Меню

Гармоника тока или напряжения



ТСКБ-Гранит

Энергосбережение , Энергоаудит , Энергетический паспорт , Программа энергоэффективности , Тепловизионное обследование , Электролаборатория

тел. +7 (495) 589-96-11
+7 (498) 720-93-43

  • Главная
  • Услуги
  • Лицензии
  • О нас
  • Контакты
  • Задать вопрос
  • Вакансии
  • Личный кабинет

Передвижная электротехническая лаборатория

Отопительное оборудование

Электротехническое оборудование

Энергоаудит

  • Заказать энергоаудит
  • Действующее законодательство
  • Стандарты и правила НП Энергоаудит
  • Опросный лист на энергоаудит
  • Реестр энергопаспортов
  • Cтоимость энергоаудита
  • Расчет сметы

Программа энергосбережения

Энергосбережение

  • Освещение
  • Отопление и ГВС
  • Презентация
  • Смешанные нагрузки
  • Тепловизионная съёмка
  • Частотные преобразователи
  • Электродвигатели
  • Цены

Библиотека

  • Водоснабжение
  • Освещение
  • Отопление
  • Тепловые насосы
  • Электроснабжение
  • Энергосбережение

Гармоники тока и напряжения в электросетях

Проблема гармоник

Любые приборы и оборудование с нелинейными характеристиками являются источниками гармоник в своей сети. Гармонические искажения и связанные с этим проблемы в электрических сетях, становятся все более превалирующими в распределительных сетях.

Проблемы создаваемые гармониками:

  • дополнительный нагрев и выход из строя конденсаторов, предохранителей конденсаторов, трансформаторов, электродвигателей, люминесцентных ламп и т.п.;
  • ложные срабатывания автоматических выключателей и предохранителей;
  • наличие третьей гармоники и ее производных 9,12 и т.д. в нейтрали может потребовать увеличения сечения ее проводника;
  • гармонический шум (частые переходы через 0) может служить причиной неправильной работой компонентов систем контроля;
  • повреждение чувствительного электронного оборудования;
  • интерференция систем коммуникации.
  • Попробуем

Попробуем разобраться с проблемами гармоник и поиском решения.

Происхождение гармонических искажений

Постоянно увеличивающиеся требования промышленности и народного хозяйства к стабильности, приспосабливаемости и точности контроля в электрическом оборудовании привело к появлению относительно дешевых силовых диодов, тиристоров, SCR (Silicon Controlled Rectifier) и других силовых полупроводников. Сейчас, широко используемые в выпрямительных цепях UPS-полупроводники, статические преобразователи переменного напряжения в постоянное, устройства плавного пуска, пришедшие на смену устаревшим устройствам, изменили картину формы тока и напряжения в электросетях. Хотя твердотельные реле, такие как тиристоры и принесли существенные изменения в схемотехнику систем контроля, они также создали проблему генерации гармоник тока. Гармоники тока могут сильно влиять на энергоснабжающие сети, а также перегружать косинусные конденсаторы служащие для компенсации реактивной мощности (при увеличении частоты, снижается сопротивление конденсатора и растет ток через него).

Мы сфокусировали наше внимание на таких источниках гармоник, как твердотельные элементы силовой электроники, однако существует много других источников гармонических токов. Эти источники могут быть сгруппированы в трех основных типах:

  • силовое электронное оборудование (частотные привода переменного тока, привода постоянного тока, источники бесперебойного питания UPS, выпрямители (шестифазные, по схеме Ларионова), конвертеры, тиристорные системы, диодные мосты, плавильные печи высокой частоты);
  • сварочное, дуговое оборудование (дуговые плавильные печи, сварочные автоматы, освещение (ДРЛ-ртутные лампы, люминесцентные лампы));
  • насыщаемые устройства (трансформаторы, двигатели, генераторы и т.д). Гармонические амплитуды на этих устройствах являются обычно незначительными по сравнению с элементами силовой электроники и сварочным оборудованием, при условии что отсутствия насыщения.

Форма синусоиды тока

Гармоники – это синусоидальные волны суммирующиеся с фундаментальной (основной) частотой 50 Гц (т.е. 1-я гармоника = 50 Гц, 5-я гармоника = 250 Гц). Любая комплексная форма синусоиды может быть разложена на составляющие частоты, таким образом комплексная синусоида есть сумма определенного числа четных или нечетных гармоник с меньшими или большими величинами.
Гармоники – есть продолжительные возмущения или искажения в электрической сети, имеющие различные источники и проявления такие как импульсы, перекосы фаз, броски и провалы, которые могут быть категоризованы как переходные возмущения.
Переходные возмущения обычно решаются путем установки подавляющих или разделяющих (изолирующих) устройств, таких как импульсных конденсаторов, изолирующих (разделяющих) трансформаторов. Эти устройства помогают устранить переходные возмущения, но они не помогают устранить гармоники низких порядков или устранить проблемы резонанса в связи с присутствием гармоник в сети.

Гармоническое содержание синусоиды

Тиристоры и SCR выпрямители обычно проявляются числом пульсаций постоянного тока которые они производят каждый период. Обычно это 6-и или 12-пульсные выпрямители.
Есть много факторов, которые могут влиять на гармоническое содержание, но типичные гармонические токи, показанные как процент от фундаментального тока 50 Гц, показаны в таблице.
Другие номера гармоник также будут присутствовать, в небольшой степени, но из практических соображений они не приводятся.

Номер гармоники Типичное содержание гармоник тока, %
6-ти ипульсный выпрямитель 12-ти ипульсный выпрямитель
1 100 100
5 20
7 14
11 9 9
12 8 8
17 6
19 5
23 4 4
23 4 4

Рис. 1. Разложение формы кривой тока на гармонические составляющие.

Перегрузка конденсаторов гармониками

Согласно закону Ома сопротивление цепи определяет протекающий по ней ток. Так как сопротивление источника энергии является индуктивным, кроме того, импеданс сети увеличивается с частотой, в то время как сопротивление конденсатора с ростом частоты уменьшается. Это вызывает рост тока через конденсаторы и оборудование содержащее их. При определенных обстоятельствах, гармонические потоки могут превысить ток фундаментальной гармоники 50 Гц протекающей через конденсатор. Эти гармонические проблемы могут также вызвать увеличение напряжения на конденсаторе, которое может превысить максимально допустимое значение и привести к пробою конденсатора.

Читайте также:  Защита преобразователя по току схема

Гармонический резонанс

Резонанс в сети достигается когда сопротивление конденсатора равно сопротивлению источника. Когда мы применяем конденсаторы для компенсации реактивной мощности в распределительных сетях, которые содержат и емкостную и индуктивную (индуктивность линии, силовых трансформаторов) составляющую, всегда существует частота на которой возможно явление параллельного резонанса конденсатора с источником.

Если это происходит, или частота близка к частоте резонанса, то гармоники генерируемые силовыми полупроводниками (большие токи гармоник) начинают циркулировать между генерирующей сетью и конденсаторным оборудованием. Эти токи ограничиваются только сопротивлением линии. Такие токи приводят к возмущениям и искажениям напряжения в сети. Как результат: повышенное напряжение на конденсаторах, и повышенный ток через них, резонанс может произойти на любой частоте, но в основном это 5-я, 7-я, 11-я и 13-я гармоники которые генерируются 6-пульсными системами выпрямления трехфазного напряжения.

Предотвращение резонанса в электросетях

Есть несколько путей, чтобы избежать явлений резонанса в распределительных сетях где установлены конденсаторы. В больших распределительных сетях, есть возможность установки их в части сети, которая не имеет параллельного резонанса с индуктивностью трансформатора. Изменяя выходную мощность конденсаторной установки, мы можем отстроиться от опасной резонансной частоты. Резонансная частота с включением каждого шага конденсаторной установки изменяется. Резонансные явления при использовании конденсаторов в электросетях с нелинейными потребителями.

Рис. 2. Резонансные явления при использовании конденсаторов в электросетях с нелинейными потребителями.

Сдвиг резонансной частоты

Если резонанса нельзя избежать вышеприведенным методом, необходимо альтернативное решение. Последовательно с каждым конденсатором ставится реактор (трехфазный дроссель) таким образом, чтобы система конденсатор-дроссель имела индуктивный характер на критических частотах, и емкостной характер на основной частоте 50 Гц. Для этого система конденсатор-дроссель должна иметь резонансную частоту ниже наименьшего частоты гармоники присутствующей в сети, которая обычно бывает 5-ой (250 Гц). Это означает, что частота настройки системы конденсатор дроссель должен быть между значениями 175…270 Гц. В системе конденсатор дроссель напряжение основной частоты на дросселе повышается, соответственной мы должны использовать конденсаторы на повышенное напряжение.

Снижение гармонических искажений

Гармонические искажения могут подавляться в электрических системах при использовании гармонических фильтров. В классическом виде фильтр представляет собой последовательно соединенные конденсатор и индуктивность и настроенные на определенную гармоническую частоту. В теории сопротивление фильтра равно нулю на частоте резонанса, поэтому гармонический ток абсорбируется фильтром. Этот эффект вместе с сопротивлением линии означает, что таким образом можно хорошо подавлять гармоники в сети.

Типы фильтров гармоник

Эффективность фильтра любой формы зависит от его реактивной мощности, точности настройки и импеданса сети в точке подключения. Гармоники ниже частоты резонанса фильтра будут усиливаться. Схемотехника фильтра важна, чтобы быть уверенным в том что искажения не будут усиливаться до неприемлемых уровней. Когда несколько различных порядков гармоник присутствуют в сети мы можем подавлять одни в то же время усиливая другие. Фильтр 7-ой гармоники создает параллельный резонанс на частоте 5-ой и усиливает ее, поэтому к фильтру 7-ой гармоники необходим фильтр 5-ой гармоники. Поэтому часто необходимо использовать несколько фильтров, настроенных каждый на свою частоту.

Анализ и измерение гармоник в сети

Прежде чем приступать к внедрению конденсаторных установок для компенсации реактивной мощности на предприятии, а также фильтров гармоник необходимо провести всесторонние измерения параметров сети: активную реактивную, полную мощность, величину и уровни гармоник тока и напряжения, провалы и перенапряжения в линии, фликкер. Для этих целей компания Матик электро имеет в своем штате профессиональных инженеров с анализаторами сети и ноутбуками для обработки информации на месте съема. Мы проводим выездные измерения по всей России, предоставляем отчет и рекомендации с последующим внедрением энергосберегающего оборудования (конденсаторных установок для компенсации реактивной мощности) и фильтров гармоник.

Источник

Что такое гармоники в электричестве

Корректная работа электроприборов, будь то бытовая техника или производственное оборудование, зависит от качества электроэнергии, о котором мы привыкли судить по стабильности напряжения и частоты, отсутствию резких скачков напряжения. При этом априори принято считать, что напряжение сети переменного тока изменяется строго по гармоническому закону и представляет собой идеальную синусоиду, однако это далеко не так.

На практике синусоидальные напряжения электрических сетей подвержены искажениям и вместо идеальной синусоиды на экране осциллографа мы видим искаженный, испещренный провалами, зазубринами и всплесками сигнал. Эти искажения следствие влияния гармоник – паразитных колебаний кратных основной частоте сигнала, вызванных включением в сеть нелинейных нагрузок.

Таким образом, реальное напряжение в сети представляет собой сумму основного сигнала и его гармонических составляющих. Для определения величин гармоник используют преобразование Фурье, при помощи которого исходный сигнал разлагается на сумму гармонических сигналов. Уровень гармоник или уровень влияния нелинейных искажений принято характеризовать коэффициентом нелинейных искажений.

Типы и источники появления гармоник

Для определения уровня искажения обычно рассматривают диапазон частот от 100 Гц (частота 2 гармоники) до 2000 Гц. Гармоническое искажение синусоидальных сигналов происходит благодаря двум типам паразитных колебаний:

  • гармониками, как уже упоминалось колебаниями частот кратных основной частоте 5 Гц, которые состоят из четных (100, 200, … Гц) и нечетных гармоник (150, 250 …);
  • интергармоникам, колебаниям, частоты которых не кратны основной частоте.
Читайте также:  Ток нулевой последовательности в сетях с изолированной нейтралью

Порожденные гармониками искажения происходят из-за нелинейных потребителей, вызывающих искажение фазных токов и, как следствие приводящих к нежелательным изменениям в фазных напряжениях. Типичным примером могут служить трехфазные трансформаторы, у которых длины магнитных путей для различных фаз отличаются почти вдвое, что требует различных величин (в полтора раза) токов намагничивания.

Другими источниками гармоник выступают электродвигатели, которые находят широкое применение как в трехфазных сетях питающих производственное оборудование, так и в бытовых однофазных (стиральные машины, кухонная бытовая техника, электроинструмент).

К источникам интергармоник можно отнести многочисленные импульсные блоки питания, оснащенные преобразователями частоты. Их сегодня используют повсеместно:

  • в маломощных зарядных устройствах для гаджетов;
  • в телевизорах и компьютерах;
  • в мощных инверторных сварочных аппаратах.

Они «насыщают» электрическую сеть колебаниями с частотами 20 кГц и даже выше, частоты некоторых современных ИБП могут достигать 150 кГц. Суммарное влияние интергармоник и высших гармонических колебаний вызывает появление помех.

Что такое гармоники в электричестве

Пятая гармоника имеет частоту в пять раз выше частоты основной гармоники. На рисунке отметки с цифрами.

Негативное воздействие и способы защиты

Появление гармоник в питающей сети не столь безобидно и может повлечь за собой вполне ощутимые последствия. Так они ведут к увеличению нагрева:

  • обмоток электродвигателей, что может обернуться пробоем на корпус;
  • обмоток трансформаторов с возможным разрушением изоляции и замыканием проводов;
  • питающих проводов с постепенной утратой изоляцией диэлектрических свойств.

При возникновении гармоники на одной из фаз трехфазной сети, она может вызвать асимметрию, что отразится на корректной работе оборудования. Гармоники приводят к ложным срабатываниям распределительной и защитной аппаратуры (УЗО, автоматы, пускатели), что угрожает технологическим процессам и безопасности персонала. От возникновения высших гармоник страдает качество связи. Основным средством борьбы с гармониками является фильтрация, причем схему фильтра выбирают исходя из конкретных требований. Это могут быть фильтры, пропускающие только основную частоту, а могут быть последовательные LC цепочки, настроенные на определенные гармоники (например, на пятую гармонику) и подавляющие их.

Смотрите также другие статьи :

Для проведения измерений используем современное и высокоточное оборудование от компании METREL. По результатам работ вы получите полный отчет в соответствии с ГОСТ 32144-2013. Благодаря этому вы сможете оптимизировать не только сами электросети, но и работающее от них оборудование.

Гармоники образуют импульсные источники питания бесчисленной электробытовой техники, источники бесперебойного питания, энергосберегающие люминесцентные лампы и т.д. Характерной чертой симметричной трехфазной сети при сбалансированных нагрузках является сдвиг токов на 120°.

Источник

Гармоники в электрических сетях, причины, влияние, методы борьбы

garm 1Наличие гармонических колебаний в электросети – это результат искажения Наличие гармонических колебаний в электросети – это результат искажения частоты тока или напряжения питания, которое может быть вызвано характером нагрузки или самим источником питания. Причины искажения: постоянные и непостоянные нелинейные нагрузки (работа выпрямителей, преобразователей частоты, трансформаторов разовое включение большого потребителя, например сварочного автомата или станка), цикличные нагрузки (крупный потребитель подключается в определенное время суток к сети), пиковые нагрузки при массовом потреблении электроэнергии. Часто причиной возникновения гармонических колебаний по напряжению является изношенность оборудования в энергогенерирующей отрасли и распределительных сетях (в основном, это старые ТП и сети с малым пределом потребления).

  1. Источники гармонических токов:
  2. Последствия гармоник и защита
  3. Негативные последствия гармонических токов:
  4. Экономические последствия гармонических токов:

Источники гармонических токов:

— двигатели с плавным пуском, управляющие устройства (преобразователи частоты), блоки питания;

— печи (дуговые, индукционные), сварочные аппараты;

— энергосберегающие лампы (люминесцентные, дуговые, газоразрядные);

— современная бытовая и офисная техника.

garm 2

Критическим для сети переменного тока считается оборудование, способное вызывать гармоники, соответствующее 20% потребления по мощности. В таких случаях необходимо применять меры по устранению токовых искажений.

Последствия гармоник и защита

По сути, гармоники – это токи-паразиты, которые оборудование не может потребить или потребляет частично с негативным эффектом. В электродвигателях они являются причиной вибраций, в различных сетях приводят к перегреву, а если гармоника ниже чем номинальный синусоидальный ток необходимый для работы электротехники, то в сервоприводах, автоматических выключателях и другом оборудовании они могут вызывать ложные срабатывания.

Большая проблема – преждевременное старение электроизоляции в сетях с обилием гармоник. Гармоники, превышающие частоту номинального тока, вызывают нагрев проводников, при этом в изоляционных материалах начинаются термохимические процессы, меняющие их свойства. Следствием данных процессов являются пробои изоляции.

Важно! При наличии большого количества гармоник возможны однофазные КЗ с пробоем на землю. Также большое количество гармоник приводит к перегрузке нейтрали, что снижает степень защищенности системы.

Для защиты от гармоник в устройстве используются различные схемы. Основные:

Читайте также:  Как определить силу тока в лампе формула

— использование резистора, способного поглотить данный ток и перевести его в тепловую энергию;

— применение конденсаторов (выполняют роль компенсатора реактивной мощности);

— применение фильтров гармоник.

Для контроля сети используются современные анализаторы качества электроэнергии, способные контролировать от 10 параметров тока (уровни искажений в том числе) и выше с возможностью вывода информации на ПК.

Подробнее о гармониках можно указать из следующего видео:

Негативные последствия гармонических токов:

— перегрузка в распределительных сетях;

— перегрузка в нейтралях;

— перегрузка трансформаторов, генераторов, двигателей, что вызывает преждевременное старение оборудования;

— шум, вибрации, как следствие – механические разрушения неправильно работающих электроприводов;

— снижение надежности электронной части, повышение вероятности выхода ее из строя;

— помехи в линиях связи, коммуникационном оборудовании, записывающих устройствах.

Экономические последствия гармонических токов:

— внеплановые ремонт или замена оборудования;

— увеличение расхода электроэнергии за счет потерь;

— останови техпроцесса из-за ложных срабатываний автоматических выключателей;

— убытки, нанесенные в результате КЗ (остановка производства, ремонт, ликвидация пожара).

Источник

Гармоники тока и напряжения в электросетях

Проблема гармоник….

Любые приборы и оборудование с нелинейными характеристиками являются источниками гармоник в своей сети. Если вы сталкиваетесь с таким оборудованием или имеете опыт работы в сетях с гармониками, тогда дроссели с конденсаторами или фильтрокомпенсирующие установки (ФКУ) могут прийти вам на помощь. Гармонические искажения и связанные с этим проблемы в электрических сетях, становятся все более превалирующими в распределительных сетях.

Проблемы создаваемые гармониками.

дополнительный нагрев и выход из строя конденсаторов, предохранителей конденсаторов, трансформаторов, электродвигателей, люминесцентных ламп и т.п.;

ложные срабатывания автоматических выключателей и предохранителей;

наличие третьей гармоники и ее производных 9,12 и т.д. в нейтрали может потребовать увеличения сечения ее проводника;

гармонический шум (частые переходы через 0) может служить причиной неправильной работой компонентов систем контроля;

повреждение чувствительного электронного оборудования;

интерференция систем коммуникации.

Следующие разделы являются описанием гармоник, характеризацией проблемы и поиском решения.

Происхождение гармонических искажений

Постоянно увеличивающиеся требования промышленности и народного хозяйства к стабильности, приспосабливаемости и точности контроля в электрическом оборудовании привело к появлению относительно дешевых силовых диодов, тиристоров, SCR (Silicon Controlled Rectifier) и других силовых полупроводников.

Сейчас, широко используемые в выпрямительных цепях UPS полупроводники, статические преобразователи переменного напряжения в постоянное, устройства плавного пуска пришедшие на смену устаревшим устройствам изменили картину формы тока и напряжения в электросетях. Хотя твердотельные реле, такие как тиристоры привнесли существенные изменения в схемотехнику систем контроля, они, также, создали проблему генерации гармоник тока. Гармоники тока могут сильно влиять на энергоснабжающие сети, а также перегружать косинусные конденсаторы служащие для компенсации реактивной мощности (при увеличении частоты, снижается сопротивление конденсатора и растет ток через него).

Мы сфокусировали наше внимание на таких источниках гармоник, как твердотельные элементы силовой электроники, однако существует много других источников гармонических токов. Эти источники могут быть сгруппированы в трех основных типах:

Силовое электронное оборудование: частотные привода переменного тока, привода постоянного тока, источники бесперебойного питания UPS, выпрямители (шестифазные, по схеме Ларионова), конвертеры, тиристорные системы, диодные мосты, плавильные печи высокой частоты.

Сварочное, дуговое оборудование: дуговые плавильные печи, сварочные автоматы, освещение (ДРЛ-ртутные лампы, люминесцентные лампы)

Насыщаемые устройства: Трансформаторы, двигатели, генераторы, и т.д. Гармонические амплитуды на этих устройствах являются обычно незначительна по сравнению с элементами силовой электроники и сварочным оборудованием, при условии что насыщение не происходит.

Форма синусоиды тока

Гармоники – это синусоидальные волны суммирующиеся с фундаментальной (основной) частотой 50 Гц (т.е 1-я гармоника=50 Гц, 5-я гармоника = 250 Гц). Любая комплексная форма синусоиды может быть разложена на составляющие частоты, таким образом комплексная синусоида есть сумма определенного числа четных или нечетных гармоник с меньшими или большими величинами.

Гармоники – есть продолжительные возмущения или искажения в электрической сети, имеющие различные источники и проявления такие как импульсы, перекосы фаз, броски и провалы, которые могут быть категоризованы как переходные возмущения.

Переходные возмущения обычно решаются путем установки подавляющих или разделяющих (изолирующих) устройств, таких как импульсных конденсаторов, изолирующих (разделяющих) трансформаторов. Эти устройства помогают устранить переходные возмущения, но они не помогают устранить гармоники низких порядков или устранить проблемы резонанса в связи с присутствием гармоник в сети.

Гармоническое содержание синусоиды

Тиристоры и SCR выпрямители обычно проявляются числом пульсаций постоянного тока которые они производят каждый период. Обычно это 6-и или 12-пульсные выпрямители. Есть много факторов, которые могут влиять на гармоническое содержание, но типичные гармонические токи, показанные как процент от фундаментального тока 50 Гц, показаны в таблице. Другие номера гармоник также будут присутствовать, в небольшой степени, но из практических соображений они не приводятся.

Источник