Меню

График зависимости силы тока от времени в колебательном контуре определите индуктивность



Задание №15 ЕГЭ по физике

Электромагнитная индукция и оптика

В задании №15 ЕГЭ по физике нас ждут задачи по теме электромагнитная индукция и оптика. Краткая теория и разбор типовых вариантов — ниже.

Теория к заданию №15 ЕГЭ по физике

Магнитный поток

Магнитный поток определяется формулой: Ф = B∙S∙cosα или Ф = LI. Здесь В – модуль магнитной индукции, S – площадь замкнутого контура, которую пронизывает эл.ток, α – угол между нормалью к поверхности контура и направлением вектора магнитной индукции, L – индуктивность контура, I – сила тока в нем.

Эта величина относится к скалярным. Она представляет собой количественную характеристику силовых линий, проходящих через прямоугольную рамку. Если контур рамки расположен перпендикулярно направлению индукции, поток будет иметь максимальное значение, а в случае, когда рамка повернута параллельно вектору индукции, поток будет нулевым.

Ед.измерения магн.потока – 1 Вб (вебер). Эта величина выражается через ед.измерения величин, определяющих магнитный поток (см.1-ю формулу), т.е. 1 Вб = 1 Тл · 1 м 2 .

Электромагнитная индукция

Электромагнитная индукция является процессом возникновения электрического тока в проводящем замкнутом контуре при изменениях магн.поля, которое пронизывает этот контур. Появление электрического поля при том, что меняется магн.поле, указывает на то, что в контуре возникает ЭДС индукции. ЭДС определяется по формуле: где ∆t – время, в течение которого происходит изменение магн.потока. Это уравнение представляет собой з-н электромагнитной индукции.

Период колебаний в контуре

Период колебаний в колебательном контуре можно найти по формуле:. Здесь C – емкость конденсатора; L – индуктивность катушки.

Электроемкость конденсатора

Разбор типовых вариантов заданий №15 ЕГЭ по физике

Демонстрационный вариант 2018

Проволочная рамка площадью 2∙10 -3 м 2 вращается в однородном магнитном поле вокруг оси, перпендикулярной вектору магнитной индукции. Магнитный поток, пронизывающий площадь рамки, изменяется по закону http://www.pomogala.ru/pomogala_fizika/ege_2018/img_15.2.jpg, где все величины выражены в СИ. Чему равен модуль магнитной индукции? (Ответ выразите в мТл)

Алгоритм решения:
  1. Используя представленную в условии зависимость Ф от времени и формулу для вычисления магн.потока, делаем вывод о значении соответствующих физ.величин и выводим формулу для расчета искомой величины.
  2. Подставляем числовые значения величин и вычисляем искомую величину.
  3. Записываем ответ.
Решение:

1.Учитывая, что в условии дана зависимость магнитного потока от времени http://www.pomogala.ru/pomogala_fizika/ege_2018/img_15.2.jpg, используем для расчетов соответствующую формулу для его определения, а именно: Ф=ВScosα. Сопоставив эту формулу с уравнением зависимости магн.потока от времени, делаем вывод о том, что выражение 10πt характеризует изменение во времени α, а выражение 4·10-6 представляет собой произведение B·S. Соответственно: BS=4·10-6 (Вб) (1).

2. По условию S = 2∙10 -3 м 2 . Подставив это значение в (1), получим: 𝐵=4∙10 −6 /2∙10 −3 =2∙10 −3 (Тл). Поскольку ответ требуется дать в мТл, имеем: В= 2 мТл.

Первый вариант задания (Демидова, №7)

На рисунке приведён график зависимости силы тока i от времени t при свободных гармонических колебаниях в колебательном контуре. Каким станет период свободных колебаний в контуре, если конденсатор в этом контуре заменить на другой конденсатор, ёмкость которого в 4 раза меньше?

http://self-edu.ru/htm/2018/ege2018_phis_30/files/7_15.files/image001.jpg

Алгоритм решения:
  1. Анализируем график колебаний тока. Определяем период колебаний.
  2. Определяем, как изменится период при уменьшении емкости в 4раза.
  3. Записываем ответ.
Решение:

1. Рассматриваем рисунок, приложенный к задаче. Изображенный график показывает, что период в данном случае колебаний тока T=4 мкс.

2. После уменьшения емкости конденсатора С1 в 4 раза она станет равной С21/4. Период колебаний в этом случае изменится так:

Отсюда делаем вывод: период уменьшится в 2 раза. Ответ: 2

Второй вариант задания (Демидова, № 11)

Если ключ К находится в положении 1, то период собственных электромагнитных колебаний в контуре (см. рисунок) равен 3 мс. Насколько увеличится период собственных электромагнитных колебаний в контуре, если ключ перевести из положения 1 в положение 2?

http://self-edu.ru/htm/ege2017_phis_30/files/11_15.files/image001.jpg

Алгоритм решения:
Решение:

1. В положении 1 в контуре имеется конденсатор с емкостью С1=С. При перебрасывании ключа в положение 2 конденсатор С1 отключается, а вместо него подключается С2=4С=4С1. 2. Для определения периода используется формула: . Тогда для 1-го положения ключа , для 2-го – . Видно, что формулы для Т1 и Т2 различаются только коэффициентом 2 во 2-й из них. Это означает, что период становится в два раза больше, т.е. Т2=2Т1. Для 1-го положения ключа Т1=3 мс, поэтому Т2=2∙3= 6 мс. 3. Поскольку в задаче требуется узнать, насколько изменится период, то, значит, нужно найти Т2–Т1. Находим эту разность: Т2 –Т1=6–3=3 (мс).

Читайте также:  Как называется путь передачи возбудителя с током воздуха

Третий вариант задания (Демидова, № 24)

Точечный источник света находится перед плоским зеркалом на расстоянии 1,6 м от него. На сколько увеличится расстояние между источником и его изображением, если, не поворачивая зеркала, отодвинуть его от источника на 0,2 м?

Алгоритм решения:
  1. Анализируем условие задачи. Определяем расстояние до изображения.
  2. Изменяем расстояние между зеркалом и предметом. Используем законы оптики для ответа на вопрос.
  3. Записываем ответ.
Решение:

1.В задаче указано, что источник находится перед плоским зеркалом. А оно не искажает перспективу. Потому расстояние от точечного источника до его отображения в зеркале равно 1,6∙2 = 3,2 м.

2. Увеличиваем расстояние между зеркалом и предметом, излучающим свет, на 0,2 м. Тогда оно станет равно 1,6+0,2=1,8 м. Расстояние между источником света и изображением этого источником определится как 1,8∙2 = 3,6 м. Определим разность межу новым расстоянием и первоначальным: 3,6-3,2=0,4 м. На эту величину увеличится искомое расстояние.

Источник

Переменный ток

На рисунке приведён график зависимости силы тока от времени в колебательном контуре, состоящем из последовательно соединённых конденсатора и катушки, индуктивность которой равна 0,2 Гн. Каково максимальное значение энергии магнитного поля катушки? (Ответ дать в мкДж.)

Энергия магнитного поля: \[W=\frac<2>,\] где \(L\) – индуктивность катушки, \(I\) – сила тока на катушке.
Максимальная сила тока: \[I_=5 \text< мА>\]
Подставим в формулу энергии магнитного поля: \[W=\frac<0,2\text< Гн>\cdot5^2\cdot10^<-6>\text< А$^2$>><2>=2,5 \text< мкДж>\]

К конденсатору, заряд которого 250 пКл, подключили катушку индуктивности. Определите максимальную силу тока (в мА), протекающего через катушку, если циклическая частота свободных колебаний в контуре \(8\cdot10^7\) рад/с.

Период колебаний электромагнитного контура вычисляется по формуле Томсона: \[T=2\pi\sqrt,\] где \(L\) – индуктивность катушки, \(C\) – ёмкость конденсатора.
Циклическая частота: \[\omega=\frac<1><\sqrt> \Rightarrow LC=\frac<1><\omega^2>\]
Закон сохранения для колебательного контура \[W_=W_C\] \[\frac^2><2>=\frac^2><2>=\frac^2><2C>,\] где \(L\) – индуктивность катушки, \(I-\) – максимальная сила тока на катушке, \(C\) – ёмкость конденсатора, \(U_\) – максимальное напряжение, \(q_\) – максимальный заряд на конденсаторе.
Тогда максимальная сила тока равна \[I_=\sqrt<\frac^2>>=q_\omega=250\cdot10^<-12>\text< Кл>\cdot8\cdot10^7\text< рад/с>=20 \text< мА>\]

Заряженный конденсатор емкостью 4 мкФ подключили к катушке с индуктивностью 90 мГн. Через какое минимальное время (в мкс) от момента подключения заряд конденсатора уменьшится в 2 раза?

Период колебаний электромагнитного контура вычисляется по формуле Томсона: \[T=2\pi\sqrt,\] где \(L\) – индуктивность катушки, \(C\) – ёмкость конденсатора. Циклическая частота: \[\omega=\frac<1><\sqrt>\] Так как конденсатор изначально заряжен, то колебания можно описывать законом: \[q=q_cos(\omega t)\] \[q=0,5q_\] Заменим циклическую частоту на \(\frac<1><\sqrt>\) и получим \[0,5q_=q_cos\left(\frac<1><\sqrt> t\right) \Rightarrow \frac<1><\sqrt> t=\frac<\pi><3>\] \[t=\frac<\pi \sqrt><3>=628 \text<мкс>\]

Напряжение на концах участка цепи, по которому течет переменный ток, изменяется со временем по закону: \(\displaystyle U = U_0sin\left(\omega t + \frac<2\pi><3>\right)\) . В момент времени \(t = T/12\) мгновенное значение напряжения равно 9 В. Определите амплитуду напряжения.

Зависимость напряжения: \[U = U_0sin\left(\omega t + \frac<2\pi><3>\right),\] \(\omega\) – циклическая частота. \[U=U_0sin\left(\frac<2\pi>\cdot\frac<12>+\frac<2\pi><3>\right)\] \[U=\frac<2>\] \[U_0=2U=18 \text< В>\]

Напряжение, при котором зажигается или гаснет неоновая лампа, включенная в сеть переменного тока, соответствует действующему значению напряжения этой сети. В течение каждого полупериода лампа горит 2/3 мс. Найдите частоту переменного тока.

Зависимость напряжения: \[U = U_0sin(\omega t),\] \(\omega\) – циклическая частота. Действующее напряжение: \[U_<\text<д>>=\frac<\sqrt<2>>\] \[U_<\text<д>> \[\frac<\sqrt<2>> \[sin(\omega t)>\frac<\sqrt<2>><2>\] \[sin(\frac<2\pi> t)>\frac<\sqrt<2>><2>\] Решая это тригонометрическое неравенство на одном периоде синусоиды получаем, что \[\frac<\pi> <4>\[\frac<1> <8>\[t=\frac<4>\] \[T=4t\] \[\nu=\frac<1><4t>=\frac<3><2\cdot4\cdot10^<-3>>=375 \text< Гц>\]

Сила тока в первичной обмотке трансформатора 2 А, напряжение на ее концах 220 В. Напряжение на концах вторичной обмотки 40 В. Определите силу тока во вторичной обмотке. Потерями в трансформаторе пренебречь.

Для идеального трансформатора можно записать ( \(P_1=P_2\) ): \[I_1U_1=I_2U_2\] где \(I_1\) и \(I_2\) – силы тока на первичной и вторичной обмотках, \(U_1\) и \(U_2\) – напряжения на первичной и вторичной обмотках, тогда сила тока на вторичной обмотке равна \[I_2=\frac=\frac<2\text< А>\cdot220\text< В>><40\text< В>>=11 \text< А>\]

Читайте также:  Единицы измерения емкости конденсатора заряда электрического тока

Под каким напряжением находится первичная обмотка трансформатора, имеющая 1000 витков, если во вторичной обмотке 3500 витков и напряжение на ней 105 В?

Для трансформатора справедливо: \[\frac=\frac,\] где \(U_2\) и \(U_1\) – напряжения на вторичной и первичной обмотках, \(N_2\) и \(N_1\) – количество витков на вторичной и первичной обмотках, тогда напряжение на первичной обмотке \[U_1=\frac=\frac<105\text< В>\cdot1000><3500>=30 \text< В>\]

Источник

Колебания и волны

Решебник к сборнику задач по физике Н. А. Парфентьева

633. Через какой наименьший промежуток времени от начала движения из положения равновесия тело, подвешенное на нити, смещается на половину амплитуды? Данную систему нить — тело считайте математическим маятником, период колебаний которого 12 с. За какое время тело проходит оставшуюся часть пути до максимального смещения?

Колебания и волны

634. Шарику массой 100 г, висящему на пружине жесткостью 1,6 Н/м, сообщили скорость 0,04 м/с, направленную вертикально вниз, и одновременно включили секундомер. Запишите закон изменения координаты шарика х от времени. Ось ОХ направлена вертикально вверх.

Колебания и волны

635. Грузик, надетый на гладкую горизонтальную спицу, соединен двумя невесомыми пружинами (рис. 154). Свободные концы пружин прикреплены к неподвижным стенкам. В положении равновесия пружины не деформированы. Определите период колебаний грузика, если известно, что при его поочередном подвешивании к каждой из пружин по отдельности они удлиняются соответственно на 4 и 6 см.

Колебания и волны

636. Тело массой 1 кг колеблется на пружине с амплитудой 0,02 м. Максимальное ускорение тела равно 0,3 м/с2. Определите полную механическую энергию колебаний.

Колебания и волны

639. На гладкой горизонтальной поверхности на пружине жесткостью k находится брусок массой т. Свободный конец пружины прикреплен к стене. В брусок попадает пуля, летящая со скоростью v0 под углом а к горизонту, и застревает в нем (рис. 156). Масса пули, равная т0, много меньше массы бруска. Определите энергию колебаний системы и запишите уравнение колебаний бруска вдоль оси ОХ, считая за нуль его начальное положение.

Колебания и волны

642. Небольшой шарик массой 20 г, подвешенный на нерастяжимой непроводящей нити, совершает колебания в однородном электрическом поле напряженностью 20 В/м, силовые линии которого вертикальны. После того как ему сообщили некоторый заряд q, период колебаний изменился в 1,2 раза. Определите заряд q.

Колебания и волны

643. Ускорение свободного падения на поверхности Марса 3,7 м/с2. Сравните периоды колебаний математического и пружинного маятников на Марсе и Земле.

Колебания и волны

648. Колебательный контур состоит из катушки и двух конденсаторов, которые можно подключать по отдельности и параллельно. При подключении поочередно одного из конденсаторов периоды колебаний в колебательном контуре равны 3 и 4 с. Определите период колебаний при параллельном подключении обоих конденсаторов.

Колебания и волны

651. В колебательном контуре, состоящем из катушки индуктивностью 2 Гн и конденсатора емкостью 1,5 мкФ, максимальное значение заряда на пластинах 2 • 10“6 Кл. Определите значение силы тока в контуре в тот момент, когда заряд на пластинах конденсатора станет равным 10“6 Кл.

Колебания и волны

652. В колебательном контуре, состоящем из конденсатора емкостью 10 мкФ и катушки индуктивностью
0,4 Гн, происходят затухающие колебания. В некоторый момент времени сила тока в контуре 10

3 А, а заряд на пластинах конденсатора 10

6 Кл. Определите количество теплоты, выделившейся в проводниках, когда колебания полностью прекратятся.

Колебания и волны

653. Определите период колебаний в контуре (рис. 157). В цепь включены два идеальных полупроводниковых диода. С = 0,25 мкФ, Lx = 2,5 мГн, Ь2 = 4,9 мГн.

Колебания и волны

655. На рисунке 158 показан график зависимости силы тока от времени. Определите действующее значение силы переменного тока.

Колебания и волны

658. К генератору переменного тока подключили печь сопротивлением 440 Ом. Определите количество теплоты, выделившейся в печи за 2 мин работы, если амплитуда напряжения 220 В.

Колебания и волны

663. В цепи (рис. 159) индуктивность катушки равна 2,53 мГн, а емкость конденсатора равна 10 мкФ, частота источника переменного тока равна 103 Гц. Определите силу тока, идущего через резистор.

Колебания и волны

Колебания и волны

665. Определите амплитуду установившихся колебаний силы тока при резонансе в колебательном контуре, если активное сопротивление равно 5 Ом, а амплитудное значение внешнего напряжения равно 100 В.

Читайте также:  В чем преимущество генераторов переменного тока по сравнению с постоянным током

667. В колебательный контур с конденсатором емкостью 10 мкФ и катушкой индуктивностью 0,1 Гн последовательно включили источник переменной ЭДС. При какой частоте ЭДС амплитуда силы тока в контуре будет максимальной?

Колебания и волны

670. Первичная обмотка трансформатора в ламповом радиоприемнике имеет 2000 витков, напряжение в сети 220 В. Определите число витков во вторичной обмотке трансформатора, используемого для питания электролампы, рассчитанной на напряжение 10 В и силу тока 0,5 А, если сопротивление вторичной обмотки 2 Ом.

Колебания и волны

675. Для определения числа витков в первичной обмотке трансформатора на его сердечник намотали 10 витков провода и концы подключили к вольтметру. При подаче на первичную обмотку переменного напряжения 220 В вольтметр показал напряжение 1,1 В. Чему равно число витков в первичной обмотке трансформатора?

Колебания и волны

680. Камень брошен со скалы. Всплеск от его падения в воду был услышан через 5 с. Определите высоту скалы. Скорость звука в воздухе 330 м/с.

Колебания и волны

685. Волна возбуждается источником, уравнение колебаний которого s = 0,lsin57rt. Скорость распространения волны 100 м/с. Запишите уравнение волны и найдите смещение от положения равновесия, скорость и ускорение точки, находящейся на расстоянии 180 м от источника колебаний в момент времени, равный 2 с.

Колебания и волны

689. Определите расстояние от наблюдателя до места, где вспыхнула молния, если промежуток времени между вспышкой и громом был равен 5 с. Скорость звука в воздухе 330 м/с, скорость света 3 • 108 м/с.

Колебания и волны

692. Наибольшая частота волн, воспринимаемых ухом как звук, равна 20 000 Гц. При повышении температуры от 0 до 20 °С скорость звука возрастает на 12 м/с. Определите, на сколько возрастает при этом наименьшая длина звуковых волн.

Колебания и волны

696. Определите, на каком расстоянии от источника плотность потока излучения уменьшится в 100 раз по сравнению с плотностью потока излучения на расстоянии 100 м от источника.

Колебания и волны

704. Радиолокатор, ведя разведку месторождений, работает на волне 12 см и дает 5000 импульсов в секунду. Длительность импульса 3 мкс. Сколько колебаний содержится в каждом импульсе и какова наибольшая глубина разведки локатора?

Источник

Линия заданий 15, ЕГЭ по физике

8751. В колебательном контуре, показанном на рисунке, период колебаний силы тока равен 2 мкс. Каким будет период колебаний напряжения на конденсаторе, если ключ К перевести из положения 1 в положение 2?

Ответ: ________________ мкс.

Добавить в избранное

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса — 8751.

8783. В колебательном контуре (см. рисунок) напряжение между обкладками конденсатора меняется по закону \( = \cos \omega t \), где \( \) = 5 В, \( \omega = 2000\pi > \). Определите период колебаний напряжения.

Добавить в избранное

Верный ответ: 0,001

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса — 8783.

Добавить в избранное

Верный ответ: 70

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса — 8815.

8847. Определите энергию магнитного поля катушки индуктивностью 2 ⋅ 10 -4 Гн при силе тока в ней 3 А.

Ответ: ________________ мДж.

Добавить в избранное

Верный ответ: 0,9

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса — 8847.

Задание ЕГЭ по физике

Добавить в избранное

Верный ответ: 1,5

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса — 8879.

Задание ЕГЭ по физике

Добавить в избранное

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса — 8911.

Добавить в избранное

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса — 8943.

Задание ЕГЭ по физике

Добавить в избранное

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса — 8975.

Задание ЕГЭ по физике

Добавить в избранное

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса — 9007.

9039. Луч света падает на плоское зеркало. Угол между падающим и отраженным лучами равен 60°. Определите угол между отраженным лучом и зеркалом.

Источник