Меню

График тока при переходном процессе



График тока при переходном процессе

При всех изменениях в электрической цепи: включении, выключении, коротком замыкании, колебаниях величины какого-либо параметра и т.п. – в ней возникают переходные процессы, которые не могут протекать мгновенно, так как невозможно мгновенное изменение энергии, запасенной в электромагнитном поле цепи. Таким образом, переходный процесс обусловлен несоответствием величины запасенной энергии в магнитном поле катушки и электрическом поле конденсатора ее значению для нового состояния цепи.

При переходных процессах могут возникать большие перенапряжения, сверхтоки, электромагнитные колебания, которые могут нарушить работу устройства вплоть до выхода его из строя. С другой стороны, переходные процессы находят полезное практическое применение, например, в различного рода электронных генераторах. Все это обусловливает необходимость изучения методов анализа нестационарных режимов работы цепи.

Основные методы анализа переходных процессов в линейных цепях:

  1. Классический метод, заключающийся в непосредственном интегрировании дифференциальных уравнений, описывающих электромагнитное состояние цепи.
  2. Операторный метод, заключающийся в решении системы алгебраических уравнений относительно изображений искомых переменных с последующим переходом от найденных изображений к оригиналам.
  3. Частотный метод, основанный на преобразовании Фурье и находящий широкое применение при решении задач синтеза.
  4. Метод расчета с помощью интеграла Дюамеля, используемый при сложной форме кривой возмущающего воздействия.
  5. Метод переменных состояния, представляющий собой упорядоченный способ определения электромагнитного состояния цепи на основе решения системы дифференциальных уравнений первого прядка, записанных в нормальной форме (форме Коши).

Классический метод расчета

Классический метод расчета переходных процессов заключается в непосредственном интегрировании дифференциальных уравнений, описывающих изменения токов и напряжений на участках цепи в переходном процессе.

В общем случае при использовании классического метода расчета составляются уравнения электромагнитного состояния цепи по законам Ома и Кирхгофа для мгновенных значений напряжений и токов, связанных между собой на отдельных элементах цепи соотношениями, приведенными в табл. 1.

Таблица 1. Связь мгновенных значений напряжений и токов на элементах электрической цепи

при наличии магнитной связи с катушкой, обтекаемой током ,

Для последовательной цепи, содержащей линейные резистор R, катушку индуктивности L и конденсатор С, при ее подключении к источнику с напряжением u (см. рис. 1) можно записать

Подставив в (1) значение тока через конденсатор

получим линейное дифференциальное уравнение второго порядка относительно

В общем случае уравнение, описывающее переходный процесс в цепи с n независимыми накопителями энергии, имеет вид:

где х – искомая функция времени (напряжение, ток, потокосцепление и т.п.); — известное возмущающее воздействие (напряжение и (или) ток источника электрической энергии); — к-й постоянный коэффициент, определяемый параметрами цепи.

Порядок данного уравнения равен числу независимых накопителей энергии в цепи, под которыми понимаются катушки индуктивности и конденсаторы в упрощенной схеме, получаемой из исходной путем объединения индуктивностей и соответственно емкостей элементов, соединения между которыми являются последовательными или параллельными.

В общем случае порядок дифференциального уравнения определяется соотношением

где и — соответственно число катушек индуктивности и конденсаторов после указанного упрощения исходной схемы; — число узлов, в которых сходятся только ветви, содержащие катушки индуктивности (в соответствии с первым законом Кирхгофа ток через любую катушку индуктивности в этом случае определяется токами через остальные катушки); — число контуров схемы, ветви которых содержат только конденсаторы (в соответствии со вторым законом Кирхгофа напряжение на любом из конденсаторов в этом случае определяется напряжениями на других).

Наличие индуктивных связей на порядок дифференциального уравнения не влияет.

Как известно из математики, общее решение уравнения (2) представляет собой сумму частного решения исходного неоднородного уравнения и общего решения однородного уравнения, получаемого из исходного путем приравнивания его левой части к нулю. Поскольку с математической стороны не накладывается каких-либо ограничений на выбор частного решения (2), применительно к электротехнике в качестве последнего удобно принять решение , соответствующее искомой переменной х в установившемся послекоммутационном режиме (теоретически для ).

Частное решение уравнения (2) определяется видом функции , стоящей в его правой части, и поэтому называется принужденной составляющей. Для цепей с заданными постоянными или периодическими напряжениями (токами) источников принужденная составляющая определяется путем расчета стационарного режима работы схемы после коммутации любым из рассмотренных ранее методов расчета линейных электрических цепей.

Вторая составляющая общего решения х уравнения (2) – решение (2) с нулевой правой частью – соответствует режиму, когда внешние (принуждающие) силы (источники энергии) на цепь непосредственно не воздействуют. Влияние источников проявляется здесь через энергию, запасенную в полях катушек индуктивности и конденсаторов. Данный режим работы схемы называется свободным, а переменная — свободной составляющей.

В соответствии с вышесказанным, общее решение уравнения (2) имеет вид

Соотношение (4) показывает, что при классическом методе расчета послекоммутационный процесс рассматривается как наложение друг на друга двух режимов – принужденного, наступающего как бы сразу после коммутации, и свободного, имеющего место только в течение переходного процесса.

Необходимо подчеркнуть, что, поскольку принцип наложения справедлив только для линейных систем, метод решения, основанный на указанном разложении искомой переменной х, справедлив только для линейных цепей.

Начальные условия. Законы коммутации

В соответствии с определением свободной составляющей в ее выражении имеют место постоянные интегрирования , число которых равно порядку дифференциального уравнения. Постоянные интегрирования находятся из начальных условий, которые принято делить на независимые и зависимые. К независимым начальным условиям относятся потокосцепление (ток) для катушки индуктивности и заряд (напряжение) на конденсаторе в момент времени (момент коммутации). Независимые начальные условия определяются на основании законов коммутации (см. табл. 2).

Таблица 2. Законы коммутации

Название закона

Формулировка закона

Первый закон коммутации (закон сохранения потокосцепления)

Магнитный поток, сцепленный с катушками индуктивности контура, в момент коммутации сохраняет то значение, которое имел до коммутации, и начинает изменяться именно с этого значения: .

Второй закон коммутации (закон сохранения заряда)

Электрический заряд на конденсаторах, присоединенных к любому узлу, в момент коммутации сохраняет то значение, которое имел до коммутации, и начинает изменяться именно с этого значения: .

Доказать законы коммутации можно от противного: если допустить обратное, то получаются бесконечно большие значения и , что приводит к нарушению законов Кирхгофа.

На практике, за исключением особых случаев (некорректные коммутации), допустимо использование указанных законов в другой формулировке, а именно:

первый закон коммутации – в ветви с катушкой индуктивности ток в момент

коммутации сохраняет свое докоммутационное значение и в дальнейшем начинает изменяться с него: .

второй закон коммутации – напряжение на конденсаторе в момент

коммутации сохраняет свое докоммутационное значение и в дальнейшем начинает изменяться с него: .

Необходимо подчеркнуть, что более общей формулировкой законов коммутации является положение о невозможности скачкообразного изменения в момент коммутации для схем с катушкой индуктивности – потокосцеплений, а для схем с конденсаторами – зарядов на них. В качестве иллюстрации сказанному могут служить схемы на рис. 2, переходные процессы в которых относятся к так называемым некорректным коммутациям (название произошло от пренебрежения в подобных схемах малыми параметрами, корректный учет которых может привести к существенному усложнению задачи).

Действительно, при переводе в схеме на рис. 2,а ключа из положения 1 в положение 2 трактование второго закона коммутации как невозможность скачкообразного изменения напряжения на конденсаторе приводит к невыполнению второго закона Кирхгофа . Аналогично при размыкании ключа в схеме на рис. 2,б трактование первого закона коммутации как невозможность скачкообразного изменения тока через катушку индуктивности приводит к невыполнению первого закона Кирхгофа . Для данных схем, исходя из сохранения заряда и соответственно потокосцепления, можно записать:

Зависимыми начальными условиями называются значения остальных токов и напряжений, а также производных от искомой функции в момент коммутации, определяемые по независимым начальным условиям при помощи уравнений, составляемых по законам Кирхгофа для . Необходимое число начальных условий равно числу постоянных интегрирования. Поскольку уравнение вида (2) рационально записывать для переменной, начальное значение которой относится к независимым начальным условиям, задача нахождения начальных условий обычно сводится к нахождению значений этой переменной и ее производных до (n-1) порядка включительно при .

Пример. Определить токи и производные и в момент коммутации в схеме на рис. 3, если до коммутации конденсатор был не заряжен.

Читайте также:  Пуск двигателей постоянного тока изменение направления вращения

В соответствии с законами коммутации

На основании второго закона Кирхгофа для момента коммутации имеет место

Для известных значений и из уравнения

Значение производной от напряжения на конденсаторе в момент коммутации (см. табл. 1)

Корни характеристического уравнения. Постоянная времени

Выражение свободной составляющей общего решения х дифференциального уравнения (2) определяется видом корней характеристического уравнения (см. табл. 3).

Таблица 3. Выражения свободных составляющих общего решения

Вид корней характеристического уравнения

Выражение свободной составляющей

Корни вещественные и различные

Корни вещественные и

Пары комплексно-сопряженных корней

Необходимо помнить, что, поскольку в линейной цепи с течением времени свободная составляющая затухает, вещественные части корней характеристического уравнения не могут быть положительными.

При вещественных корнях монотонно затухает, и имеет место апериодический переходный процесс. Наличие пары комплексно сопряженных корней обусловливает появление затухающих синусоидальных колебаний (колебательный переходный процесс).

Поскольку физически колебательный процесс связан с периодическим обменом энергией между магнитным полем катушки индуктивности и электрическим полем конденсатора, комплексно-сопряженные корни могут иметь место только для цепей, содержащих оба типа накопителей. Быстроту затухания колебаний принято характеризовать отношением

которое называется декрементом колебания, или натуральным логарифмом этого отношения

называемым логарифмическим декрементом колебания, где .

Важной характеристикой при исследовании переходных процессов является постоянная времени t , определяемая для цепей первого порядка, как:

где р – корень характеристического уравнения.

Постоянную времени можно интерпретировать как временной интервал, в течение которого свободная составляющая уменьшится в е раз по сравнению со своим начальным значением. Теоретически переходный процесс длится бесконечно долго. Однако на практике считается, что он заканчивается при

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  3. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия- 1972. –240с.

Источник

Переходные процессы в RC- и RL- цепях

Переходными, в электрической цепи, принято называть процессы возникающие в результате различных воздействий (например: включений или отключений цепи от источника питания, обрывах или коротких замыканиях, импульсных возмущающих воздействий и так далее) и переводящих её из одного стационарного (установившегося) состояния в новое (другое) стационарное состояние.

Рассмотрим переходный процесс в RC-цепи (рисунок 1), в состав которой входят резистор R, конденсатор С, ключ К и источник питания, на зажимах которого поддерживается постоянное напряжение E=U.

Схема RC цепи

Рисунок 1. Схема RC-цепи.

Если установить ключ К в положение ”1” (рисунок 1), то начнётся процесс заряда конденсатора С через резистор R (рисунок 2,a). Для образовавшейся цепи будет справедливо соотношение :

Суммарное напряжение в цепи

Так как на конденсаторе напряжение скачком изменяться не может, то в момент (t=0) подключения цепи к источнику питания всё напряжение источника окажется на резисторе R, то есть uR = U, uc = 0.

В начальный момент времени заряда конденсатора, ток в RC-цепи будет иметь наибольшее значение: i=U/R. Конденсатор начнёт заряжаться, напряжение на нём “постепенно” повышается, что, в свою очередь, приведёт к уменьшению падения напряжения на резисторе uR = U — uC, а следовательно и уменьшению тока в RC-цепи, вплоть до его ”полного” прекращения. Напряжение на конденсаторе, во время заряда, нарастает по экспоненциальной зависимости согласно формуле:

Напряжение на конденсаторе во время заряда

где t – любой момент времени, τ – постоянная времени заряда конденсатора в секундах:

Постоянная времени заряда конденсатора

Значения напряжения на резисторе и общего тока RC-цепи уменьшаются также по экспоненциальному закону:

Закон изменения напряжения и тока в RC цепи

Переходные процессы в RC цепи

Рисунок 2. Переходные процессы в RC-цепи. (а – при подключении к источнику; б –при замыкании цепи)

Из приведенных выше математических выражений, а также изображений на рис.2,а можно сделать вывод что, величина τ характеризует скорость заряда конденсатора или скорость затухания переходного процеесса. Через время t= τ , после подключения RC-цепи к источнику постоянного напряжения, напряжение на конденсаторе достигнет значения Напряжение на конденсаторе достигает заряда, а напряжение на резисторе уменьшится до значения Напряжение на резисторе уменьшается достигая значения. Процесс заряда конденсатора будет продолжаться до тех пор, пока напряжения на его выводах не достигнет значения равного напряжению источника питания U. Когда заряд конденсатора закончится — ток в RC-цепи становится равным нулю. Теоретически, для “полного” заряда конденсатора, потребуется бесконечно большое время.

Поэтому, принято считать, что процесс заряда конденсатора заканчивается, когда напряжение на нём достигает значений 90,95 или 99% величины напряжения источника питания U=E.

Зависимость значения величины заряда конденсатора от времени

В подавляющем большинстве случаев, как на практике, так и в теоретических расчётах, время t в течение которого конденсатор считается полностью заряженным, принимают равным 3τ. Также это можно отнести ко всем электрическим цепям, где токи меняются по экспоненциальному закону.

Если установить ключ К в положение ”2” (рисунок 1) то начнётся новый переходный процесс — разряд конденсатора С через резистор R (рисунок 2,a). В этом случае предварительно заряженный конденсатор становится фактическим источником напряжения, т.к. источник внешнего напряжения E=U перестаёт действовать и для любого момента времени становится действительным соотношение uC + uR = 0, то есть uC = -uR.

Ток в начальный момент ( t=0) разряда конденсатора будет иметь максимальное значение:Величина тока в начальный момент заряда конденсатора

Но по мере разряда конденсатора (превращения накопленной в его электрическом поле энергии в тепловую на резисторе R ) напряжение на нём будет уменьшаться и, как следствие, будут уменьшаться по экспоненциальному закону ток в цепи и напряжение на резисторе:

Изменение напряжений на кондесаторе и резисторе в зависимости от величины протекаемого тока

Через некоторое время, например t=3τ (см. приведенную выше табл.), на конденсаторе останется примерно 5% напряжения от начального значения, что условно можно считать окончанием переходного процесса и возвратом схемы в исходное состояние когда: uC = 0, uR = 0, i = 0.

Теперь рассмотрим переходной процесс в RL-цепи (рис.3), в состав которой входят резистор R, катушка индуктивности L, ключ К и источник питания, на зажимах которого поддерживается постоянное напряжение E=U.

Схема RL цепи

Рисунок 3. Схема RL-цепи.

При подключении к источнику E=U, переводом ключа “K” в положение 1, ток в RL-цепи не сразу достигнет значения i=U/R, а будет нарастать по экспоненциальному закону (см.рис.4,а). Это связано с тем, что кроме источника E=U, в цепи с индуктивностью L начинает действовать ЭДС самоиндукции eL, препятствующая нарастанию тока. В момент включения, когда t=0, ЭДС самоиндукции максимальна и принимает значение eL = -U, при этом все напряжения выделяются на катушке индуктивности L : Напряжение на катушке индуктивности, так как при t=0 ток в цепи i=0, следовательно iR = 0. С течением времени напряжение на катушке uL уменьшается, а ток i и напряжение на резисторе uR экспоненциально возрастают:

Изменение и тока напряжений на катушке индуктивности и резисторе при переходном процессе в RL цепи

где τ – постоянная времени RL-цепи, Постоянная времени RL цепи

Переходные процессы в RL цепи

Рисунок 4. Переходные процессы в RL-цепи.
(а – при подключении к источнику; б –при замыкании цепи)

На рисунке 4,а показано что ток в цепи, особенно в начале подключения к источнику, нарастает с наибольшей скоростью, но уже при t= τ его рост значительно замедляется, а при t=3τ практически прекращается и можно считать что его величина достигла установившегося значения i=U/R. При этом, с ростом тока, ЭДС самоиндукции уменьшается до нуля, переходной процесс заканчивается.

Процесс уменьшения тока и напряжения в RL цепи

Переведём ключ К в положение ”2” (рисунок 3) – начнётся обратный переходной процесс, ”разряда” накопленной катушкой индуктивноси “энергии магнитного поля” и превращения её в тепловую на резисторе R, . В самом начале этого переходного процесса (рисунок 4,б) напряжение на катушке возрастает скачком от нуля до uL = -U. В дальнейшем, начинается процесс уменьшения по экспоненциальному закону тока и напряжения на элементах R-L цепи:Итого:

  • переходные процессы в обеих цепях, как RC так и RL , происходят в соответствии с экспоненциальным законом ;
  • в момент подключения RC-цепи к постоянному источнику питания напряжение на конденсаторе “минимамальное” и практически равняется нулю uc = 0 (если он был разряжен), но при этом по цепи протекает максимальный ток i=U/R, значение которого постепенно уменьшается по мере заряда конденсатора (рисунок 2,а);
  • в момент подключения RL-цепи к постоянному источнику питания напряжение на катушке индуктивности принимает максимальное значение и приравнивается к величине напряжения источника, а ток имеет минимальное значение и практически равен нулю i=0, но с течением времени, по мере уменьшения ЭДС самоиндукции катушки, принимает значение i=U/R (рисунок 4,а);
  • величина τ характеризует скорость затухания переходного процесса:
  1. постоянная времени RC-цепи —Постоянная времени заряда конденсатора;
  2. постоянная времени RL-цепи —Постоянная времени RL цепи ;
Читайте также:  Где применяется механическое действие электрического тока

Источник

Переходные процессы в электрической цепи

Переходные процессы в электрической цепиПереходные процессы не являются чем-то необычным и характерны не только для электрических цепей. Можно привести ряд примеров из разных областей физики и техники, где случаются такого рода явления.

Например, налитая в сосуд горячая вода постепенно охлаждается и ее температура изменяется от начального значения до установившегося, равного температуре окружающей среды. Выведенный из состояния покоя маятник совершает затухающие колебания и, в конце концов, возвращается в исходное стационарное неподвижное состояние. При подключении электроизмерительного прибора его стрелка перед остановкой на соответствующем делении шкалы совершает вокруг этой точки шкалы несколько колебаний.

Установившийся и переходный режим электрической цепи

При анализе процессов в электрических цепях приходится встречаться с двумя режимами работы: установившемся (стационарным) и переходным .

Установившимся режимом электрической цепи, подключенной к источнику постоянного напряжения (тока), называется режим, при котором токи и напряжения в отдельных ветвях цепи неизменны во времени.

В электрической цепи, подключенной к источнику переменного тока, установившийся режим характеризуется периодическим повторением мгновенных значений токов и напряжений в ветвях . Во всех случаях работы цепей в установившихся режимах, которые теоретически могут продолжаться неограниченно долгое время, предполагается, что параметры воздействующего сигнала (напряжения или тока), а также структура цепи и параметры ее элементов не изменяются.

Токи и напряжения установившегося режима зависят от вида внешнего воздействия и от параметров электрической цели.

Переходным режимом (или переходным процессом ) называется режим, возникающий в электрической цепи при переходе от одного стационарного состояния к другому, чем-либо отличающемуся от предыдущего, а сопутствующие этому режиму напряжения и токи — переходными напряжениями и токами . Изменение стационарного режима цепи может происходить в результате изменения внешних сигналов, в том числе включения или отключения источника внешнего воздействия, или может быть вызвано переключениями внутри самой цепи.

коммутация электрических цепейЛюбое изменение в электрической цепи, приводящее к возникновению переходного процесса называют коммутацией .

Коммутация электрической цепи — процесс переключений электрических соединений элементов электрической цепи, выключения полупроводникового прибора (ГОСТ 18311-80).

В большинстве случаев теоретически допустимо считать, что коммутация осуществляется мгновенно, т.е. различные переключения в цепи происходят без затраты времени. Процесс коммутации на схемах условно показывается стрелкой возле выключателя.

Переходные процессы в реальных цепях являются быстропротекающими . Их продолжительность составляет десятые, сотые, а часто и миллионные доли секунды. Сравнительно редко длительность этих процессов достигает единицы секунды.

Естественно возникает вопрос, надо ли вообще принимать во внимание переходные режимы, имеющие столь короткую длительность. Ответ может быть дан только для каждого конкретного случая, так как в различных условиях роль их неодинакова. Особенно велико их значение в устройствах, предназначенных для усиления, формирования и преобразования импульсных сигналов, когда длительность воздействующих на электрическую цепь сигналов соизмерима с продолжительностью переходных режимов.

Переходные процессы являются причиной искажения формы импульсов при прохождении их через линейные цепи. Расчет и анализ устройств автоматики, где происходит непрерывная смена состояния электрических цепей, немыслим без учета переходных режимов.

В ряде устройств возникновение переходных процессов, в принципе, нежелательно и опасно. Расчет переходных режимов в этих случаях позволяет определить возможные перенапряжения и увеличения токов, которые во много раз могут превышать напряжения и токи стационарного режима. Это особенно важно для цепей со значительной индуктивностью или большой емкостью.

Причины возникновения переходного процесса

Рассмотрим явления, возникающие в электрических цепях при переходе от одного установившегося режима к другому.

Включим лампу накаливания в последовательную цепь, содержащую резистор R1 , выключатель В и источник постоянного напряжения Е. После замыкания выключателя лампа сразу же загорится, так как разогрев нити и нарастание яркости ее свечения на глаз оказываются незаметными. Можно условно считать, что в такой цепи ток стационарного режима, равный I о= E/(R1+R л), устанавливается практически мгновенно, где R л — активное сопротивление накаленной нити лампы.

В линейных цепях, состоящих из источников энергии и резисторов, переходные процессы, связанные с изменением запасенной энергии, вообще не возникают.

Схемы цепей для иллюстрации переходных процессов: а - цепь без реактивных элекментов, б - цепь с катушкой индуктивности, в - цепь с конденсатором

Рис. 1. Схемы цепей для иллюстрации переходных процессов: а — цепь без реактивных элекментов, б — цепь с катушкой индуктивности, в — цепь с конденсатором.

Заменим резистор катушкой L , индуктивность которой достаточно велика. После замыкания выключателя можно заметить, что нарастание яркости свечения лампы происходит постепенно. Это свидетельствует о том, что из-за наличия катушки ток в цепи постепенно достигает своего установившегося значения I ‘о= E/(r к +R л), где r к— активное сопротивление обмотки катушки.

Следующий эксперимент проведем с цепью, состоящей из источника постоянного напряжения, резисторов и конденсатора, параллельно которому подключим вольтметр (рис. 1,в). Если емкость конденсатора достаточно велика (несколько десятков микрофарад), а сопротивление каждого из резисторов R1 и R 2 несколько сотен килоом, то после замыкания выключателя стрелка вольтметра начинает плавно отклоняться и только через несколько секунд устанавливается на соответствующем делении шкалы.

Следовательно, напряжение на конденсаторе, а также и ток в цепи устанавливаются в течение относительно продолжительного промежутка времени (инерционностью самого измерительного прибора в данном случае можно пренебречь).

Что же препятствует мгновенному установлению стационарного режима в цепях рис. 1,б, в и служит причиной возникновения переходного процесса?

Причиной этому являются элементы электрических цепей, способные запасать энергию (так называемые реактивные элементы): катушка индуктивности (рис. 1,б) и конденсатор (рис. 1,в).

возникновение переходных процессовВозникновение переходных процессов связано с особенностями изменения запасов энергии в реактивных элементах цепи . Количество энергии, накапливаемой в магнитном поле катушки с индуктивностью L , в которой протекает ток iL , выражается формулой: WL = 1/2 (LiL 2 )

Энергия, накапливаемая в электрическом поле конденсатора емкостью С, заряженного до напряжения uC , равна: WC = 1/2 (CuC 2 )

Поскольку запас магнитной энергии WL определяется током в катушке iL , а электрической энергии WC — напряжением на конденсаторе uC , то во всех электрических цепях три любых коммутациях соблюдаются два основных положения: ток катушки и напряжение на конденсаторе не могут изменяться скачком . Иногда эти положения формулируются иначе, а именно: потокосцепление катушки и заряд конденсатора могут изменяться только плавно, без скачков .

Физически переходные режимы представляют собой процессы перехода энергетического состояния цепи от докоммутационного к послекоммутационному режиму. Каждому стационарному состоянию цепи, имеющей реактивные элементы, соответствует определенный запас энергии электрического и магнитного полей. Переход к новому стационарному режиму связан с нарастанием или убыванием энергии этих полей и сопровождается возникновением переходного процесса, который заканчивается, как только прекращается изменение запаса энергии. Если при при коммутации энергетическое состояние цепи не изменяется, то переходные процессы не возникают.

короткое замыканиеПереходные процессы наблюдаются при коммутациях, когда изменяется стационарный режим электрической цепи, имеющей элементы, способные запасать энергию. Переходные процессы возникают при следующих операциях:

а) включении и выключении цепи,

б) коротком замыкании отдельных ветвей или элементов цепи,

в) отключении или подключении ветвей или элементов цепи и т. д.

Кроме того, переходные процессы возникают при воздействии на электрические цепи импульсных сигналов.

Источник

ЛЕКЦИЯ 1. ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

Включение и выключение источников и приемников электроэнергии, возникновение коротких замыканий и т. п. связано с мгновенным изме­нением параметров электрических цепей и сопровождается протеканием в них переходных электромагнитных процессов. Переходным называется процесс, возникающий в любой системе при переходе от одного устано­вившегося процесса (режима) к другому. Электромагнитные переходные процессы занимают обычно относительно небольшое время (от долей до нескольких секунд), но сопровождаются „бросками» токов, „провалами» или „всплесками» напряжений, которые могут вызвать срабатывание за­щитных устройств, повреждение деталей, чрезмерные перегревы, пробой изоляции и др.

Рис. 1.1. Схема электрической цепи с обобщенными парамет­рами при подключении к ис­точнику электроэнергии

При подключении r –L цепи выключателем S источнику постоянного тока возникает переходный процесс между начальным установившимся режимом работы, соответствующим i= 0и конечным установившимся режимом, соответствую­щим току i= iуст. Изменение тока в цепи от 0 до iуст за время переходного процесса связано с изменением магнитного потока катушки и возникно­вением в ней ЭДС самоиндукции е L = — L (di/dt). На основании второго закона Кирхгофа (сумма напряжений и ЭДС в замкнутом контуре равна сумме падений напряжений) применительно к схеме на рис. 1.1 можно составить следующее уравнение:

Читайте также:  Какие условия необходимы для самовозбуждения генераторов постоянного тока

(1.1)

Уравнение (1.1) называется линейным дифференциальным уравне­нием первого порядка. Полное решение данного уравнения относительно тока находится как сумма токов двух частных решений, т. е.

i= i+ iсв (1.2)

Значение тока первого частного решения соответствует установив­шемуся процессу, который наступает в цепи после окончания переходного процесса. Данный ток принято называть принужденным (или установив­шимся) , поскольку он течет под действием напряжения источника элект­роэнергии. Значение принужденного тока находится из уравнения (1.1), написанного для установившегося режима, т. е.

iпрr + L diпр/dt = u (1.3)

Поскольку iпр=const, diпр/dt=0, Следовательно, iпр r = u или iпр = u / r ( 1.4)

Формула (1.4) соответствует закону Ома для электрической цепи постоянного тока. Значение тока второго частного решения iсвсоответ­ствует .свободному процессу изменения тока при отсутствии в цепи источ­ника электроэнергии (при закороченном источнике) под действием запасенной в цепи энергии. Данный ток принято называть свободным. Значение свободного тока находится из уравнения (1.1) при u=0, т.е.

iсвr + L diсв/dt = 0 (1.5)

Решение данного дифференциального уравнения можно представить в сле­дующем виде:

iсв = А е — α t (1.6)

где А — постоянная интегрирования; е — основание натуральных логариф­мов (е = 2,72); α — корень характеристического уравнения.

Постоянная интегрирования А определяется уравнением (1.2) для на­чальных условий t= 0, i=0

Поскольку любое число в нулевой степени равно 1, имеем откуда

A=u/ r (1.7)

Дифференциальному уравнению (8.5) соответствует следующее ха­рактеристическое уравнение:

r +La =0

откуда корень уравнения a = r/L(1.8)

Объединив формулы (8.6) — (8.8), получим

iсв= (- u/r) е – r / Lt

Обычно данную формулу принято записывать в виде

iсв= (- u/r) е – τ / t (1.9)

где τ — постоянная времени электрической цепи L/r , с.

Из формул (1.4) и (1.9) следует, что принужденный ток имеет по­стоянное значение, а свободный ток является затухающим. Процесс зату­хания свободного тока определяется множителем Объединив формулы (1.2), (1.4) и 1.9), получим полное решение уравнения (1.1) в виде

( i=u/r – (u/r) е –τ/t = u/r( 1- е –τ/t )(1.12)

Рис. 1.2. График изменения токов при подключении электрической цепи к источнику постоянного тока

На рис. 1.2 представлен график изменения принужденного, свободного и общего (результирующего) то­ков, построенных на основании формул (1.4), (1.9) и (1.12) или (1.2). Из графика видно, что значения принужденного и свободного токов распо­ложены в первом и четвертом квадрантах, ординаты которых имеют про­тивоположное направление. При t=0 значения принужденного и свободного токов равны, но противоположны по направлению, поэтому значение общего тока равно нулю. По мере уменьшения свободного тока происходит нарастание общего тока. Приiсв=0 значение общего тока достигает значения принужденного (установившегося) токаiуст.Нарастание общего тока происходит по кривой, подобной кривой затухания свободного тока. Если через начало коорди­нат провести касательную к кривой общего тока, то она, пересекая линию принужденного тока, отсечет отрезок, равный постоянной времени т. Из графика ясно, что длительность переходного процесса пропорцио­нальна значению т, а следовательно отношению L/ r. При L>r переходный процесс затягивается, при L

При подключении электрической цепи (см. рис. 1.1) к источнику си­нусоидального переменного тока напряжением u = (Umax / Z) sin (wt+α – φ) урав­нение переходного процесса (8.1) и методика его решения полностью со­храняются. Однако значения принужденного, свободного и общего токов при этом будут определяться другими формулами. Значение принужден­ного (установившегося) тока по аналогии с формулой (1,4) определяется законом Ома для электрической цепи переменного тока, состоящей из активного сопротивления r и индуктивного сопротивления х =wt, т. е.

i = (Umax / Z ) sin (wt+α – φ) = I max sin (wt+α – φ) (1.13)

Z = √г 2 + х 2 — полное, активное и реактивное сопротивления электрической

цепи; а — угол, определяющий, напряжение в момент включения при t=0; φ — сдвиг фаз (угол между векторами) тока и напряжения;Imах — амплитудное значение тока.

Свободный ток при t=0 равен по значению и противоположен по направлению принужденному току, т. е,

Затем данный ток затухает по экспоненциальной кривой, что определяется множителем е – τ / t . Формула свободного тока в этом случае будет иметь вид:

iсв= — — I max sin (α – φ) е –τ/t (1.15)

где τ= L/r = х/wг — постоянная времени электрической цепи.

Общий ток переходного процесса определяется формулой

i = i пр+ iсв= I max [sin (wt+α – φ) — sin (α – φ) е –τ/t ](1.16)

Из формулы (1.13) следует, что принужденный ток изменяется по синусоидальному закону, имеет периодический характер и его называют периодическим током. Характер изменения свободного тока, согласно (1.15), является затухающим и непериодическим, поэтому его принято называть апериодическим.

Анализ формул (1.13), (1.15) и (1.16) дает возможность убедиться, что наибольшие мгновенные значения токов переходного процесса соот­ветствуют включению цепи в момент прохождения напряжения через ну­левое значение (при а = 0), а также при φ = — 90 0 ,т. е. пренебрегая актив­ным сопротивлением цепи (практически при x >r). Тогда

(1.17)

(1.18)

i = iпр + iсв = -I max cosωt + I max e -t/τ (1.19)

На рис. 1.3 представлен график изменения токов, построенных на ос­новании формул (1.17) — (1.19). Из графика видно, что при I = 0 значе­ния периодического и апериодического токов равны Imax,, но противопо­ложны по знаку (направлению). Апериодический ток iа расположенный в первом квадранте, затухает до нуля, не изменяя своего направления. Периодический ток iпр изменяется по синусоидальной (косинусоидальной) кривой с неизменным значением амплитуды 1тзх.

Рис. 1.3. График изменения токов при подключении элек­трической цепи к источнику переменного тока

Через половину периода изменения периодического тока, т. е. при wt= л = Т/2 и t = 1/2f = 0,01 с, амплитуды периодического и апериодиче­ского токов, имея одинаковое направление, дают наибольшее суммарное значение общего тока, которое принято называть ударным током. Значе­ние ударного тока определяется формулой (1.19) при соs π = -1 и τ = 0,01 с

Обозначив Куд = (1 + e -0/01/ τ ), получим: iуд = Куд Imax

Из формулы следует, что значение ударного коэффициента из­меняется в пределах от 1 до 2 в зависимости от изменения τ в пределах от 0 до ∞ (τ= 0 при х = 0; τ= ∞ при r= 0). В первом случае свободный ток равен нулю, во втором — свободный ток не затухает.

Практически при х>r переходный процесс растягивается, а значение ударного коэффициента приближается к 2; при r > х процесс быстро за­тухает, а значение коэффициента приближается к 1.

Возникновение короткого замыкания, например между точками а и б схемы на рис. 1.4, связано с мгновенным образованием замкнутой электрической цепи и появлением в ней тока iк.з , что аналогично подключению переключателем приемника к источнику электроэнергии. Переходный процесс подключения электрической цепи к источнику совпадает с переходным процессом короткого замыкания и описывается формулами (1.1 -1.22).

Рис.1.4 Схема электрической сети при возникновении короткого замыкания в кабеле.

Вместе с тем следует заметить, что указанные формулы получены на основе постоянных значений э.д.с. и напряжения источника питания и постоянных значений активных и реактивных сопротивлений электрической цепи. На практике, при рассмотрении переходных процессов, значения э.д.с. и внутренние сопротивления источников питания ( генераторов) и приемников (двигателей) могут изменяться. Поэтому параметры xи и rи источников и xп и rп приемников на схемах обычно разделяют.

Контрольные вопросы

1.Назовите причины возникновения переходных процессов в энергосистемах.

2.Напишите уравнение переходного процесса при подключении простой R-L цепи к источнику постоянного напряжения.

3. Как определить принужденный ( установившийся) и свободный ток в этой цепи? Что является причиной появления свободного тока в цепи?

4.Напишите уравнение переходного процесса при подключении простой R-L цепи к источнику переменного напряжения.

5.Как определить периодический ток и апериодический ( свободный) ток в этой цепи. Условия подключения цепи , при которых имеет место максимальные значения апериодических токов.

6 Что такое ударный ток и как его определить?

7. Каковы особенности переходного процесса, соответствующие режиму короткого замыкания в цепи переменного ток?

Источник