Меню

График напряжения тока для активного сопротивления



График напряжения тока для активного сопротивления

§ 53. Активное сопротивление в цепи переменного тока

Сопротивление, включенное в цепь переменного тока, в котором происходит превращение электрической энергии в полезную работу или в тепловую энергию, называется активным сопротивлением.
К активным сопротивлениям при промышленной частоте (50 гц) относятся, например, электрические лампы накаливания и электронагревательные устройства.
Рассмотрим цепь переменного тока (рис. 56), в которую включено активное сопротивление. В такой цепи под действием переменного напряжения протекает переменный ток. Изменение тока в цепи, согласно закону Ома, зависит только от изменения напряжения, подключенного к ее зажимам. Когда напряжение равно нулю, ток в цепи также равен нулю. По мере увеличения напряжения ток в цепи возрастает и при максимальном значении напряжения ток становится наибольшим. При уменьшении напряжения ток убывает. Когда напряжение изменяет свое направление, ток также изменяет свое направление и т. д.

Из сказанного следует, что в цепи переменного тока с активным сопротивлением по мере изменения по величине и направлению напряжения одновременно пропорционально меняются величина и направление тока. Это значит, что ток и напряжение совпадают по фазе.
Построим векторную диаграмму действующих величин тока и напряжения для цепи с активным сопротивлением. Для этого отложим в выбранном масштабе по горизонтали вектор напряжения . Чтобы на векторной диаграмме показать, что напряжение и ток в цепи совпадают по фазе (φ = 0), откладываем вектор тока I по направлению вектора напряжения.
Сила тока в такой цепи определяется по закону Ома:

В этой цепи среднее значение мощности, потребляемой активным сопротивлением, выражается произведением действующих значения тока и напряжения.

Пример. К цепи переменного тока с активным сопротивлением r = 55 ом подключен генератор, максимальное значение напряжения которого Um = 310,2 в. Определить:
1) показание вольтметра, подключенного к зажимам генератора;
2) показание амперметра, включенного в цепь;
3) среднее значение мощности, потребляемой сопротивлением.
Решение . Известно, что электроизмерительные приборы, включенные в цепь переменного тока, измеряют действующие значения. Поэтому показание вольтметра, измеряющего напряжение,

Показание амперметра, измеряющего действующее значение тока,

Среднее значение активной мощности, потребляемой сопротивлением, Р = I U = 220 · 4 = 880 вт или Р = I 2 r = 4 2 · 55 = 16 · 55 = 880 вт.

Источник

Активное сопротивление в цепи переменного тока

ads

Электрические лампы накаливания, печи сопротивления, бытовые нагревательные приборы, реостаты и другие приемники, где электрическая энергия преобразуется в тепловую, на схемах замещения обычно представлены только сопротивлением R.
Для схемы, изображенной на рис. 13.1, а, заданы сопротивление R и напряжение, изменяющееся по закону

u = Umsinωt

Найдём ток и мощность в цепи.

89

Ток в цепи переменного тока с активным сопротивлением.

4

По закону Ома найдем выражение для мгновенного тока:

где Im = Um/R — амплитуда тока

Из уравнений напряжения и тока видно, что начальные фазы обеих кривых одинаковы, т. е. напряжение и ток в цепи с сопротивлением R совпадают по фазе. Это показано на графиках и векторной диаграмме (рис. 13.1, б, б).

5

Действующий ток найдем, разделив амплитуду на √ 2:

Формулы (13.1) выражают закон Ома для цепи переменного тока с сопротивлением R. Внешне они ничем не отличаются от формулы для цепи постоянного тока, если переменные напряжение и ток выражены действующими величинами.

Мгновенная мощность в цепи переменного тока с активным сопротивлением.

При переменных величинах напряжения и тока скорость преобразования электрической энергии в приемнике, т. е. его мощность, тоже изменяется. Мгновенная мощность равна произведению мгновенных величин напряжения и тока: p = Umsinωt * Imsinωt = UmImsin 2 ωt

6

Из тригонометрии найдём

7

Более наглядное представление о характере изменения мощности в цепи дает график в прямоугольной системе координат, который строится после умножения ординат кривых напряжения и тока, соответствующих ряду значений их общего аргумента — времени t. Зависимость мощности от времени — периодическая кривая (рис. 13.2). Если ось времени t поднять по чертежу на величину р = Pm√2 = UmIm√2, то относительно новой оси t’ график мощности является синусоидой с двойной частотой и начальной фазой 90°:

Читайте также:  Каким током заряжать автомобильный аккумулятор 90а

Таким образом, в первоначальной системе координат мгновенная, мощность равна сумме постоянной величины Р = UmIm√2 и перемен- ной р’:

р = Р + р’

Анализируя график мгновенной мощности, нетрудно заметить, что мощность в течение периода остается положительной, хотя ток и напряжение меняют свой знак. Это получается благодаря совпадению по фазе напряжения и тока.

Постоянство знака мощности говорит о том, что направление потока электрической энергии остается в течение периода неизменным, в данном случае от сети (от источника энергии) в приемник с сопротивлением R, где электрическая энергия необратимо преобразуется в другой вид энергии. В этом случае электрическая энергия называется активной.

Если R — сопротивление проводника, то в соответствии с законом Ленца — Джоуля электрическая энергия в нем преобразуется в тепло.

Активная мощность для цепи переменного тока с активным сопротивлением

Скорость преобразования электрической энергии в другой вид энергии за конечный промежуток времени, значительно больший периода изменения тока, характеризуется средней мощностью. Она равна средней мощности за период, которую называют активной.

Активная мощность — среднее арифметическое мгновенной мощности за период.

Для рассматриваемой цепи активную мощность Р нетрудно определить из графика рис. 13.2. Средняя величина мощности равна высоте прямоугольника с основанием Т, равновеликого площади, ограниченной кривой р(t) и осью абсцисс (на рисунке заштриховано).

Равенство площадей РТ = Sp выполняется, если высоту прямоугольника взять равной половине наибольшей мгновенной мощности Pm.

В этом случае часть площади Sp , находящаяся выше прямоугольника, точно укладывается в оставшуюся незаштрихованной его часть:

P = UI

Активная мощность для данной цепи равна произведению действующих величин тока и напряжения:

P = UI = I 2 R

С математической точки зрения активная мощность является постоянной составляющей в уравнении мгновенной мощности p(t) [см. выражение (13.2)].

10

Среднюю мощность за период можно найти интегрированием уравнения (13.2) в пределах периода:

Сопротивление R, определяемое из формулы (13.3) отношением активной мощности цепи к квадрату действующего тока, называется активным электрическим сопротивлением.

Источник

Цепь переменного тока с емкостью и активным сопротивлением. Векторные диаграммы. Фазовые соответствия между токами и напряжениями

В реальных цепях переменного тока с ёмкостью всегда имеется активное сопротивление-сопротивление проводов, активные потери в конденсаторе и т.д.. Поэтому реальную цепь с ёмкостью следует рассматривать состоящей из последовательно соединённых активного сопротивления R и конденсатора C.

Через конденсатор и резистор протекает один и тот же ток I = Iо∙sinωt,

поэтому в качестве основного выберем вектор тока и будем строить вектор напряжения, приложенного к этой цепи.

Напряжение, приложенное к цепи, равно век-ой сумме падений напряжений на конденсаторе и на резисторе: U = Uc + (*векторно)

Напряжение на резисторе будет совпадать по фазе с током:

= ∙sinωt , а напряжение на конденсаторе будет отставать по фазе от тока на угол π / 2:

Uc = Uоc∙sin(ωt — π/2 )

Построим векторы I, и Uc и, воспользовавшись формулой, найдём вектор U.

Из векторной диаграммы следует, что в рассматриваемой цепи ток I опережает по фазе приложенное напряжение U, но не на π/2, как в случае чистой ёмкости, а на угол φ. Этот угол может изменяться от 0 до π/2 и при заданной ёмкости С зависит от значения активного сопротивления: с увеличением R угол φ уменьшается.

Модуль вектора U равен:

U = = I = I∙Z ,где

Z = называется полным сопротивлением цепи.

Сдвиг по фазе между током и напряжением:

tgφ = Uc/ = (1/ωC)/R = 1/(ω∙R∙C)

Читайте также:  Какие петли тока бывают

16. Последовательная цепь переменного тока. Резонанс напряжений. Рассмотрим цепь переменного тока, содержащую индуктивность, ёмкость и резистор, соединённые последовательно.

Рис.4.24. Последовательная цепь переменного тока.

Через все эти элементы протекает один и тот же ток, поэтому в качестве основного выберем вектор тока, и будем строить вектор напряжения, приложенного к этой цепи.

Мы знаем, что напряжение на резисторе совпадает по фазе с током, напряжение на катушке опережает ток по фазе на π⁄2, а напряжение на ёмкости отстаёт от тока по фазе на π⁄2. Запишем эти напряжения в следующем виде:

Построим векторную диаграмму и найдём вектор U.

Рис.4.25. Векторная диаграмма для последовательной цепи переменного тока.

Из этой диаграммы находим модуль вектора приложенного к цепи напряжения и сдвиг фаз φ между током и напряжением:

U = = I·Z, где

Z = , называется полным сопротивлением цепи.

Из векторной диаграммы tgφ = (UL — Uc)/UR = .

Разность фаз между током и напряжением определяется соотношением векторов UL, Uc и UR. При UL — Uc > 0 угол φ положительный и нагрузка имеет индуктивный характер. При ULменьше Uc угол отрицательный и нагрузка имеет ёмкостной характер. См. рис.4.26, а при UL = Uc нагрузка имеет активный характер.

Рис. 4.26. Векторная диаграмма последовательной цепи:

а — нагрузка имеет ёмкостной характер; б — нагрузка имеет активный характер.

Разделив стороны треугольника напряжений на значение тока в цепи, получим треугольник сопротивлений (рис. 4.27), в котором R — активное сопротивление, Z — полное сопротивление, а X = XL — Xc — реактивное сопротивление.

Рис.4.27. Треугольник сопротивлений.

Кроме того, R = Z∙cosφ; X = Z∙sinφ.

Когда напряжения на индуктивности и ёмкости, взаимно сдвинутые по фазе на 180 градусов, равны по величине, то они полностью компенсируют друг друга (рис.4.26, б).

Напряжение, приложенное к цепи, равно напряжению на активном сопротивлении, а ток в цепи совпадает по фазе с напряжением. Этот случай называется резонансом напряжений.

Условие резонанса напряжений:

ωо — угловая частота резонанса. Ток в цепи равен:

I = U / = U/R

Ток в цепи при этом достигает максимального значения, φ = 0, а cosφ = 1. Резонанс напряжений характеризуется обменом энергии между магнитным полем катушки и электрическим полем конденсатора. Увеличение магнитного поля катушки индуктивности происходит за счёт уменьшения энергии электрического поля в конденсаторе и наоборот. При резонансе напряжений напряжения на реактивных сопротивлениях XL и Хс могут заметно превышать приложенное к цепи напряжение.

U / UL = I∙Z / I∙XL = Z / XL или U∙L = U∙(XL / R), т.е. напряжение на индуктивности будет больше приложенного напряжения в XL/R раз. Это означает, что на отдельных участках цепи могут возникать опасные напряжения.

Вернёмся к формуле (4.31).

ωо = = , но ω = 2πf, значит 2πfо = , тогда

fо = , где

fо — частота при резонансе напряжений в герцах;

Источник

Цепь с активным сопротивлением

Напряжение и ток

Цепь с активным сопротивлениемЦепь, изображенная на рис. 5 -17, обладает активным сопротивлением г и индуктивностью L. Примером такой цепи может служить катушка любого электромагнитного прибора или аппарата.

При прохождении переменного тока i в цепи будет индуктироваться э. д. с. самоиндукции eL .

Согласно второму правилу Кирхгофа u + eL = i r

откуда напряжение на зажимах цепи

и = i t — eL = i r + L ( d i /dt)= ua + u

Первая слагающая uа = i r называется активным напряжением, мгновенное значение которого пропорционально току, а вторая uL = — eL = L( d i /dt) реактивным напряжение м, мгновенное значение которого пропорционально скорости изменения тока.

Если ток изменяется по закону синуса

iI м sin ωt

uа = i r = I мr sin ωt = Uа м sin ωt

Рис. 5-17, Цепь с активным сопротивлением и индуктивностью.

Оно изменяется также синусоидально, совпадая по фазе с током.

Графики тока и напряжения в цепи с активным сопротивлением и индуктивностью

Амплитудное значение активного напряжения

а действующее значение

Uа = I r,

uL = L di/dt = ω L I M cos ωt = ULм sin(ωt + π /2)

Оно изменяется синусоидально, опережая по фазе ток на 90°.

Читайте также:  Будет ли ток через резиновые перчатки

Амплитудное значение реактивного напряжения

Графики тока и напряжения в цепи с активным сопротивлением и индуктивностьюа действующее значение

UL = ω L I = xL I

Напряжение на зажимах цепи

и= иa + uL = Uа м sin ωt + ULM sin (ωt + π/2) = UMsin (ωt + φ).

Напряжение на зажимах изменяется синусоидально, опережая ток по фазе на угол φ.

На рис. 5-18 показаны графики; i , иa, uL и и, а на рис. 5-19 — векторная диаграмма цепи. На диаграмме векторы напряжений U, U a и U L образуют прямоугольный треугольник напряжений, из которого непосредственно следует со отношение, связывающее эти величины:

U =√(U 2 a + U 2 L ) .

Аналогичная зависимость имеет место и для амплитудных значений

Угол сдвига фаз между напряжением на зажимах

Рис 5-18. Графики тока и напряжения в цепи с активным сопротивлением и индуктивностью.

Рис 5 -19. Вектор ная диаграмма це пи с активным сопротивлением и индуктивностью.

цепи и током в ней находится из треугольника напряжений по одной из формул

Векторная диаграмма цепи с активным сопротивлением и индуктивностьюЧем больше реактивное напряжение по сравнению с ак тивным, тем на больший угол ток отстает по фазе от напря жения на зажимах цепи.

Сопротивления цепи

Уравнение (5-30) можно переписать в следующем виде

U = √( Ir ) 2 + ( IxL ) 2 = Ir 2 + x 2 L = Iᴢ

откуда ток в цепи

I = U/z = U / √ ( r 2 + x 2 L )

z = √(r 2 + x 2 L ) = √(r 2 + ωL) 2

называется полным сопротивлением цепи.

Сопротивления r, xL и z графически можно изобразить сторонами прямоугольного треугольника — треугольника сопротивлении (рис. 5-20), который можно получить из треугольника напряжений, уменьшив каждую из его сторон в I раз.

Так как треугольники сопротивлений и напряжений подобны, то угол сдвига φ между напряжением и током, равный углу между сторонами треугольника z и r, можно определить через

cos φ = Ua /U

Рис 5-20. Треугольник сопротивлений цепи с активным сопротивлением и индуктивностьюТреугольник сопротивлений цепи с активным сопротивлением и индуктивностью

Мощности

Мгновенное значение мощности р = u i = Uм sin (ωt + φ) I м sin ωt = Uм I м sin (ωt + φ) sin ωt Учитывая, что

sin (со/ + φ) sin ωt = 1/2 cos φ — 1/2 cos (2 ωt + φ)

а также (5-28), можно написать другое выражение ной мощности

Р = U I cos φ — U I cos (2ωt + φ)

Написанное выражение состоит из двух членов: постоянного, независимого от времени UI cos φ и переменного си-

нусоидального U I cos (2ωt + φ). Среднее значение мощности за период, которым обычно пользуются при расчете цепей переменного тока, будет равно постоянному члену UI cos φ , так как среднее значение за период синусоидальной функции равно нулю.

Таким образом, среднее значение мощности цепи равно произведению действующих значений напряжения и тока, умноженному на cos φ , т.е.

P = U I cos φ.

Так как U cos φ = U r/z = I r = Ua,

P = U а I = I2r

Следовательно, средняя мощность цепи равна среднему значению мощности в активном сопротивлении. Поэтому среднюю мощность любой цепи называют; еще и активной мощностью.

Треугольник мощностей

Реактивная мощность цепи :

Q = UL I = I 2 xL = I 2 z sin φ = U I sin φ

т.е. реактивная мощность цепи равна произведению действующих значений напряжения и тока, умножен ному на sin φ .

Рис.5- 21. Т ре угольник мощностей

Полной мощностью цепи называется произведение действующих значений напряжения и тока, т. е.

S = U I

Учитывая, что sin 2 φ + cos 2 φ = 1 можно написать: (U I cos φ ) 2 + (U I sin φ ) 2 = ( U I ) 2

S =(P 2 + Q 2 )

Мощности Р, Q и S графически можно изобразить сторонами прямоугольного треугольника — тре у го ль ника мощностей (рис 5-21), который можно получить из треугольника напряжений, умножая на I все его стороны.

т.е отношение активной мощности к полной называется коэффициентом мощности.

Единица полной мощности с называется вольт-ампер (в •а).

Необходимость применения понятия полной мощности обусловлена тем, что конструкция, габариты, вес и стоимость машины или аппарата определяются их номинальной полной мощностью Sн = Uн Iн а полная мощность S при том или ином режиме работы их определяет степень их использования.

Статья на тему Цепь с активным сопротивлением

Источник