Меню

Индуктивность в цепи постоянного тока при замыкании



Процессы включения под напряжение и короткого замыкания катушки индуктивности

Катушки индуктивности выполняются медным, как правило, проводом, причем число витков и размеры проводника меняются в очень широких пределах.

Основным параметром катушки является индуктивность L, которая характеризует величину противо ЭДС, наводимой (индуктируемой) в катушке при заданном изменении тока в ней. Индуктивность пропорциональна числу витков катушки в квадрате и обратно пропорциональна магнитному сопротивлению пути, по которому замыкается магнитный поток, создаваемый током катушки.

После подключения к цепи с катушкой постоянного напряжения ток в ней нарастает по экспоненциальному закону. Так, за время, равное значению постоянной времени tцепи, ток увеличится до 63% своего установившегося значения.

Постоянная времени t, измеряемая в секундах, зависит от индуктивности катушки L, измеряемой в Генри (Гн), и эквивалентного омического сопротивления цепи Rв Омах:

t = L ¤ R.

После приложения постоянного напряжения к цепи с катушкой спустя времяt падение напряжения на катушке уменьшается до 37 % его максимальной величины и после примерно 3…4tдостигает своего наименьшего значения, зависящего от омического сопротивления катушки.

При коротком замыкании катушки в ней наводится (индуктируется) ЭДС самоиндукции, которая имеет полярность, противоположную внешнему напряжению и почти полностью затухает за время, равное (3…4)t.

Мгновенные значения тока iLи падения напряжения uLкатушки при включении и при коротком замыкании катушки можно рассчитать, используя следующие формулы:

Ток включения катушки под напряжение U:

iL = U ¤ R ×(1 — e — t ¤ t ).

Падение напряжения на катушке при ее включении под напряжение U:

uL = U × e — t ¤ t .

Ток короткого замыкания катушки:

iL = U ¤ R × e — t ¤ t .

Падение напряжения на катушке при ее коротком замыкании:

uL = — U ×e — t ¤ t .

Задание 17

Выведите на дисплей виртуального осциллографа кривые тока и напряжения при подключении катушки индуктивности к постоянному напряжению и ее коротком замыкании, определите следующие величины:

· постоянную времени t цепи с катушкой,

· индуктивность катушки L,

· мгновенное значение тока катушки iL спустя 0,02 мс после включения под напряжение.

Экспериментальная часть

Соберите цепь согласно схеме (рис. 12.1) и подсоедините к ее входным зажимам регулируемый источник напряжений специальной формы, настроенный на прямоугольные импульсы положительной полярности с параметрами: Um = 10 B, f=200…250 Гц (V1, A1 –мультиметры). Напряжение с катушки подаётся на первый канал осциллографа, а сигнал, пропорциональный току снимается с сопротивления R=100 Ом и подаётся на второй канал осциллографа. Сигнал второго канала нужно инвертировать, тогда сигнал тока на экране будет положительным (отклонение луча вверх).

Настройте осциллограф, установите стандартные масштабы по первому и второму каналам и перерисуйте кривые на рис. 12.2. Не забудьте указать масштабы. Масштаб тока определяется как масштаб напряжения, делённый на сопротивление шунта.

Примечание: Кривая напряжения на катушке не точно соответствует приведённому выше выражению, так как катушка обладает значительным активным сопротивле­нием.

· Определите указанные в задании величины, используя экспериментальные кривые.

· Экспериментальные данные проверьте вычислением. При расчёте не забудьте учесть сопротивление катушки Определите указанные в задании величины, используя экспериментальные кривые RК.

· Экспериментальные данные проверьте вычислением.

Сопротивление катушки RК=……Ом

Источник

Катушка индуктивности. Устройство и принцип работы.

Катушка индуктивности

Приветствую всех на нашем сайте!

Мы продолжаем изучать электронику с самых основ, и темой сегодняшней статьи будет катушка индуктивности. Забегая вперед скажу, что сначала мы обсудим теоретические аспекты, а несколько будущих статей посвятим целиком и полностью рассмотрению различных электрических схем, в которых используются катушки индуктивности, а также элементы, которые мы изучили ранее в рамках нашего курса – резисторы и конденсаторы.

Устройство и принцип работы катушки индуктивности.

Как уже понятно из названия элемента – катушка индуктивности, в первую очередь, представляет из себя именно катушку 🙂 То есть большое количество витков изолированного проводника. Причем наличие изоляции является важнейшим условием – витки катушки не должны замыкаться друг с другом. Чаще всего витки наматываются на цилиндрический или тороидальный каркас:

Катушки индуктивности

Важнейшей характеристикой катушки индуктивности является, естественно, индуктивность, иначе зачем бы ей дали такое название 🙂 Индуктивность – это способность преобразовывать энергию электрического поля в энергию магнитного поля. Это свойство катушки связано с тем, что при протекании по проводнику тока вокруг него возникает магнитное поле:

Магнитное поле проводника с током

А вот как выглядит магнитное поле, возникающее при прохождении тока через катушку:

Магнитное поле катушки индуктивности

В общем то, строго говоря, любой элемент в электрической цепи имеет индуктивность, даже обычный кусок провода. Но дело в том, что величина такой индуктивности является очень незначительной, в отличие от индуктивности катушек. Собственно, для того, чтобы охарактеризовать эту величину используется единица измерения Генри (Гн). 1 Генри – это на самом деле очень большая величина, поэтому чаще всего используются мкГн (микрогенри) и мГн (милигенри). Величину индуктивности катушки можно рассчитать по следующей формуле:

Давайте разберемся, что за величину входят в это выражение:

  • \mu_0 – магнитная проницаемость вакуума. Это табличная величина (константа) и равна она следующему значению: \mu_0 = 4 \pi \cdot 10^<-7>\medspace\frac <Гн>
  • \mu – магнитная проницаемость магнитного материала сердечника. А что это за сердечник и для чего он нужен? Сейчас выясним. Дело все в том, что если катушку намотать не просто на каркас (внутри которого воздух), а на магнитный сердечник, то индуктивность возрастет многократно. Посудите сами – магнитная проницаемость воздуха равна 1, а для никеля она может достигать величины 1100. Вот мы и получаем увеличение индуктивности более чем в 1000 раз
  • S – площадь поперечного сечения катушки
  • N – количество витков
  • l – длина катушки

Из формулы следует, что при увеличении числа витков или, к примеру, диаметра (а соответственно и площади поперечного сечения) катушки, индуктивность будет увеличиваться. А при увеличении длины – уменьшаться. Таким образом, витки на катушке стоит располагать как можно ближе друг к другу, поскольку это приведет к уменьшению длины катушки.

С устройством катушки индуктивности мы разобрались, пришло время рассмотреть физические процессы, которые протекают в этом элементе при прохождении электрического тока. Для этого мы рассмотрим две схемы – в одной будем пропускать через катушку постоянный ток, а в другой -переменный!

Катушка индуктивности в цепи постоянного тока.

Итак, в первую очередь, давайте разберемся, что же происходит в самой катушке при протекании тока. Если ток не изменяет своей величины, то катушка не оказывает на него никакого влияния. Значит ли это, что в случае постоянного тока использование катушек индуктивности и рассматривать не стоит? А вот и нет 🙂 Ведь постоянный ток можно включать/выключать, и как раз в моменты переключения и происходит все самое интересное. Давайте рассмотрим цепь:

Катушка индуктивности в цепи постоянного тока

Резистор выполняет в данном случае роль нагрузки, на его месте могла бы быть, к примеру, лампа. Помимо резистора и индуктивности в цепь включены источник постоянного тока и переключатель, с помощью которого мы будем замыкать и размыкать цепь. Что же произойдет в тот момент когда мы замкнем выключатель?

Ток через катушку начнет изменяться, поскольку в предыдущий момент времени он был равен 0. Изменение тока приведет к изменению магнитного потока внутри катушки, что, в свою очередь, вызовет возникновение ЭДС (электродвижущей силы) самоиндукции, которую можно выразить следующим образом:

Возникновение ЭДС приведет к появлению индукционного тока в катушке, который будет протекать в направлении, противоположном направлению тока источника питания. Таким образом, ЭДС самоиндукции будет препятствовать протеканию тока через катушку (индукционный ток будет компенсировать ток цепи из-за того, что их направления противоположны). А это значит, что в начальный момент времени (непосредственно после замыкания выключателя) ток через катушку I_L будет равен 0. В этот момент времени ЭДС самоиндукции максимальна. А что же произойдет дальше? Поскольку величина ЭДС прямо пропорциональна скорости изменения тока, то она будет постепенно ослабевать, а ток, соответственно, наоборот будет возрастать. Давайте посмотрим на графики, иллюстрирующие то, что мы обсудили:

Напряжение и ток катушки индуктивности

На первом графике мы видим входное напряжение цепи – изначально цепь разомкнута, а при замыкании переключателя появляется постоянное значение. На втором графике мы видим изменение величины тока через катушку индуктивности. Непосредственно после замыкания ключа ток отсутствует из-за возникновения ЭДС самоиндукции, а затем начинает плавно возрастать.

Напряжение на катушке наоборот в начальный момент времени максимально, а затем уменьшается. График напряжения на нагрузке будет по форме (но не по величине) совпадать с графиком тока через катушку (поскольку при последовательном соединении ток, протекающий через разные элементы цепи одинаковый). Таким образом, если в качестве нагрузки мы будем использовать лампу, то они загорится не сразу после замыкания переключателя, а с небольшой задержкой (в соответствии с графиком тока).

Аналогичный переходный процесс в цепи будет наблюдаться и при размыкании ключа. В катушке индуктивности возникнет ЭДС самоиндукции, но индукционный ток в случае размыкания будет направлен в том же самом направлении, что и ток в цепи, а не в противоположном, поэтому запасенная энергия катушки индуктивности пойдет на поддержание тока в цепи:

Напряжение и ток в катушке

После размыкания ключа возникает ЭДС самоиндукции, которая препятствует уменьшению тока через катушку, поэтому ток достигает нулевого значения не сразу, а по истечении некоторого времени. Напряжение же в катушке по форме идентично случаю замыкания переключателя, но противоположно по знаку. Это связано с тем, что изменение тока, а соответственно и ЭДС самоиндукции в первом и втором случаях противоположны по знаку (в первом случае ток возрастает, а во втором убывает).

Кстати, я упомянул, что величина ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, так вот, коэффициентом пропорциональности является ни что иное как индуктивность катушки:

На этом мы заканчиваем с катушками индуктивности в цепях постоянного тока и переходим к цепям переменного тока.

Катушка индуктивности в цепи переменного тока.

Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:

Катушка индуктивности в цепи переменного тока

Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:

Зависимость тока и ЭДС самоиндукции в катушке в цепи переменного тока

Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:

Собственно, график нам и демонстрирует эту зависимость! Смотрите сами – между точками 1 и 2 ток у нас изменяется, причем чем ближе к точке 2, тем изменения меньше, а в точке 2 в течении какого-то небольшого промежутка времени ток и вовсе не изменяет своего значения. Соответственно скорость изменения тока максимальна в точке 1 и плавно уменьшается при приближении к точке 2, а в точке 2 равна 0, что мы и видим на графике ЭДС самоиндукции. Причем на всем промежутке 1-2 ток возрастает, а значит скорость его изменения положительна, в связи с этим на ЭДС на всем этом промежутке напротив принимает отрицательные значения.

Аналогично между точками 2 и 3 – ток уменьшается – скорость изменения тока отрицательная и увеличивается – ЭДС самоиндукции увеличивается и положительна. Не буду расписывать остальные участки графика – там все процессы протекают по такому же принципу 🙂

Кроме того, на графике можно заметить очень важный момент – при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: \varepsilon i > 0, участок 3-4: \varepsilon > 0, i w – круговая частота: w = 2 \pi f . [/latex]f[/latex] – это частота переменного тока. Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный ( f = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.

Давайте вернемся к нашим графикам, которые мы построили для случая использования катушки индуктивности в цепи переменного тока. Мы определили ЭДС самоиндукции катушки, но каким же будет напряжение u ? Здесь все на самом деле просто! По 2-му закону Кирхгофа:

Построим на одном графике зависимости тока и напряжения в цепи от времени:

Сдвиг фаз при включении катушки индуктивности

Как видите ток и напряжение сдвинуты по фазе (ссылка) друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:

Вот и с включением катушки в цепь переменного тока мы разобрались!

На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому разговор о катушках индуктивности мы продолжим в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!

Источник

ЭДС самоиндукции и индуктивность цепи

Дата публикации: 01 марта 2015 .
Категория: Статьи.

При замыкании выключателя в цепи, представленной на рисунке 1, возникнет электрический ток, направление которого показано одинарными стрелками. С появлением тока возникает магнитное поле, индукционные линии которого пересекают проводник и индуктируют в нем электродвижущую силу (ЭДС). Как было указано в статье «Явление электромагнитной индукции», эта ЭДС называется ЭДС самоиндукции. Так как всякая индуктированная ЭДС по правилу Ленца направлена против причины, ее вызвавшей, а этой причиной будет ЭДС батареи элементов, то ЭДС самоиндукции катушки будет направлена против ЭДС батареи. Направление ЭДС самоиндукции на рисунке 1 показано двойными стрелками.

Таким образом, ток устанавливается в цепи не сразу. Только когда магнитный поток установится, пересечение проводника магнитными линиями прекратится и ЭДС самоиндукции исчезнет. Тогда в цепи будет протекать постоянный ток.

Рисунок 1. Электродвижущая сила самоиндукции в момент замыкания цепи направлена против ЭДС источника напряжения Рисунок 2. График постоянного тока

На рисунке 2 дано графическое изображение постоянного тока. По горизонтальной оси отложено время, по вертикальной оси – ток. Из рисунка видно, что если в первый момент времени ток равен 6 А, то в третий, седьмой и так далее моменты времени он также и будет равен 6 А.

На рисунке 3 показано, как устанавливается ток в цепи после включения. ЭДС самоиндукции, направленная в момент включения против ЭДС батареи элементов, ослабляет ток в цепи, и поэтому в момент включения ток равен нулю. Далее в первый момент времени ток равен 2 А, во второй момент времени – 4 А, в третий – 5 А, и только спустя некоторое время в цепи устанавливается ток 6 А.

Рисунок 3. График нарастания тока в цепи с учетом ЭДС самоиндукции Рисунок 4. ЭДС самоиндукции в момент размыкания цепи направлена одинаково с ЭДС источника напряжения

При размыкании цепи (рисунок 4) исчезающий ток, направление которого показано одинарной стрелкой, будет уменьшать свое магнитное поле. Это поле, уменьшаясь от некоторой величины до нуля, будет вновь пересекать проводник и индуктировать в нем ЭДС самоиндукции.

При выключении электрической цепи с индуктивностью ЭДС самоиндукции будет направлена в ту же сторону, что и ЭДС источника напряжения. Направление ЭДС самоиндукции показано на рисунке 4 двойной стрелкой. В результате действия ЭДС самоиндукции ток в цепи исчезает не сразу.

Таким образом, ЭДС самоиндукции всегда направлена против причины, ее вызвавшей. Отмечая это ее свойство, говорят что ЭДС самоиндукции имеет реактивный характер.

Графически изменение тока в нашей цепи с учетом ЭДС самоиндукции при замыкании ее и при последующем размыкании в восьмой момент времени показано на рисунке 5.

Рисунок 5. График нарастания и исчезновения тока в цепи с учетом ЭДС самоиндукции Рисунок 6. Индукционные токи при размыкании цепи

При размыкании цепей, содержащих большое количество витков и массивные стальные сердечники или, как говорят, обладающих большой индуктивностью, ЭДС самоиндукции может быть во много раз больше ЭДС источника напряжения. Тогда в момент размыкания воздушный промежуток между ножом и неподвижным зажимом рубильника будет пробит и появившаяся электрическая дуга будет плавить медные части рубильника, а при отсутствии кожуха на рубильнике может ожечь руки человека (рисунок 6).

В самой цепи ЭДС самоиндукции может пробить изоляцию витков катушек, электромагнитов и так далее. Во избежание этого в некоторых выключающих приспособлениях устраивают защиту от ЭДС самоиндукции в виде специального контакта, который замыкает накоротко обмотку электромагнита при выключении.

Следует учитывать, что ЭДС самоиндукции проявляет себя не только в моменты включения и выключения цепи, но также и при всяких изменениях тока.

Величина ЭДС самоиндукции зависит от скорости изменения тока в цепи. Так, например, если для одной и той же цепи в одном случае в течение 1 секунды ток в цепи изменился с 50 до 40 А (то есть на 10 А), а в другом случае с 50 до 20 А (то есть на 30 А), то во втором случае в цепи будет индуктироваться втрое большая ЭДС самоиндукции.

Величина ЭДС самоиндукции зависит от индуктивности самой цепи. Цепями с большой индуктивностью являются обмотки генераторов, электродвигателей, трансформаторов и индукционных катушек, обладающих стальными сердечниками. Меньшей индуктивностью обладают прямолинейные проводники. Короткие прямолинейные проводники, лампы накаливания и электронагревательные приборы (печи, плитки) индуктивностью практически не обладают и появления ЭДС самоиндукции в них почти не наблюдается.

Магнитный поток, пронизывающий контур и индуктирующий в нем ЭДС самоиндукции, пропорционален току, протекающему по контуру:

где L – коэффициент пропорциональности. Он называется индуктивностью. Определим размерность индуктивности:

Размерность индуктивности

Ом × сек иначе называется генри (Гн).

1 генри = 10 3 ; миллигенри (мГн) = 10 6 микрогенри (мкГн).

Индуктивность, кроме генри, измеряют в сантиметрах:

1 генри = 10 9 см.

Так, например, 1 км линии телеграфа обладает индуктивностью 0,002 Гн. Индуктивность обмоток больших электромагнитов достигает нескольких сотен генри.

Если ток в контуре изменился на Δi, то магнитный поток изменится на величину Δ Ф:

Величина ЭДС самоиндукции, которая появится в контуре, будет равна (формула ЭДС самоиндукции):

Величина ЭДС самоиндукции

При равномерном изменении тока по времени выражение будет постоянным и его можно заменить выражением . Тогда абсолютная величина ЭДС самоиндукции, возникающая в контуре, может быть найдена так:

Абсолютная величина ЭДС самоиндукции

На основании последней формулы можно дать определение единицы индуктивности – генри:

Определение единицы индуктивности

Проводник обладает индуктивностью 1 Гн, если при равномерном изменении тока на 1 А в 1 секунду в нем индуктируется ЭДС самоиндукции 1 В.

Как мы убедились выше, ЭДС самоиндукции возникает в цепи постоянного тока только в моменты его включения, выключения и при всяком его изменении. Если же величина тока в цепи неизменна, то магнитный поток проводника постоянен и ЭДС самоиндукции возникнуть не может (так как . В моменты изменения тока в цепи ЭДС самоиндукции мешает изменениям тока, то есть оказывает ему своеобразное сопротивление.

Бифилярная обмотка катушки
Рисунок 7. Бифилярная обмотка катушки

Часто на практике встречаются случаи, когда нужно изготовить катушку, не обладающую индуктивностью (добавочные сопротивления к электроизмерительным приборам, сопротивления штепсельных реостатов и тому подобные). В этом случае применяют бифилярную обмотку катушки (рисунок 7)

Как нетрудно видеть из чертежа, в соседних проводниках токи проходят в противоположных направлениях. Следовательно, магнитные поля соседних проводников взаимно уничтожаются. Общий магнитный поток и индуктивность катушки будут равны нулю. Для еще более полного уяснения понятия индуктивности приведем пример из области механики.

Как известно из физики, по второму закону Ньютона ускорение, полученное телом под действием силы, пропорционально самой силе и обратно пропорционально массе тела:

Сравним последнюю формулу с формулой ЭДС самоиндукции, взяв абсолютное значение ЭДС:

Если в этих формулах изменения скорости во времени уподобить изменению тока во времени , механическую силу – электродвижущей силе самоиндукции, то масса тела будет соответствовать индуктивности цепи.

При равномерном прямолинейном движении a = 0, поэтому F = 0, то есть если на тело не действуют силы, его движение будет прямолинейным и равномерным (первый закон Ньютона).

В цепях постоянного тока величина тока не меняется и поэтому eL = 0.

Источник: Кузнецов М.И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560с.

Источник

Токи при размыкании и замыкании цепи.

date image2015-10-22
views image11133

facebook icon vkontakte icon twitter icon odnoklasniki icon

При всяком изменении силы тока в проводящем контуре возникает э.д.с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т.е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. Ei, сопротивление R и индуктивность L. Под действием внешней э.д.с. в цепи течет постоянный ток Io =E/R (внутренним сопротивлением источника тока пренебрегаем).

В момент времени t = 0 отключим источник тока. Ток через катушку индуктивности начнет уменьшаться, что приведет к возникновению эдс самоиндукции Es= –L(dI/dt), препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I =Es/R, или

IR =–L(dI/dt). (18.1)

Разделив переменные, получим dI/I = – Rdt/L. Интегрируя это уравнение по I (от Io до I) и t (от 0 до t), находим ln(I/Io) = – Rt/L, или

I(t) =Io exp (– t/τ), (18.2)

где τ =L/R – постоянная, называемая временем релаксации, равная времени, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника э.д.с. сила тока убывает по экспоненциальному закону (18.2) и определяется кривой 1 на рис. (19). Чем больше индуктивность цепи и меньше сопротивление, тем больше τ и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э.д.с E возникает э.д.с самоиндукции Es= –L(dI/dt), препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома IR = E + Es или

IR = E –L(dI/dt). Введя новую переменную u = IR – E, преобразу- Рис.19. ем это уравнение к виду du/u = – dt/τ , где τ – время релаксации.

В момент замыкания (t = 0) сила тока I =0 и u = –E. Следовательно, интегрируя по u (от –E до IR–E) и t (от 0 до t), находим ln[(IR–E)/(–E)] = –t/τ, или

I(t)=Io[1-exp(–t/τ)], (18.3)

где Io= E/R – установившийся ток (при t → ¥).

Таким образом, в процессе включения источника э.д.с нарастание силы тока в цепи задается функцией (18.3) и определяется кривой 2 на рис.19. Сила тока возрастает от начального значения I=0 и асимптотически стремится к установившемуся значению Io= E/R. Скорость нарастания тока определяется тем же временем релаксации τ =L/R, что и убывание тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.

Контур, содержащий индуктивность, нельзя резко размыкать, так как возникновение при этом значительных э.д.с. самоиндукции может привести к пробою изоляции и выводу из строя электрических приборов.

Трансформаторы.

Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Первые трансформаторы были сконструированы и введены в практику русским электротехником П.Н.Яблочковым (1847 – 1894) и русским физиком И.Ф.Усагиным (1855 – 1919). Принципиальная схема трансформатора показана на рис. 20.

Первичная и вторичная катушки (обмотки), имеющие соответственно n1 и n2 витков, укреплены на замкнутом железном сердечнике. Так как концы первичной обмотки присоединены к источнику переменного напряжения с э.д.с. E1, то в ней возникает переменный ток создающий в сердечнике трансформатора переменный магнитный поток Ф, который практически полностью локализован в

железном сердечнике и, следовательно, почти целиком

пронизывает витки вторичной обмотки. Изменение этого потока вызывает во вторичной обмотке появление э.д.с. электромагнитной индукции, а в первичной – э.д.с. самоиндукции.

По закону Ома, ток I1, первичной обмотки определяется алгебраической суммой внешней э.д.с. и э.д.с. самоиндукции: I1R1=[Ei–d(n1Ф)/dt], где R1 – сопротивление первичной обмотки. Падение напряжения I1R1 на сопротивлении R1, при быстропеременных полях мало по сравнению с каждой из двух э.д.с., поэтому E1»n1dФ/dt.

Э.д.с. электромагнитной индукции, возникающая во вторичной обмотке,

Сравнивая выражения для E1 и E2, получим, что э.д.с., возникающая во вторичной обмотке,

где знак минус показывает, что э.д.с. в первичной и вторичной обмотках противоположны по фазе. Отношение числа витков n1/n2 показывающее, во сколько раз э.д.с. во вторичной обмотке трансформатора больше (или меньше), чем в первичной, называется коэффициентом трансформации.

Пренебрегая потерями энергии, которые в современных трансформаторах не превышают 2% и связаны в основном с выделением в обмотках джоулевой теплоты и появлением вихревых токов, и применяя закон сохранения энергии, можем записать, что мощности тока в обеих обмотках трансформатора практически одинаковы:

откуда, учитывая соотношение (19.2), найдем E2 /E1 = I1/I2 = n2/n1, т.е. токи в обмотках трансформатора обратно пропорциональны числу витков в этих обмотках.

Если n2/n1>1, то имеем дело с повышающим трансформатором, увеличивающим переменную э.д.с. и понижающим ток (применяется, например, для передачи электроэнергии на большие расстояния, так как в данном случае потери на джоулеву теплоту, пропорциональные квадрату силы тока, снижаются). Если n2/n1

Источник

Самоиндукция. Индуктивность. Токи замыкания и размыкания.

Индуктивность, либо коэффициент самоиндукции (от лат. indactio — наведение, возбуждение) — является параметром электрической цепи, определяющий ЭДС самоиндукции, которая наводитсяв цепи при изменении протекающего по ней тока либо (и) ее деформации.

Термином «индуктивность» обозначают еще и катушку самоиндукции, определяющую индуктивные свойства цепи.

Самоиндукция — образование ЭДС индукции в проводящем контуре при изменении в нем силы тока. Самоиндукция была открыта в 1832 году американским ученым Дж. Генри. Независимо от него в 1835 году это явление открыл М. Фарадей.

ЭДС индукции образуется при изменении магнитного потока. Если это изменение вызывается собственным током, то говорят об ЭДС самоиндукции:

Самоиндукция Индуктивность Токи замыкания и размыкания

.

где L — индуктивность контура, либо его коэффициент самоиндукции.

Индуктивность — является физической величиной, численно равной ЭДС самоиндукции, которая возникает в контуре с изменением силы тока на 1 А за 1 секунду.

Индуктивность, как и электроемкость, зависима от геометрии проводника — его размеров и формы, но не зависима от силы тока в проводнике. Таким образом, индуктивность прямого провода намного меньше индуктивности того же провода, свернутого в спираль.

Расчеты показывают, что индуктивность описанного выше соленоида в воздухе вычисляют по формуле:

Самоиндукция Индуктивность Токи замыкания и размыкания

.

где μ— магнитная постоянная, N — количество витков соленоида, l — длина соленоида, S — площадь поперечного сечения.

Также, индуктивность зависит от магнитных свойств среды, в которой находится проводник, а именно от его магнитной проницаемости, определяющаяся при помощи формулы:

Самоиндукция Индуктивность Токи замыкания и размыкания

.

где L — индуктивность контура в вакууме, L — индуктивность контура в однородном веществе, которое заполняет магнитное поле.

Единица индуктивности в СИ — генри (Гн): 1 Гн = 1 В · с/А.

Токи замыкания и размыкания.

При каждом включении и выключении тока в цепи наблюдаются так называемые экстратоки самоиндукции (экстратоки замыкания и размы­кания), которые возникают в цепи из-за явления самоиндукции и которые препятс­твуют, согласно правилу Ленца, нарастанию или убыванию тока в цепи.

Самоиндукция Индуктивность Токи замыкания и размыкания

На рисунке выше показана схема соединения 2х одинаковых ламп. Одна из них подключена к источнику через резистор R, а другая — последова­тельно соединена с катушкой L с железным сердечником. При замыкании цепи первая лампа вспыхивает почти мгновенно, а вторая — с существенным опозданием. Это вызвано тем, что ЭДС самоиндукции в цепи этой лампы велика, и сила тока не сразу достигает своего максимального значе­ния.

Самоиндукция Индуктивность Токи замыкания и размыкания

При размыкании ключа в катушке L образуется ЭДС само­индукции, которая поддерживает первоначальный ток.

Самоиндукция Индуктивность Токи замыкания и размыкания

В итоге в момент размыкания через гальванометр течет ток (светлая стрелка), который направлен против начального тока до размыкания (черная стрелка). При этом ЭДС самоиндукции может быть намного больше ЭДС батареи элементов, что будет проявляться в том, что экстраток размыкания будет сильно превышать стационарный ток при замкнутом ключе.

Индуктивность характеризует инерционность цепи по отношению к из­менению в ней тока, и ее можно рассматривать как электродинамический аналог массы тела в механике, являющейся мерой инертности тела. При этом ток I играет роль скорости тела.

Источник

Читайте также:  Преобразователи сварочные номинальным сварочным током 315 500 а это
Adblock
detector