Меню

Использование постоянного электрического тока в строительстве



Электротехнологии в строительстве

Наиболее применимыми в строительной индустрии можно считать следующие электротехнологии: электросварка; электрообогрев бетона; электрооттаивание грунта, замерзших труб; электроосмос.

Электросварка – может выполняться постоянным или переменным током. Сварка постоянным током позволяет обеспечивать лучшее качество шва. Недостатки требуется специальные выпрямители постоянного тока. При сварке образуется постоянные магнитные поля, т.к. большие сварочные токи, у проводов, подводящих ток к электроду, и они воздействуют на электрическую дугу – это называется магнитным дутьем.

Чаще используется сварка переменным током.

Для выполнения сварочных работ необходимо подобрать сварочный ток и электрод. Диаметр электрода выбирается обычно по толщине сварочного материала из условия их примерной соизмеримости. Выбрав диаметр электрода (dэ), подбирают сварочный ток по примерному соотношению Iсв= (30…50). Определившись с током, можно выбрать сварочный трансформатор (часто они позволяют регулировать сварочный током путем регулирования зазора в магнитопроводе).

Напряжение на вторичной обмотке сварочного трансформатора в режиме холостого хода составляет около 80 В, в рабочем режиме — 50..60 В.

Переносные сварочные трансформаторы выпускаются на сварочные токи больше на 600А, а бытовые – до 100А.

Электообогрев бетона – технология применяется обычно при ведении железобетонных работ в зимнее время. Чтобы не заморозить свежий бетон, его искусственно обогревают пока он не наберет 50% своей прочности. Возможен электрообогрев: электродным способом, инфракрасным излучением и индукционным способом. Наиболее распространенный – электродный способ обогрева. В свежеуложенный бетон устанавливаются электроды (арматура Ø 10 мм) – через смесь пропускают электрический ток. Ток нагревает бетон и не дает ему замерзнуть. Методики подбора количества электродов, расстояния между ними и др. – в справочниках. Ориентировочно, на обогрев1 м3 бетона расходуется 100 кВт-час электроэнергии. Допускается

только переменный ток. Температура нагрева не должна превышать 70..80 о С.

Инфракрасный – менее эффективный, т.к. более энергозатратный.

Электроиндукционный обогрев – устройство типа СВЧ – печки.

Электрообогрев грунта

Проводится обычно с помощью электродов, забиваемых в грунт. При этом, т.к. мерзлый грунт неэлектропроводен, вначале сверху укладывают слой опилок, пролитых раствором поваренной соли.

Возможно оттаивание та и с помощью ТЭНов (трубчатых электронагревателей), погруженных в просверленные в грунте отверстия.

электроды.

Слой опилок, пропитанный

соленой водой. Оттаивание трубопровода

Электроосмос

Технологии, улучшающие водоотдачу грунта или другой среды при пропускании через него постоянного электрического тока.

Увеличивается водоотдача (до 20раз), если присоединить

стержень к «+», а ЛИУ (легкую иглофильтровую установку) к «-».

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Источники постоянного тока: виды, характеристики, сферы применения

Постоянный ток существует только в замкнутой цепи и сохраняет свое направление и основные параметры неизменными во времени. Для его поддержания необходимо наличие постоянного напряжения. Это требование является неизменным для различных источников постоянного тока.

Источники постоянного электрического тока

Существует несколько основных видов источников энергии постоянного тока. Каждый из них основан на использовании разных физических принципов и используется в определенных условиях. К ним можно отнести следующие виды:

  • механические, превращающие механическую энергию вращения ротора в электрическую энергию;
  • тепловые, в которых в электрическую энергию преобразуется тепловая энергия;
  • химические, в которых в электрическую энергию преобразуется энергия, выделяющаяся в результате химического процесса;
  • световые, превращающие энергию солнечного света в электрическую энергию.

В основном электроэнергия вырабатывается электростанциями, от которых потребители получают не постоянный, а переменный ток, который затем преобразуется в постоянный. Но во многих сферах можно применять только тепловые, световые или химические источники постоянного электрического тока.

Тепловые источники

В этих источниках используется термоэлектрический эффект. Электрический ток в замкнутой цепи возникает благодаря разнице температур, контактирующих между собой, металлов или полупроводниковых структур. В месте контакта при нагреве возникает электродвижущая сила (термо-ЭДС). Электрический ток заряженных частиц направлен от нагретого участка в сторону холодного. Его величина пропорциональна разнице температур. В месте спая образуется термопара.

Приборы, которые для создания постоянного тока используют тепло, выделяющееся при распаде радиоактивных изотопных материалов, являются радиоизотопными термоэлектрическими генераторами.

Световые источники

Свойство полупроводников создавать ЭДС при попадании на них потока света используется при создании световых источников постоянного тока.

Солнечная батарея

Объединение большого количества кремниевых структур позволяет создавать солнечные батареи. Небольшие электростанции, созданные на базе таких солнечных панелей, имеют на сегодняшний день КПД не более 15%.

Химические источники

Получение положительных и отрицательно заряженных частиц в химических источниках постоянного тока осуществляется за счет химических реакций. По классификации химических источников они делятся на 3 группы:

  • гальванические элементы, являющиеся первичными источниками ;
  • электрические аккумуляторные батареи (АКБ), или вторичные ХИТ;

*ХИТ — химические источники тока.

Гальванические элементы используют принцип действия, основанный на взаимодействии двух металлов через среду электролита. Вид и характеристики ХИТ зависят от выбранной пары металлов и состава электролита. Два металлических электрода источника тока по аналогии с прибором односторонней проводимости получили название анода («+») и катода («-«).

Материалом для изготовления анода могут служить свинец, цинк, кадмий и другие. Катод изготавливают из оксида свинца, графита, оксида марганца, гидрооксида никеля. По составу электролита гальванические элементы разделяются на 3 вида:

  • солевые или «сухие»;
  • щелочные;
  • литиевые.

В элементах первых двух видов графито-марганцевый стержень (катод) помещен по оси цинкового цилиндрического стаканчика (анода). Свободное пространство между ними заполнено пастой на основе хлорида аммония (солевые) или гидрооксида калия (щелочные).

Батарейка одноразовая

В литиевых элементах цинковый анод заменен щелочным литием, что привело к значительному увеличению продолжительности работы. Материал катода в них определяет выходное напряжение батарейки (1,5-3,7) В. Первичные ХИТ являются источниками одноразового действия. Его реагенты, расходующиеся в процессе работы, не подлежат восстановлению.

Аккумуляторы представляют собой устройства, в которых производится преобразование электрической энергии внешнего источника тока в химическую энергию при заряде и ее накопление. В процессе работы (разряд) происходит обратное преобразование — химическая энергия служит источником постоянного электрического тока.

К основным видам аккумуляторов относятся:

  • свинцово-кислотные;
  • никель-кадмиевые щелочные;
  • литий-ионные.

Для создания химических процессов набор пластин помещен в раствор электролита. В АКБ, созданных по современным технологиям, раствор представляет собой не жидкость, а гелиевый состав (GEL) или сотовые сепараторы, пропитанные электролитом и помещенные между свинцовыми пластинами (AGM).

Аккумулятор автомобильный

Свинцово-кислотные и никель-кадмиевые щелочные аккумуляторы для работы в качестве источников постоянного тока для запуска двигателей автомобилей собирают из набора отдельных аккумуляторных элементов («банок»). Каждая «банка» обеспечивает на своих клеммах напряжение 2,1 В. Соединенные последовательно 6 элементов и помещенные в ударопрочный корпус, имеют на выходных клеммах аккумулятора необходимые для запуска двигателя 12 В.

Читайте также:  Электродвигатель для генерации тока

В литий-ионных аккумуляторах носителями электрического тока служат ионы лития. Они образуются на катоде, изготовленному из соли лития. Анод может быть изготовлен из графита или оксидов кобальта. Напряжение постоянного тока на выходе аккумулятора может варьироваться в пределах (3,0-4,2) В в зависимости от используемых материалов. Эти аккумуляторы имеют низкое значение тока саморазряда и допускают большое количество циклов заряд/разряд. Благодаря этому все современные гаджеты используют аккумуляторы этого вида.

Механические источники постоянного тока

Устройствами, преобразующими механическую энергию в электрическую, являются турбо и гидро генераторы. Они вырабатывают переменный электрический ток. Для основной части бытовых приборов источником постоянного тока выступают их блоки питания. В них производится преобразование переменного напряжения генератора в постоянное напряжение, необходимое для работы устройств. Эту задачу выполняют выпрямители, которые должны обеспечивать необходимую мощность источника постоянного тока для их нагрузки и постоянное значение выходного напряжения, не зависящее от потребляемого тока.

Блоки питания могут быть линейными и импульсными. Линейные блоки выполняются по разным схемам, основу которых составляют:

  • однополупериодые выпрямители;
  • двухполупериодные выпрямители.

В выпрямителях используется свойство полупроводниковых диодов пропускать ток только в одном направлении. Выпрямленное таким образом напряжение еще не является постоянным. Емкости последующих за выпрямителем конденсаторов сглаживающего фильтра при своем быстром заряде и медленном разряде поддерживают величину положительного однополярного напряжения на определенном значении. Его величина определяется трансформатором, получающим напряжение от генератора переменного тока. Для однофазного напряжения домашней сети 220 В 50 Гц его стальной сердечник имеет значительные размеры и вес.

Схемы однополупериодных содержат всего один полупроводниковый диод, пропускающий только одну полуволну синусоидального переменного входного напряжения.

Выпрямитель одного периода

Двухполупериодные выпрямители выполняются по мостовой схеме или по схеме с общей точкой. В последнем случае вторичная обмотка сетевого трансформатора имеет вывод от своей середины. Эти выпрямители представляют собой параллельное включение двух однополупериодных выпрямителей. Они действуют на обе полуволны синусоиды переменного входного напряжения.

Выпрямитель со средней точкой

Мостовая схема выпрямителя является наиболее распространенной. Соединение 4-х диодов в ней напоминает «квадрат». К одной из диагоналей подключается переменное напряжение вторичной обмотки сетевого трансформатора. Нагрузка включается в другую диагональ «квадрата». Им будет входной элемент сглаживающего фильтра.

Мостовая схема выпрямления

Регулирование источника

Для обеспечения постоянного значения уровня выходного напряжения, не зависящего от потребляемого нагрузкой тока и колебаний входного переменного напряжения, все современные источники питания постоянного тока имеют ступень стабилизации и регулирования.

Схемы стабилизаторов

В ней выходное напряжение сравнивается с эталонным (опорным) значением.

При появлении различия между ними вырабатывается управляющий сигнал, который по цепи управления изменяет величину выходного напряжения. Величину значения опорного напряжения можно изменять в широких пределах, имея на выходе регулированного источника питания постоянного тока необходимое для работы напряжение.

Импульсные источники

Схемы с использованием входных трансформаторов напряжения сети получили название линейных. В импульсных источниках питания производится двойное преобразование — сначала переменное напряжение выпрямителем преобразуется в постоянное, затем вырабатывается переменное импульсное напряжение более высокой частоты, которое в выходном каскаде снова преобразуется в постоянное напряжение необходимого значения.

Генераторы импульсов вырабатывают непрерывную импульсную последовательность с частотой (15-60) кГц. Регулирование выходного напряжения осуществляется посредством широтно-импульсной модуляции (ШИМ), при которой уровень сигнала на выходе блока питания определяется шириной импульсов, вырабатываемых генератором и значением их скважности. Регулированные источники питания постоянного тока импульсного типа все чаще используются при создании аппаратуры различного назначения.

Сравнение источников

Отсутствие мощного входного трансформатора в импульсных источниках питания позволяет создавать конструкции значительно более легкие и с меньшими линейными размерами. Их эффективность значительно выше источников, выполненных по линейным схемам. Коэффициент полезного действия доходит до значения 98%. В них широкое распространение получили микросхемы, выполняющие функции контроллеров.

Каждый из типов стабилизированных источников постоянного тока находит применение в своей сфере. А она весьма многообразна. Основой являются характеристики источников постоянного тока. Линейные источники обеспечивают низкий уровень пульсаций выходного напряжения и малое значение уровня собственного шума. Это достигается отсутствием переключений при их работе, которые создают большой уровень помех в широком частотном диапазоне. В импульсных источниках приходится применять сложные схемные решения для борьбы с ними, что приводит к удорожанию изделий, в которых они применяются.

Заключение

В статье был дан общий обзор существующих источников постоянного тока. Изложенный материал лишь знакомит читателей с основными принципами их работы. Из него можно сделать вывод, что каждый из видов источников постоянного тока используется в своей области.

Источник

Постоянный ток: как обозначается, где используется; источники тока

Напряжение тока

Наверное, каждый человек с детства усвоил, что электрический ток — это что-то такое, от чего работают практически все приборы в доме. У многих электричество ассоциируется с яркой молнией в небе, а у кого-то — с электрической розеткой и наивным детским желанием засунуть туда палец.

Электроток можно описать как упорядоченное движение электрических частиц (электронов, ионов или дырок). Однако такое определение является верным лишь отчасти, ведь электрический тoк можно разбить на два вида:

  • Переменный. С течением времени такой ток меняет своё направление или величину.
  • Постoянный. Не изменяется по величине и направлению.

Как проверить напряжение

Чтобы лучше понять, какой тип где используется, нужно представить розетку и вставленное в неё зарядное устройство от смартфона. В розетке течёт переменный тoк, который, проходя через зарядное устройство, а точнее через блок питания, преобразуется в постoянный тoк, им мы и заряжаем наш смартфон. Практически в любой бытовой аппаратуре переменный электрический тoк преобразуется в постоянный с помощью специальных выпрямителей, и устройства работают уже от постоянного тока. Таким образом, можно ответить на вопрос о том, где используется постоянный ток — практически во всей электронной аппаратуре.

Казалось бы, почему тогда в розетках и линиях электропередач идёт переменный электроток? Ответ прост — из-за меньших энергетических потерь, которые в случае с постоянным были бы просто гигантскими.

Рассмотрим постоянный тoк более подробно.

Постоянный тoк

Носители заряда

Для ответа на вопрос о том, какой ток называется постоянным, достаточно прочитать вышеприведённое общее определение электрического тoка и краткое определение постоянного тока. Итак, постоянный ток — это упорядоченное движение электрических частиц, в процессе которого эти частицы не меняют своего направления, и величина тока не изменяется.

Также это явление можно описать более широко, опираясь на физические процессы, происходящие при этом. Наверняка каждый помнит понятия «плюса» и «минуса» из школьного курса физики, то есть понятия полюсов, заряженных разноименными зарядами. Для понимания процесса протекания нашего электротока можно представить обыкновенную пальчиковую батарейку и провод, который одним концом соединяется с положительным полюсом, а другим — с отрицательным (делать такое на практике крайне нежелательно из-за возможности испортить источник питания, а в случае с большими аккумуляторами даже получить ожоги и травмы).

Читайте также:  Как убрать ток с рук

Итак, как только второй конец провода будет замкнут, то есть присоединён к полюсу, в цепи сразу появится движение электронов. От отрицательного полюса, то есть полюса, на котором наблюдается избыток элементарных электрических зарядов, эти заряды станут перетекать к положительному полюсу, где их, наоборот, дефицит. Можно сказать, что это движение призвано сбалансировать количество зарядов с обеих сторон. Когда это произойдёт, электроны перестанут двигаться, то есть батарейка разрядится.

Как обозначается ток и закон Ома

Частота тока

Если рассматривать пример с батарейкой, описанный выше, с точки зрения физики, то в нём будут фигурировать три составляющие — сила тoка, напряжение и сопротивление. Говоря о том, как обозначается постоянный ток, подразумевается именно сила тoка. Обозначается она буквой I. Напряжение — буквой U, а сопротивление — R.

Три этих характеристики легли в основу известнейшего в электротехнике и незаменимого почти при любых расчётах электрических схем закона, называемого законом Ома, в честь его создания. Кстати, единицы измерения сопротивления носят такое же имя — Омы.

Звучит этот закон следующим образом — сила тoка I прямо пропорциональна напряжению U и обратно пропорциональна сопротивлению R: I=U/R.

Для измерения всех вышеперечисленных величин существуют специальные приборы. Для тoка — амперметр, для напряжения — вольтметр, для сопротивления — вольтметр. Например, можно измерить силу тока, если подключить амперметр последовательно элементу, на котором мы и должны найти указанную характеристику. Существую приборы, комбинирующие в себе все вышеперечисленные средства измерения — мультиметры.

Источники питания

Для питания той или иной аппаратуры необходимо использование специальных средств — источников постоянного тока. Такие приборы, также называемые блоками питания, есть практически в любых электронных средствах, начиная с телевизоров и заканчивая зарядными устройствами для телефона.

Классифицировать такие источники можно следующим образом:

Как обозначается переменный ток

  1. Гальванические элементы. Это привычные всем аккумуляторные батареи, которые работают с помощью химической реакции, происходящей внутри батареи.
  2. Генераторы. Устройства, которые преобразуют механическую энергию в электрическую с помощью электромагнитной индукции.
  3. Выпрямители. Наиболее применяемые устройства в бытовой электронной аппаратуре. Они преобразуют переменный электроток из розетки в постоянный.

Данную классификацию можно разделить и на другие подкатегории, более специфические и универсальные. Выбор источника питания основывается на типе эксплуатации прибора, где он будет использоваться.

Фотография Андрея Алексеевича

Порошин Андрей

Источник

Области применения сетей постоянного тока

В конце XIX – начале XX века между специалистами-электротехниками развернулась самая настоящая «война токов». Основная конкуренция проходила между двумя направлениями систем генерации, электроснабжения и электропотребления: постоянным током (англ. Direct Current – DC) и переменным (англ. Alternating Current – AC). В итоге предпочтение было отдано трёхфазным цепям переменного тока. Подсчитав объёмы капитальных затрат на создание систем электроснабжения, промышленники выбрали, казалось бы, самый оптимальный вариант. Но удастся ли переменному току удержать лидерство в современных условиях? Сегодня в ряде областей наблюдается развитие технологий и продвижение проектов на постоянном токе.

Области применения постоянного тока

Линии электропередачи низкого напряжения

В рамках финской программы «Интеллектуальные сети и рынок энергии» в Технологическом университете Лаппеенранты разработан проект системы электроснабжения и связи LVDC (англ. Low voltage direct current). Он предназначается для загородных посёлков с малым числом потребителей и линиями электроснабжения большой протяжённости.

Проект предусматривает замену дорогих традиционных трёхфазных распределительных сетей переменного напряжения 20/0,4 кВ на кабельные подземные линии LVDC (±0,75 кВ). Прокладка кабеля на глубине более 1,5 м минимизирует зоны отчуждения и не создаёт ограничений для ведения сельскохозяйственных работ. Такое решение существенно уменьшает стоимость сети и её зависимость от погодных катаклизмов. Каждое здание и сооружение будет подключаться к сети постоянного тока через преобразователи, согласующие напряжение LVDC с напряжением, необходимым потребителю.

Энергоснабжение локальных объектов, микро- и мини-сети постоянного напряжения

Сегодня для обеспечения повышения энергоэффективности всё чаще предлагаются проекты микросетей постоянного напряжения внутри здания (или нескольких зданий) и на локальной территории. На входе таких сетей установлен высокоэффективный преобразователь, превращающий переменное напряжение распределительных линий в постоянное.

Современные локальные сети постоянного напряжения имеют ряд преимуществ, среди которых необходимо отметить следующие:

 общее преобразование из переменного напряжения в постоянное для всех нагрузок уменьшает потери на 10-20%;

 эффективное интегрирование возобновляемых источников электроэнергии, являющихся также источниками постоянного напряжения (солнечные батареи, небольшие ветряные турбины, топливные элементы и др.);

 простое согласование перечисленных источников постоянного напряжения, не требующих взаимной синхронизации;

 эффективное управление графиками нагрузки (включая накопление электрической энергии в периоды избыточной генерации и выдачу в периоды дефицита);

 повышенная электробезопасность сетей постоянного тока.

Не так давно была разработана энергосистема постоянного тока для крупного морского судна гражданского назначения – многоцелевого танкера для обслуживания нефтяных платформ, построенного в Норвегии. Традиционно в судах с электротягой происходит многократное преобразование переменного тока в постоянный для питания винто-рулевых колонок и гребных винтов, на которые приходится более 80% всего электропотребления. Это приводит к большим потерям энергии, снижению общего КПД, а также негативному влиянию на окружающую среду. Компания АББ, лидер в производстве силового оборудования и технологий для электроэнергетики и автоматизации, разработала проект, в котором электроэнергия распределяется через единую цепь постоянного тока.

«С помощью нашего решения суда смогут максимально эффективно использовать свои возможности по энергосбережению с применением дополнительных источников постоянного тока, таких как солнечные батареи, топливные ячейки или аккумуляторы, подключенные напрямую к судовой сети постоянного тока», – рассказывает Вели-Матти Рейникала, руководитель подразделения «Автоматизация процессов» компании АББ.

В сравнении с системами на переменном токе спроектированная энергосистема имеет следующие преимущества:

 расход топлива на 20% ниже;

 за счёт отсутствия силовых низкочастотных трансформаторов суммарный вес и объём электрооборудования уменьшен на 30%;

 высвобождается место для размещения оборудования, груза и экипажа, то есть улучшена компоновочная схема танкера.

Постоянное напряжение широко применяется для обеспечения эффективного регулирования скорости электродвигателей.

С каждым годом управляемый электропривод всё больше проникает в те сферы, в которых раньше считалось достаточным применение обычного неуправляемого привода. Специалисты уверены, что сочетание инвертор плюс асинхронный (или вентильный) электродвигатель в ближайшем будущем будет всё больше теснить традиционные типы приводов. А для такого инверторного привода питание постоянным напряжением является естественным и наиболее эффективным.

Читайте также:  Зачем ток уходит в землю

Бытовая электротехника и электроника

Практически вся современная бытовая техника питается переменным напряжением. Однако почти в каждом современном электроприборе происходит преобразование переменного входного напряжения в постоянное. И именно последнее используется электронными схемами.

Очевидно, что у постоянного тока множество преимуществ перед переменным. Но всё же у такого способа питания оборудования есть целый ряд особенностей, которые необходимо учитывать при разработке топологии электрических цепей и при выборе защитных и коммутационных устройств.

Особенности цепей постоянного тока

1. Направление тока

Электрический ток, называемый «постоянным», имеет неизменные во времени значение и направление. Если рассматривать постоянный ток как прохождение элементарных электрических зарядов через определённую точку, то значение заряда (Q), протекающего через эту точку (а вернее, через поперечное сечение проводника) за единицу времени, будет неизменным.

В системах постоянного тока относительное направление тока имеет особую важность, поэтому необходимо присоединение нагрузки со строгим соблюдением полярности. Ошибки неотвратимо приводят к тяжёлым аварийным процессам. Например, если аккумуляторная батарея будет подключена к источнику с неправильной полярностью, произойдет её перегрев с дальнейшим закипанием электролита и последующим возможным разрушением ее корпуса, которое обычно носит взрывной характер. При питании обратной полярностью серьёзные повреждения могут так же возникнуть и во многих электронных цепях.

К полярности чувствительно не только электротехническое оборудование, но и аппараты защиты и коммутации, устанавливающиеся в распределительных щитах. Обычно для того, чтобы избежать ошибок при монтаже электросети, производители наносят на переднюю панель аппаратов специальную маркировку. «Надо понимать, что работа монтажника достаточно однообразна: в день они собирают десятки однотипных схем. Так что от неточностей, связанных с невнимательностью, не застрахованы даже профессионалы. Случается, что коммутационные аппараты подключают неправильно. В итоге подача напряжения на распределительный щит может закончиться возгоранием», – рассказывает Илья Лёшин, начальник измерительной лаборатории компании «Центроэлектромонтаж».

Описанная специалистом проблема была актуальна для постоянного тока в течение многих десятилетий. Но в последнее время на рынке появились устройства, не чувствительные к полярности приложенного напряжения благодаря особым конструкторским решениям. «Использование подобных аппаратов избавляет от множества проблем, – комментирует Алексей Кокорин, менеджер по группе изделий компании АББ, лидера в производстве силового оборудования и технологий для электроэнергетики и автоматизации. – Так, например, за счёт симметричной конструкции полюса выключатели-разъединители серии OTDC производства АББ не чувствительны к полярности приложенного напряжения. Их можно монтировать внутри щита как вертикально, так и горизонтально, подвод питания осуществляется сверху либо снизу».

2. Электрическая дуга

Одной из проблем, связанных с использованием аппаратов и переменного, и постоянного тока, является электрическая дуга. Она возникает между размыкающимися контактами из-за ионизации воздушного пространства между ними.

В выключателе переменного тока гашение дуги происходит при переходе значения переменного тока через ноль. После исчезновения разряда, во избежание его повторного появления, необходимо восстановить электрическую прочность воздушного дугового промежутка. Сделать это можно либо за счёт «принудительной» рекомбинации ионов и электронов, либо с помощью вывода из контактного промежутка заряженных частиц.

В цепях постоянного тока процесс происходит несколько иначе. В общем случае параметры дуги зависят от характеристик цепи, значения тока, а также параметров самой среды: температуры, давления, состава воздуха и т.п. Существует набор условий, при которых электрическая дуга при размыкании контактов в цепи постоянного тока может устойчиво гореть длительное время. Таким образом, для её гашения необходимо так изменить параметры процесса, чтобы не существовало точки устойчивого горения.

В аппаратах низкого напряжения применяется два решения: открытый разрыв и щелевые дугогасительные камеры. В первом случае дуга растягивается, допустим, с помощью электродинамических сил, одновременно охлаждаясь воздухом (способ применяется для токов до 5 кА и напряжений до 500 В). Во втором – дуга при помощи магнитного поля растягивается и попадает в узкую камеру, где охлаждается (применяется для токов до 90 кА).

«Часто эффективность работы дугогасительных механизмов, в которых задействованы магнитные или электродинамические силы, зависит от величины самого тока. При высоких значениях они справляются со своей задачей, но в некоторых случаях магнитных сил недостаточно, чтобы растянуть дугу до требуемой длины. Поэтому иногда аппараты дополняются, к примеру, постоянными магнитами, позволяющими расширить рабочий диапазон токов», – поясняет Алексей Кокорин (АББ). Схема, описанная специалистом, используется в аппаратах серии OTDC, где установлена дугогасительная решётка новой конструкции с удлинёнными пластинами специальной формы. В процессе гашения дуга изгибается в пространстве и растягивается. В то же время для увеличения падения напряжения на ней применяется принцип деионной решётки.

Чтобы такой дугогасительный механизм эффективно работал как при низком, так и при высоком напряжении, в него были интегрированы дополнительные постоянные магниты. Их силы поля достаточно, чтобы перемещать дугу к решётке, даже если значения тока малы.

3. Размер защитных аппаратов должен быть минимальным

Цепи постоянного тока чаще всего применяются именно там, где важна компактность оборудования. «Габариты важны практически во всех отраслях, поскольку любое оборудование занимает дефицитные площади. Кроме того, есть сферы, где важен каждый кубический сантиметр: например, транспорт. При разработке оборудования наша компания уделяет его размерам особое внимание. Например, выключатели нагрузки серии OTDC работают с током 100-250 А при напряжении до 1000 В, имея при этом всего два полюса. Обычно для таких цепей применяются четырёхполюсные автоматические выключатели, имеющие почти в три раза большие габариты. Так как аппараты не чувствительны к полярности, дополнительную экономию места можно обеспечить за счёт удобного варианта размещения модулей в монтажном блоке (вертикально или горизонтально) как на шине, так и без нее, или благодаря более эргономичной подводке питания», – говорит Алексей Кокорин (АББ).

Хотя ещё полвека назад считалось, что постоянный ток окончательно сдал свои позиции, сегодня в рамках разговоров о повышении энергоэффективности систем электроснабжения всё чаще на повестке дня появляются проекты по строительству сетей DC. Переход промышленности на потребление постоянного тока потребует в первую очередь обновления оборудования и перестройки сложившейся культуры использования энергии. А правильный подбор коммутационной и защитной аппаратуры для цепей постоянного тока – первый шаг к использованию всех преимуществ подобных сетей.

Источник

Adblock
detector