. Поэтому резать их можно только по специально отмеченным границам – на целое количество групп.

Стабилизатор тока на транзисторе

Стабилизировать ток в маломощной цепочке проще всего полевым транзистором VT с начальным током стока, слегка превышающим рабочий ток светодиодов (КП302, КП307 и т.п.), подобрав его точное значение изменением сопротивления R в пределах нескольких десятков Ом.

Читайте также:  Как рассчитать период тока 1

Более серьёзные схемы для стабилизации тока, а также для питания светодиодов от сети 220 В рассмотрены в статье про самодельные LED-лампы. В случае же еще больших мощностей или совсем низковольтного питания (менее 3В), или для максимальной эффективности использования самых дорогих излучателей рекомендуется уже применять промышленные драйверы: себестоимость самодельного устройства такой сложности будет выше, чем у серийно выпускаемого.

Источник

Источники питания для светодиодов 5120

AC-DC источники питания для светодиодов

DC-DC драйверы светодиодов

Источники питания для светодиодов — это специализированные источники питания для светодиодного освещения, разработанные с учетом требований нормативов к осветительным устройствам. При проектировании источников особое внимание уделяется таким характеристикам как коэффициент мощности, энергоэффективность, уровень пульсаций.

Мощные источники питания преимущественно имеют встроенный корректор коэффициента мощности, источники для внутреннего освещения — повышенные требования к коэффициенту пульсаций тока, источники для наружного освещения — степень защиты IP 67 и широкий температурный диапазон. С целью экономии потребляемой энергии актуально использование диммируемых источников питания.

Для различных применений может требоваться либо источник постоянного тока, либо источник постоянного напряжения. Источники питания для светодиодов со стабилизацией по току обеспечивают постоянный выходной ток в диапазоне от минимального до максимального значения выходного напряжения. Источники со стабилизацией по напряжению формируют постоянное выходное напряжение при токе нагрузки, не превышающем максимально допустимого значения. Некоторые источники питания имеют комбинированный режим стабилизации, при этом до достижения номинального значения тока осуществляется стабилизация по напряжению, а при дальнейшем увеличении нагрузки стабильным поддерживается выходной ток.

Чтобы купить источник питания, определите количество и тип светодиодов, схему подключения, параметры питания, требуемую мощность источника с учетом рекомендуемой величины запаса 30-35%, необходимость дополнительных функций.

Широкая номенклатура AC — DC и DC — DC драйверов для светодиодов представлена основными поставщиками: Mean Well, Aimtec. Продукция отличается высокой надежностью, конкурентоспособной ценой, многообразием вариантов исполнения.

Посмотреть и купить товар вы можете в наших магазинах в городах: Москва, Санкт-Петербург, Архангельск, Барнаул, Белгород, Владимир, Волгоград, Вологда, Воронеж, Гомель, Екатеринбург, Иваново, Ижевск, Казань, Калуга, Кемерово, Киров, Кострома, Краснодар, Красноярск, Курск, Липецк, Минск, Набережные Челны, Нижний Новгород, Новосибирск, Омск, Орёл, Пермь, Псков, Ростов-на-Дону, Рязань, Самара, Саранск, Саратов, Смоленск, Ставрополь, Тверь, Томск, Тула, Тюмень, Уфа, Чебоксары, Челябинск, Ярославль. Доставка заказа почтой, через систему доставки Pickpoint или через салоны «Связной» в следующие города: Тольятти, Барнаул, Ульяновск, Иркутск, Хабаровск, Владивосток, Махачкала, Томск, Оренбург, Новокузнецк, Астрахань, Пенза, Чебоксары, Калининград, Улан-Удэ, Сочи, Иваново, Брянск, Сургут, Нижний Тагил, Архангельск, Чита, Курган, Владикавказ, Грозный, Мурманск, Тамбов, Петрозаводск, Кострома, Нижневартовск, Новороссийск, Йошкар-Ола и еще в более чем 1000 городов и населенных пунктов по всей России.

Товары из группы «Источники питания для светодиодов» вы можете купить оптом и в розницу.

Источник

Выбор источника питания для светодиодов

Запись дневника создана пользователем Лифтанутый, 31.03.12
Просмотров: 27.150, Комментариев: 27

Лифтанутый Для того, чтобы включить светодиод, можно использовать привычный источник постоянного напряжения — аккумулятор, батарейку, зарядное устройство и пр.

Для питания светодиодных светильников, также как и для других электроприборов, требуется обычная электрическая сеть, которая присутствует в любой квартире в виде розетки.
Всем известно словосочетание » 220 вольт». Нам больше информации не нужно. Если написано 220В — значит в розетку можно включать.
Для светодиодов тоже есть блоки питания на 220В. Сегодня есть самые разные конструкции светодиодов, которым нужно разное питание. Например светодиодные ленты и модули требуют напряжение постоянного тока 12В или 24В, значит источником может служить любой блок питания, который переменное 220В преобразует в постоянное напряжение 12В. ( как в автомобиле). Такие устройства мы часто встречаем в быту. Они питают разные гаджеты, их еще называют сетевыми адаптерами. адаптеры.jpg
Можно использовать БП от компьютера, предварительно упаковав его в изолированный корпус.

Но мощные растительные светодиоды правильнее и удобнее питать специальными источниками но не напряжения , а источниками тока -драйверами. Название это придуманно маркетологами, это полезно, оно позволяет отличить их от простого блока питания. Внешне их можно отличить от блоков питания только по маркировке (!)
Запомните: драйвер — источник стабильного постоянного тока. (именно тока , а не напряжения!)

Ток светодиода — его важнейший параметр и его нужно обязательно соблюдать. Наши одноваттные светодиоды обычно имеют в паспорте указание о номинальном токе 350мА, 700мА и т.д. Это не значит, что он не может работать при других токах — может. Но если ему дать ток выше номинального -он будет светить намного ярче, но из-за перегрева его срок службы сократится. Планируется появление более мощных светодиодов, у которых номинальный рабочий ток будет другим, намного больше.
Поэтому не надо превышать номинальный ток, а правильнее даже чуть занизить его до 320мА. Это обеспечит сохранение ресурса длительное время 50000часов, за счет неперегрева кристалла.
Простейший драйвер – это резистор, который включается последовательно со светодиодом , ограничивает ток и «гасит» избыток напряжения, преобразуя проходящий ток в тепло. Однако неэкономично!
Мощные светодиоды так подключать можно, но очень неудобно – нужны мощные резисторы. Для них нужно свое место крепления и пр. Если нужна головная боль — используйте резисторы и обычные источники стабилизированного напряжения.
Исправный драйвер ни при каких условиях не выдаст больше тока, чем нужно — как бы вы не подключали диоды .

Но драйверов уже стало много, они похожи на электронные трансформаторы для галогенок и продавцы не всегда компетентны — поэтому надо внимательно смотреть его этикетку- шильдик. Там должны быть указаны параметры входного напряжения и выходного.
Рассмотрим такие этикетки-шильдики.

На фото два драйвера во влагозащищенных корпусах. (Бывают вообще без корпуса — не берите, если не имеете достаточного опыта). Оба драйвера обеспечивают ток 320мА. Оба работают от сети 220 В ( 100-240V). Верхний драйвер позволяет подключить 30- 40штук одноваттных светодиодов, а нижний от 5 до 12шт. Информация о пределах выходного напряжения драйвера является самой важной, она показывает сколько светодиодов можно подключить в цепь ( это суммарное падение напряжения для всей цепи)
[​IMG]
Для чего это нам? Эта информация нужна для предварительной проверки возможности драйвера запитать определенное количество светодиодов с учетом цвета кристалла. Падение напряжения на светодиоде зависит от типа кристалла. Напомню, что для красных -это 1,8-2,1Вольта, а для синих, зеленых и белых — это 3-3,5Вольта.

Читайте также:  Электрический ток стимуляция мышц

Например, мы хотим засветить 5 красных светодиода. Если соединим их в цепь — получим суммарное напряжение на концах цепи 5 х 2 = 10Вольт. На нижнем драйвере написано 5-12 штук, а напряжение минимум 15Вольт. Нельзя недогружать драйвер! Маловато 5 штук, еще надо хотя бы 3штуки (8штХ 2В= 16В). Если бы это были синие 5шт, то напряжение цепи5х3 = 15В — подходит.

Именно потому, что светильник состоит из разных по цвету светодиодов — нужно сначала подсчитать суммарное падение напряжения на всей цепи и только тогда выбирать драйвер. Напряжение нашей светодиодной цепи должно быть в пределах выходного напряжения, указанного на этикетке драйвера. Если вы не попадаете в указанные пределы — тогда придется добавить лишние или убавить рассчитанное ранее количество светодиодов. Это в случае, когда нельзя подыскать другой драйвер.

Из практики: если вы правильно все посчитали, а светильник «моргает» светодиодами — значит ему нехватает нагрузки. Придется добавить светик- другой. Я добавляю зеленые — они здорово улучшают восприятие глазом, хотя растениям от этого немного пользы.

Никогда не загружайте драйвер до верхнего предела мощности- это ведет к его перегреву и снижению надежности, ведь внешняя среда непредсказуема. Вдруг жарко станет на кухне от предпраздничной жарки — варки и он перегреется. капут, однако может быть.
Если вам попадется драйвер на больший ток, например 700мА- его можно использовать для светиков на 350мА, но тогда придется сделать две параллельные светодиодные цепи, либо отдельные светики включать попарно. При этом возможны неприятности — если один светодиод сгорит ( не было ни разу), то вторая цепь окажется под удвоенным током, но будет продолжать работать с увеличенной яркостью пока вы не вмешаетесь:

Будьте внимательны — есть драйверы, подключаемые к источникам низкого напряжения 12V, 24V — это указано в этикетке. А выходные напряжения у них могут быть такими же, как и у сетевых.

Дополнение. Кроме одноватных есть и другие светодиоды: 3,5,10 ватт и далее. На драйвере указаны пределы суммарной мощности. Например, верхний драйвер (30-40вТ) может запитать или 30шт одноваттных или 10шт трехваттных и т.п. Главное не уйти за пределы этих параметров.
примечание светодиодные драйвера можно включать параллельно на одну
нагрузку. Это дает возможность быстро увеличивать мощность светового потока
светодиодного светильника за счет увеличения — уменьшения силы тока. (В разумных пределах, конечно.)

Например рассада стала тянуться — увеличиваем ток вдвое через синие
светодиоды. При номинальном токе 350мА (если теплоотвод хороший) , это возможно однако
это уже снижает ресурс долговечности.

Можно для этой цели использовать дополнительный светильник, который
питается дополнительным драйвером только на время интенсивного торможения
рассады томатов.

ПРЕДУПРЕЖДЕНИЯ:

1. включение -выключение драйвера( ов) должно быть только в сетевом проводе
(220В), а не на выходе к светодиодам.
Нельзя коммутировать вторичную цепь драйвера-могут выйти из строя светодиоды.

2. Не забудьте заранее увеличить площадь теплоотвода для светодиодов, при
использовании дополнительного тока. И хорошо «утеплите»
Номенклатура доступных драйверов непрерывно расширяется. Многие
российские заводы начали поставлять «свои» драйвера собранные из китайских
полуфабрикатов — это конечно радует. Но при этом стали попадаться
драйвера по привлекательной цене, в характеристиках которых не указаны очень
важные для электробезопасности сведения. Нам с вами не обязательно знать
электрическую схему драйвера, но степень защиты от поражения электрическим
током зависит именно от нее. Об этом подробнее.

Если в схеме есть трансформатор ( у него две обмотки и более) — то
он гальванически отделяет сеть от светодиодов (нет электрической связи между
проводами 220В и проводами для подключения светодиодов!).
А если вместо трансформатора ( для экономии), стоит дроссель с двумя
обмотками, то никакого гальванического разделения входной и выходной цепей
не будет! На самом деле, для профессионалов, ничего страшного в этом нет.
Такие драйвера можно использовать для светильников, висящих на недоступной
высоте. В таких конструкциях предусматривают невозможность связи
светодиодов с корпусом и есть надежное заземление!

Но использовать такие драйвера для самодельных светильников досветки растений ОПАСНО для
ЖИЗНИ. потому что фазный провод может быть гальванически связан с
металлическим каркасом светильника. И рядом вода, жена и дети!
Поэтому, приобретая драйвера, обязательно интересуйтесь наличием гальванической развязки.

Источник

Диодный источник тока

Платон Константинович Денисов, г. Симферополь

Идеальный источник тока позволяет получить ток, не зависящий от сопротивления нагрузки. Параметры диодного источника тока, обуславливающие область применения прибора, рассматриваются в этой статье.

Для упрощения электрических схем удобно использовать диодные источники тока, представляющие собой двухвыводной компонент с низкой стоимостью, устанавливаемый в цепи схем последовательно с различными компонентами. Такое схемное решение проблемы стабилизированного тока привлекает простотой и повышением устойчивости работы разрабатываемых схем приборов. Один полупроводник этого класса, в зависимости от типа, обеспечивает стабилизацию тока на уровне от 0.1 до 30 миллиампер. Термина и схемного обозначения для наименования этих полупроводниковых приборов в соответствии с ГОСТ найти не удалось. В иллюстрациях к статье пришлось применить схемное обозначение обычного диода.

Один из примеров использования – питание светодиода. Диодный источник тока, включенный последовательно светодиоду, обеспечивает стабильную и надежную работу светодиода. Одна из особенностей диодного источника тока – работа в диапазоне напряжений от 1.8 до 100 В, позволяющая защитить светодиод от выхода из строя при импульсных изменениях напряжения повышает надежность светодиодного индикатора и расширяет диапазон допустимых отклонений питания. Яркость и оттенок свечения светодиода зависят от протекающего тока. Стабилизация тока питания светодиода позволяет задать требуемый режим работы с неплохой точностью. С помощью диодных источников тока можно построить индикатор или осветительную лампу, предназначенную для питания от сети переменного тока 220 В. Такой прибор будет иметь постоянную яркость свечения при значительном падении напряжения питания. Низкая потребляемая мощность и длительный срок службы являются неоспоримыми преимуществами светодиодных ламп по сравнению с лампами накаливания и газонаполненными осветительными приборами.

Применение резистора в цепи питания светодиода для индикации питания двигателя постоянного тока микродрели приводило к быстрому выходу индикатора из строя. Использование диодного источника тока позволило получить надежную работу индикатора и постоянную яркостью свечения. Требуемый режим можно получить, меняя тип диодного источника тока, или включая 2 — 3 штуки параллельно. Превышение диодным источником тока стоимости резистора на несколько центов оправдывает увеличение надежности работы индикатора.

Читайте также:  Амплитуда заряда амплитуда напряжения амплитуда силы тока

Простая схема зарядного устройства аккумулятора получается при параллельном включении диодных источников тока.

При питании входного светодиода оптрона через резистор пульсации напряжения питания схемы приводят к колебаниям яркости, которые накладываются на фронт входного прямоугольного импульса. Напряжение питания схемы всегда содержит пульсации. Если пульсации питающего напряжения 5 В имеют уровень 50 мВ, то пульсации напряжения на светодиоде будут около 13 мВ.

При большом быстродействии оптрона пульсации напряжения питания приведут к искажению информации, передаваемой через оптрон.

Применение диодного источника тока для питания светодиода, входящего в состав оптрона, позволяет снизить искажения цифрового сигнала, передаваемого через оптрон.

Для создания источника опорного напряжения используются диодный источника тока и резистор. Применение источника стабильного тока улучшает параметры источника опорного напряжения и дает возможность включать источник опорного напряжения в схемы с большими колебаниями напряжения питания. Схема с низким уровнем шумов и возможностью точно установить требуемое значение опорного напряжения с помощью переменного сопротивления показана на рисунке.

Вольтамперная характеристика помогает понять работу диодного источника тока. Режим стабилизации начинается при превышении напряжения 1.8 В на выводах прибора. При напряжениях более 100 В происходит пробой прибора. Отклонение тока стабилизации от номинального, в зависимости от экземпляра прибора, составляет ±10 процентов. При изменении напряжения от 1.8 до 100 В ток стабилизации меняется на 5 процентов. Диодные источники тока, выпускаемые некоторыми производителями, изменяют ток стабилизации при изменении напряжения до 20 процентов. Чем выше ток стабилизации, тем больше отклонение при изменении напряжения. Параллельное включение пяти приборов, рассчитанных на ток 2 мА, позволяет получить более высокие параметры, чем у одного на 10 мА.

Дешевые диодные источники тока представляют собой отобранные по току полевые транзисторы, у которых затвор соединен с истоком. Обобщенная зависимость прямого и обратного тока от прямого и обратного напряжения изображена на рисунке. Диодный источник тока превращается в обычный диод при смене полярности напряжения, приложенного к его выводам. Это свойство обусловлено тем, что p-n переход полевого транзистора оказывается смещенным в прямом направлении, и ток течет по цепи затвор-сток. Максимальный обратный ток диодного стабилизатора тока может достигать 50 мА, а у некоторых типов и 100 мА. Это свойство позволяет разработать несложный преобразователь синусоидального сигнала в прямоугольный.

Амплитуда выходного сигнала, форма которого близка к прямоугольной, задается напряжением стабилизации стабилитрона. Диодный источник должен обеспечить номинальный ток, необходимый для работы стабилитрона. В файле математической модели Electronics Workbench 5.12, прилагаемом к статье, показана работа преобразователя. Преобразование синусоидального сигнала в треугольный сигнал осуществляет схема, в которой стабилитроны заменены конденсатором.

Удвоенная амплитуда (разность потенциалов между максимумом и минимумом) равняется

I – ток стабилизации диодных источников тока,
t – время изменения напряжения между минимумом и максимумом,
С – емкость конденсатора.

В файле математической модели Electronics Workbench 5.12, прилагаемом к статье, показана работа преобразователя.

Для стабилизации токов порядка ампера применяется схема, силовой элемент которой мощный транзистор. Диодный источник тока стабилизирует напряжение на резисторе 200 Ом и на выводе базы транзистора 2Т819. Изменение сопротивления резистора R1 от 0.2 до 10 Ом изменяет ток, поступающий в нагрузку. С помощью этой схемы можно получить ток, ограниченный максимальным током транзистора или максимальным током источника питания. Выбор диодного источника тока с возможно большим номинальным током стабилизации улучшает стабильность выходного тока схемы. Изменение резистора R1 на 1-2 Ом сильно меняет значение тока. Этот резистор должен быть большой мощности, изменение сопротивления из-за нагрева приведет к отклонению выходного тока от заданного значения. Резистор 200 Ом можно заменить переменным для точной настройки выходного тока или для построения регулируемого источника стабильного тока. Для улучшения стабильности тока транзистор 2Т819 усиливается вторым транзистором меньшей мощности. Транзисторы соединяются по схеме составного транзистора Дарлингтона. При использовании составного транзистора минимальное напряжение стабилизации увеличивается. В файле математической модели Electronics Workbench 5.12, прилагаемом к статье, показана работа мощного источника тока.

Улучшенным вариантом диодного источника тока является схема на полевом транзисторе с автоматическим смещением, где резистор обеспечивает обратную связь по току и увеличивает обратное смещение затвора, что приводит к работе транзистора на более предпочтительном участке характеристики, расположенном ниже характеристики начального тока стока. По графику выходной характеристики полевого транзистора КП312А видно как можно управлять током насыщения, меняя напряжение между затвором и истоком. Ток, протекающий через схему стабилизации, создает на резисторе напряжение затвор-исток. Изменяя сопротивление резистора можно задать стабилизируемый ток. Включение в цепь истока резистора снижает отклонение стабилизируемого тока до двух процентов.

Схема, обладающая более высокими характеристиками, состоит из двух полевых транзисторов. Транзистор VT1 обеспечивает уменьшение колебаний напряжения на стоке VT2. Транзистор VT1 должен иметь более высокий начальный ток стока, так как в истоковую цепь входит резистор и сопротивление канала VT2. Также большой начальный ток стока необходим для работы транзистора на линейном участке выходной характеристики, находящемся между вертикальной осью тока и пунктирной линией напряжения насыщения. Транзистор VT2 стабилизирует ток через сток-исток транзистора VT1, что не позволяет транзистору VT2 перейти в режим насыщения. Таким образом, транзисторы задают режимы работы друг друга. При увеличении напряжения на полюсах схемы сопротивление канала VT1 возрастает. При увеличении напряжения, приложенного к выводам схемы, сопротивление сток-исток транзистора VT2 возрастает и отрицательное напряжение затвор-исток транзистора VT1 увеличивается по модулю. Сопротивление сток-исток транзистора VT1 возрастает, большая часть напряжения падает на транзисторе VT1. В файле математической модели Electronics Workbench 5.12, прилагаемом к статье, показана работа схемы. Меняя в программе Electronics Workbench 5.12 напряжение источника питания интересно пронаблюдать значение тока и напряжения на транзисторах VT1 и VT2.

Диодные источники тока выпускаются многими производителями полупроводников. Параметры некоторых типов приведены в таблице.

Источник