Меню

Индикатор тока антенны светодиод



Индикатор тока антенны светодиод

Лампа накаливания и светодиод в цепи антенны

При небольших мощностях передатчика, до 50 Вт, для контроля можно непосредственно включить лампу накаливания в цепь антенны (рисунок 1). Более подходят лампочки 2,5В-0,5А. На них падает незначительная мощность, что практически не сказывается на работе антенной системы и выходного каскада передатчика. При больших мощностях передатчика или при низкоомных эта лампочка может перегореть.


Чтобы этого не произошло необходимо включать параллельно несколько лампочек, или, что еще более эффективно, закоротить лампочку витком провода или безкаркасной катушкой, внутренним диаметром 10 мм состоящей из 3-5 витков провода диаметром 1 мм (рисунок 2). Параллельное включение с лампочкой катушки с низкой индуктивностью создает благоприятный режим работы индикатора тока.

Поскольку реактивное сопротивление катушки увеличивается с частотой, а мощность выходного каскада, обычно с увеличением частоты уменьшается, то лампочка светится равномерно на разных диапазонах. В последнем случае (рис. 2) даже при перегорании лампочки передатчик остается работоспособным.

В маломощных передатчиках, до 10 Вт, можно использовать светодиод в цепи антенны, закоротив его низкоомным безиндукционным резистором на 5-10 Ом (рис. 3). Современные светодиоды обеспечивают отличную яркость и широкий диапазон токов свечения (5-40 mА отечественные, и 5-100 mА импортные).

Но светодиод является нелинейным элементом в цепи антенны. Это может проявиться в увеличении уровня гармоник, а, следовательно и в появлении TVI, создаваемых передатчиком. Конечно, при использовании такой индикации в маломощном передатчике, работа на котором ведется в основном в походе или на даче, это не важно.

Нежелательно использовать со светодиодами закорачивающие катушки, как с лампочками, потому что катушка со светодиодом образует колебательный контур с нелинейным элементом и может служить источником повышенных помех на частотах резонанса этого контура.

При помощи индикатора на лампочке накаливания или на светодиоде можно лишь субъективно оценить величину антенного тока. Как светодиод, так и лампочка обладают реактивными составляющими сопротивления, что снижает достоверность определения тока на разных диапазонах. Поэтому такие индикаторы годятся лишь как контрольные, и их можно использовать в уже настроенных антенных системах.

Источник

Простой индикатор антенного тока

Поскольку при настройке и согласовании элементов антенно-фидерного тракта нередко важнее заметить рост или спад контролируемой величины, достижение ею максимума или минимума, то нет нужды и оцифровывать ее, ставить в соответствие ей какие-то общепринятые единицы. Такие «безразмерные измерения» — функции индикаторов.

Схема индикатора, пригодного для контроля токов с частотой 25. 30 МГц, показана на рис. 23.

Здесь Т1 — высокочастотный трансформатор, первичной «обмоткой» которого служит продетый сквозь его кольцевой сердечник
(М50 ВЧ2-14 К12х6х4,5 мм) провод с ВЧ током, а вторичной равномерно распределенные по сердечнику 20 витков провода в пластиковой изоляции. На элементах VD1 и С1 собран детектор, резисторы Rl, R2 и РА1 составляют его нагрузку. Стрелочный прибор РА1 — оцифрованный или «слепой» микроамперметр с током полного отклонения 50. 150 мкА.

Индикатор рассчитан на включение в антенно-фидерный тракт передатчика мощностью до 10Вт (при R1=R2=1. 10 кОм).

Индикатор антенного тока
Рис. 23. Индикатор антенного тока

При больших мощностях сечение сердечника трансформатора потребуется увеличить (для 100-ваттного передатчика — до 0,5. 1 см^2; в этом случае потребу- ется увеличить сопротивление резисторов и, возможно, уменьшить число витков в обмотке II трансформатора).

Сердечник большого размера (с большим внутренним диаметром) может потребоваться и для контроля тока в «толстой» антенне, например, в телескопической или спиральной антенне портативной радиостанции.

Индикатор может быть выполнен в виде единого блока. Но нередко удобнее работать с прибором, состоящим из двух частей: «висящей» на антенном проводе детекторной головки, связанной двухпроводной линией с микроамперметром. Во избежание возможного влияния линии связи на конфигурацию электромагнитного поля антенны ее можно выполнить из тонкого провода высокого сопротивления или расставить в ней 100. 200-омные резисторы, «разрывающие» ее по ВЧ на нерезонирующие фрагменты.

Читайте также:  Таблица потерь напряжения постоянного тока

Индикаторную головку размещают обычно в пучности тока антенны. Это не только делает отведение более чувствительным, но и минимизирует его влияние на антенну.

Если антенный ток остается достаточно большим, германиевый диод можно заменить кремниевым — КД510А, КД522Б и т.п.

none Опубликована: 1999 г. 0
Вознаградить Я собрал 0 0

Источник

Экономичные светодиодные индикаторы тока

svetodiodnye-indikatory-toka

Мультиметр, пробники, индикаторы, тестеры

Для сигнализации и контроля в современной аппаратуре широко используются световые индикаторы, излучающими элементами в которых служат светодиоды различного цвета свечения. Такие устройства выполняют в основном по схеме индикаторов напряжения, хотя во многих случаях индикаторы тока (далее для краткости — ИТ) более информативны.

svetodiodnye-indikatory-toka

Широкому распространению светодиодных ИТ (рис. 1) препятствует необходимость обеспечения падения напряжения на датчике тока — резисторе R1, превышающего напряжение свечения светодиода, т. е, в среднем около 1,8 В для светодиодов красного и зелёного свечения и примерно 2,9 В синего, вследствие чего такие ИТ имеют низкую экономичность. Для снижения падения напряжения на датчике тока, необходимого для работы светодиодного ИТ, применяют различные усилители постоянного тока или (в целях переменного тока) трансформаторы тока.

Применение усилителей усложняет устройство и требует их подключения трехполюсником, трансформаторы тока весьма громоздки. Известен способ питания светодиода от источника с низким напряжением, заключающийся в использовании преобразователя напряжения. Такие устройства различной степени сложности применяют профессионалы и радиолюбители, конструирующие малогабаритные фонари, в которых осветительный светодиод белого свечения питается от одного гальванического элемента или аккумулятора. Преобразователи сохраняют работоспособность при напряжении питания ниже 1 В. Это сравнительно мощные устройства, обеспечивающие ток через светодиод в несколько десятков миллиампер.

Если для питания светодиода применить преобразователь напряжения, а в качестве источника питания для него использовать падение напряжения на датчике тока (рис. 2,а), то потери мощности можно существенно снизить. Современные сверхъяркие индикаторные светодиоды различного свечения светят достаточно ярко при токе около 200 мкА, и мощность преобразователей, применяемых в фонариках, оказывается излишней.

При проведении экспериментов по снижению выходной мощности простейшего преобразователя — блокинг генератора — выяснилось, что этот преобразователь, выполненный на маломощном германиевом транзисторе, развивает выходную мощность, достаточную для свечения сверхъяркого светодиода, при напряжении питания всего 0,1…0,2 В, что сопоставимо с падением напряжения на шунте стрелочного электроизмерительного прибора.

В устройстве по схеме на рис. 2,6 отсутствует защита от перегрузки по току. Поэтому это устройство можно применять в цепях, в которых отсутствуют броски тока.

На рис. 2,б изображена схема наиболее экономичного светодиодного индикатора тока для устройств, потребляющих сравнительно стабильный ток. При применении транзистора МП20А со статическим коэффициентом передачи тока базы не менее 100 светодиод HL1 светит достаточно ярко при падении напряжения на датчике тока резисторе R1 не более 0,1 В.

Трансформатор Т1 намотан на кольцевом ферритовом магнитопроводе с наружным диаметром 10 мм от ЭПРА неисправной КЛЛ. Обе обмотки содержат по 24 витка эмалированного провода диаметром 0,18 мм. Этот ИТ применим в цепях как постоянного, так и переменного тока: при положительной полуволне питающего напряжения работает преобразователь и светит светодиод HL1, при отрицательной транзистор закрыт небольшим обратным напряжением. Ток через светодиод имеет вид пачек импульсов, следующих с частотой 50 Гц, но изза инерционности зрения его свечение воспринимается непрерывным.

Читайте также:  Направление линий магнитного тока в прямом проводнике

Если ИТ будет эксплуатироваться совместно с устройством, чувствительным к пульсациям питающего напряжения, то датчик тока следует шунтировать керамическим конденсатором ёмкостью 0,5… 1 мкФ(С1). Сопротивление датчика тока подбирают таким, чтобы при максимальном токе нагрузки яркость свечения светодиода была комфортной. Потребляемый преобразователем ток при этом обычно не превышает 2 мА.

Если ток, потребляемый нагрузкой, может изменяться в широких пределах, в таких устройствах в качестве датчика тока для ИТ следует применять диод Шотки (рис. 2,в). Его обратное напряжение может быть не более 25 В, а вот предельно допустимое значение прямого тока должно быть больше максимального тока нагрузки в несколько раз (например, для диода КД269А ток нагрузки не должен превышать 2 А, а для диода КД273А — 10 А).

При выполнении этих условий и изменении тока нагрузки от 5 мА до максимального падение напряжения на диоде будет изменяться в пределах 0,2…0,35 В. Это позволяет использовать в преобразователе более распространённые низкочастотные германиевые транзисторы серий МП39—МП42 (минимальное напряжение питания преобразователя — 0,14…0,16 В) или высокочастотные серий ГТ308—ГТ310 (минимальное напряжение питания преобразователя — 0,2 В). Статический коэффициент передачи тока базы h2)3 транзистора в таком применении должен быть не менее 15.

Трансформатор для этого ИТ намотан на таком же, что и предыдущем случае магнитопроводе, обе обмотки содержат по десять витков эмалированного провода диаметром 0,1 мм.
Резистор R1 подбирают по оптимальной яркости свечения светодиода HL1 при максимальном токе нагрузки. Если встречнопараллельно VD1 подключить такой же диод VD2 (показано на рис. 2,в штриховыми линиями), то получится экономичный светодиодный индикатор переменного тока, который можно применить в цепях переменного тока напряжением от нескольких вольт до нескольких сотен вольт.

Весьма удобно использовать его в качестве индикатора сетевого тока. При мощности нагрузки до 400 Вт диоды КД269А нагреваются незначительно, поэтому индикатор можно смонтировать навесным монтажом в евровилке. Если мощность нагрузки не превышает 100 Вт, то при использовании малогабаритных деталей (диодов Шотки 1N5818, сверхьяркого светодиода и транзистора серии ГТ310) индикатор сетевого тока можно собрать и в обычной вилке (рис. 3).

Магнитопровод трансформатора этого ИТ — ферритовая трубка с наружным диаметром 5 и длиной 6 мм (такие трубки надевают на выводы некоторых деталей в импульсных блоках питания). При необходимости трубку можно разрезать пополам, получив сразу два кольцевых магнитопровода. Перед намоткой острые кромки колец необходимо скруглить мелкозернистой наждачной бумагой.

Обе обмотки содержат по десять витков эмалированного провода диаметром 0,1 мм. Наматывать их рекомендуется одновременно двумя проводами, продев их в ушко тонкой швейной иглы, а после намотки соединить начало одной обмотки с концом второй. Для светодиода в корпусе вилки нужно просверлить отверстие. После монтажа детали фиксируют в корпусе вилки несколькими каплями термоклея. Предлагаемые светодиодные ИТ просты, дёшевы, экономичны, легко встраиваются в любую аппаратуру и способствуют повышению её потребительских свойств, расширяя область применения светодиодных индикаторов.

Источник

Индикатор антенного тока

Индикатор антенного тока

Предлагаемый прибор поможет при настройке антенн как стационарных, так и портативных радиостанций в тех случаях, когда привычным КСВ-метром сделать это нельзя. Этот индикатор тока может использоваться как на любительских КВ диапазонах, так и на Си-Би. Авторы применили его для отладки антенн носимых Си-Би радиостанций. От эффективности антенн зависит надежность и дальность радиосвязи, в том числе и в СиБи диапазоне (27 МГц). Не секрет, что штатные антенны большинства носимых радиостанций имеют невысокую эффективность, что ограничивает дальность связи, поэтому понятно стремление радиолюбителей применять антенны с улучшенными характеристиками.

Читайте также:  Экспериментальное определение параметров элементов цепей переменного тока

Правда, в продаже имеются более эффективные антенны, но они не всегда подходят по тем или иным параметрам. Приходится изготавливать их самостоятельно. И тут возникает проблема настройки. Измерители КСВ [1], предназначенные для настройки стационарных антенн, питающихся по кабелю, здесь, как правило, неприемлемы, так как в портативной радиостанции кабеля между передатчиком и антенной нет. Подключение же штыревой или спиральной антенны через кабель для ее настройки приведет к тому, что антенна окажется несогласованной и в качестве противовеса будет работать оплетка коаксиального кабеля. Настраивать же нужно всю систему — антенну совместно с корпусом радиостанции. Наилучших результатов можно добиться, используя индикатор напряженности поля. Однако и тут есть свои сложности. Например, описанный в [2] вариант конструкции индикатора антенного тока малопригоден для настройки малогабаритных антенн носимых радиостанций.

Предлагаем простой портативный индикатор антенного тока (рис. 1). Он содержит токовый трансформатор Т1, выпрямитель на диоде VD1, фильтр НЧ (конденсатор С1), регулятор чувствительности (резистор R1), микроамперметр РА1 и защитный диод VD2. Магнитопровод трансформатора Т1 представляет собой ферритовое кольцо, которое надевают непосредственно на антенну портативной радиостанции в самой ее нижней части. Когда нажимают на клавишу передачи (ТХ), ток, протекающий в антенне, наводит ВЧ напряжение в трансформаторе Т1, которое выпрямляется и поступает на микроамперметр PA1. При этом чем больше ток, тем сильнее будет отклоняться стрелка. Чувствительность индикатора устанавливают резистором R1. Настройку антенны проводят по максимуму тока [3]. Это делают либо изменением параметров антенны, например, длины, индуктивности компенсирующей катушки, либо подстройкой согласующего устройства [2]. Чувствительность индикатора достаточно высока, он работает с радиостанциями, имеющими выходную мощность 100 мВт и более.

Конструкция устройства показана на рис. 2. Кольцо, на котором намотан трансформатор, выбрано достаточно большим (К32х16х8), а в плате сделано отверстие соответствующего диаметра. Это позволяет надевать трансформатор на антенны с ВЧ вилкой типа байонет, например СР-50-74ФВ. Трансформатор и микроамперметр приклеивают к плате, в качестве которой можно использовать нефольгированный стеклотекстолит или оргстекло. Резистор R1 устанавливают на уголок из огрстекла или в отверстие в плате. Монтаж выполнен навесным методом.

Для изготовления трансформатора Т1 рекомендуется использовать магнитопровод из феррита 50ВЧ внешним диаметром 32 мм и более. Его обмотка содержит 8. 12 витков провода МГТФ 0,2 мм 2 . Диод VD1 — КД522Б или аналогичный, резистор R1 — СПО, СП4, конденсатор C1 — КМ, К10-17, микроамперметр PA1 — от бытовых магнитофонов с током полного отклонения 100. 200 мкА.

Налаживание индикатора сводится к подбору диода VD2 таким образом, чтобы он защищал микроамперметр PA1 от перегрузки и при этом не влиял на его показания. Для этого надо измерить напряжение на микроамперметре при полном отклонении стрелки. Если оно не превышает 0,2 В, то подойдет детекторный германиевый диод или диод с барьером Шоттки, а при напряжении от 0,2 до 0,4 В подойдет кремниевый маломощный диод. Следует отметить, что индикатор можно использовать для быстрой проверки исправности передатчика радиостанции и оценки его выходной мощности.

Литература
1. Ефремов В. Универсальный измеритель КСВ. — Радиолюбитель, 1994, # 1, с. 58.
2. Виноградов Ю. О согласовании малогабаритных антенн. — Радио, 1996, # 4, с. 9.
3. Ротхаммель К. Антенны. — М.: Энергия, 1979, с. 298.

Источник