Меню

Формула для силы тока магнитная индукция



Вектор магнитной индукции: формула

Один из параметров магнитного поля – его силовая характеристика. Она обозначает, с какой силой поле влияет на движущиеся в нём заряженные частицы. Это значение из разряда векторных величин, носит название магнитная индукция B→.

Индукция B→ проводника с током и соленоида

Физический смысл магнитной индукции (МИ)

Возможность действовать на предмет магнитным полем (МП) определяет сущность настоящей индукции. Она появляется в момент перемещения в катушке индуктивности магнита постоянной природы. Результатом такого движения является появление тока, с одновременным увеличением магнитного потока. Поскольку обмотка у катушки металлическая, а структура металла – кристаллическая решётка, то можно объяснить физические свойства этого явления.

Электроны, находящиеся в этой решётке, при отсутствии магнитного воздействия находятся в покое. Движения никакого нет. Оно начинается в тот момент, когда электроны попадают под воздействие переменного МП (поле изменяется при перемещении постоянного магнита).

Значение возникающего в катушке тока зависит от диаметра жилы и количества витков, физических характеристик магнита и скорости его движения.

Единица размерности в системе Си рассматриваемой характеристики – тесла. Она обозначается буквами Тл.

Важно! Электроны в решётке, после попадания катушки в МП, разворачиваются под некоторым углом и выстраиваются вдоль силовых линий МП. Количество ориентированных частиц и однородность их размещения зависимы от величины поля.

Вектор – это вектор индукции магнитного поля (градиентный параметр МП).

Вектор магнитной индукции

Направление вектора МИ

Направление магнитных полей может указать стрелка магнита, помещаемая в эти поля. Она будет крутиться до тех пор, пока не остановится. Северный конец стрелки покажет, куда ориентирован B→ орт того или иного поля.

Таким же образом ведёт себя рамка с током, имеющая возможность без помех ориентироваться в МП. Направленность вектора индукции указывает ориентацию нормали к такому замкнутому электромагнитному контуру.

Внимание! Здесь используют правило буравчика (правого винта). Если винт вращать так, как направлен ток в рамке, то поступательное продвижение винта совпадёт с направлением положительной нормали.

В некоторых случаях, чтобы найти направление, применяют правило правой руки.

Определение направления B→

Наглядное отображение линий МИ

Линию, к которой можно провести касательную, совпадающую с B→, называют линией магнитной индукции (МИ). С помощью таких линий можно визуально отобразить магнитное поле. Это сомкнутые контурные чёрточки, которые охватывают токи. Их густота всегда пропорциональна величине B→ в конкретной точке МП.

Информация. Когда имеют дело с МП прямого движения заряженных частиц, то эти линии изображаются в виде концентрических окружностей. Они имеют свой центр, расположенный на прямой линии с током, и находятся в плоскостях, расположенных под прямым углом к нему.

С направлением магнитных линий также можно определиться, пользуясь правилом буравчика.

Графическое обозначение линий МИ

Модуль вектора магнитной индукции

Чтобы определить величину вектора МИ, нужно узнать его модуль. Как определяется модуль вектора магнитной индукции (градиент)? Это можно понять на примере небольшой модели. Если поместить в поле подковообразного магнита горизонтально подвешенный проводник, то МП магнита будет действовать только на участок, расположенный в междуполюсном промежутке. Сила F→, действующая на этот участок, будет направлена под прямым углом к линиям индукции и самому проводнику. Она достигает своего максимума, когда орт МИ располагается перпендикулярно проводнику.

Значение модуля B→ будет равно отношению максимального значения этой силы F к произведению длины отрезка ∆L на силу движения зарядов (I), а именно:

Электрическая модель для определения модуля B→

Основные формулы для вычисления вектора МИ

Вектор магнитной индукции, формула которого B = Fm/I*∆L, можно находить, применяя другие математические вычисления.

Закон Био-Савара-Лапласа

Описывает правила нахождения B→ магнитного поля, которое создаёт постоянный электроток. Это экспериментально установленная закономерность. Био и Савар в 1820 году выявили её на практике, Лапласу удалось сформулировать. Этот закон является основополагающим в магнитостатике. При практическом опыте рассматривался неподвижный провод с малым сечением, через который пропускали электроток. Для изучения выбирался малый участок провода, который характеризовался вектором dl. Его модуль соответствовал длине рассматриваемого участка, а направление совпадало с направлением тока.

Интересно. Лаплас Пьер Симон предложил считать током даже движение одного электрона и на этом утверждении, с помощью данного закона, доказал возможность определения МП продвигающегося точечного заряда.

Читайте также:  Презентация переменный ток эдс

Согласно этому физическому правилу, каждый сегмент dl проводника, по которому протекает электрический ток I, образовывает в пространстве вокруг себя на промежутке r и под углом α магнитное поле dB:

dB = µ0 *I*dl*sin α /4*π*r2,

где:

  • dB – магнитная индукция, Тл;
  • µ0 = 4 π*10-7 – магнитная постоянная, Гн/м;
  • I – сила тока, А;
  • dl – отрезок проводника, м;
  • r – расстояние до точки нахождения магнитной индукции, м;
  • α – угол, образованный r и вектором dl.

Важно! Согласно закону Био-Савара-Лапласа, суммируя векторы магнитных полей отдельных секторов, можно определить МП нужного тока. Оно будет равно векторной сумме.

Закон Био-Савара-Лапласа

Существуют формулы, описывающие этот закон для отдельных случаев МП:

  • поля прямого перемещения электронов;
  • поля кругового движения заряженных частиц.

Формула для МП первого типа имеет вид:

Для кругового движения она выглядит так:

В этих формулах µ – это магнитная проницаемость среды (относительная).

Рассматриваемый закон вытекает из уравнений Максвелла. Максвелл вывел два уравнения для МП, случай, где электрическое поле постоянно, как раз рассматривают Био и Савар.

Принцип суперпозиции

Для МП существует принцип, согласно которому общий вектор магнитной индукции в определённой точке равен векторной сумме всех векторов МИ, созданных разными токами в данной точке:

Принцип суперпозиции

Теорема о циркуляции

Изначально в 1826 году Андре Ампер сформулировал данную теорему. Он разобрал случай с постоянными электрическими полями, его теорема применима к магнитостатике. Теорема гласит: циркуляция МП постоянного электричества по любому контуру соразмерна сумме сил всех токов, которые пронизывают этот контур.

Стоит знать! Тридцать пять лет спустя Д. Максвелл обобщил это утверждение, проведя параллели с гидродинамикой.

Другое название теоремы – закон Ампера, описывающий циркуляцию МП.

Математически теорема записывается следующим образом.

Математическая формула теоремы о циркуляции

где:

  • B→– вектор магнитной индукции;
  • j→ – плотность движения электронов.

Это интегральная форма записи теоремы. Здесь в левой части интегрируют по некоторому замкнутому контуру, в правой части – по натянутой поверхности на полученный контур.

Магнитный поток

Одна из физических величин, характеризующих уровень МП, пересекающего любую поверхность, – магнитный поток. Обозначается буквой φ и имеет единицу измерения вебер (Вб). Эта единица характерна для системы СИ. В СГС магнитный поток измеряется в максвеллах (Мкс):

Магнитный поток φ определяет величину МП, пронизывающую определённую поверхность. Поток φ зависит от угла, под которым поле пронизывает поверхность, и силы поля.

Формула для расчёта имеет вид:

где:

  • В – скалярная величина градиента магнитной индукции;
  • S – площадь пересекаемой поверхности;
  • α – угол, образованный потоком Ф и перпендикуляром к поверхности (нормалью).

Внимание! Поток Ф будет наибольшим, когда B→ совпадёт с нормалью по направлению (угол α = 00). Аналогично Ф = 0, когда он проходит параллельно нормали (угол α = 900).

Магнитный поток

Вектор магнитной индукции, или магнитная индукция, указывает направление поля. Применяя простые методы: правило буравчика, свободно ориентирующуюся магнитную стрелку или контур с током в магнитном поле, можно определить направление действия этого поля.

Видео

Источник

Магнитная индукция

Магнитная индукция — это силовая характеристика магнитного поля в выбранной точке пространства. Она определяет силу, с которой магнитное поле воздействует на заряженную частицу, что движется внутри него. Магнитная индукция считается фундаментальной характеристикой магнитного поля (как напряжённость для электрического поля).

Магнитная индукция описывает магнитную силу (вектор) на тестовом объекте (например, на куске железа) в каждой точке пространства. Простыми словами: если естественный магнит поднести к магнитным веществам (таким, как железо, никель, кобальт и т. д.), это вызовет в них магнитные свойства, которые называются «магнитной индукцией». Магнитная индукция используется для создания искусственных магнитов.

Магнитная индукция также называется плотностью магнитного потока.

Магнитная индукция измеряется:

  • в системе СИ единицей тесла (Тл),
  • в системе СГС единицей гаусс (Гс).

Соотношение между Тл и Гс: 1 Тл = 10 000 Гс.

Магнитная индукция — это векторная величина и обозначается буквой B со стрелочкой:

Магнитная индукция векторная величина буква B со стрелочкой

Индукция (от лат. inducere — вводить, наведение) — производство токов в цепи под действием магнита или другого тока.

Формулы вычисления магнитной индукции

Формула магнитной индукции:

Формулы вычисления магнитной индукции B = Mmax/IS

Формула магнитной индукции: B = Mmax/IS

Читайте также:  Эдс источника напряжения 6 в при внешнем сопротивлении цепи 1 ом ток равен 3 а

Где:

  • B — индукция магнитного поля (в Тл)
  • Mmax — максимальный крутящий момент магнитных сил, приложенных к рамке (в Нм)
  • l — длина проводника (в м)
  • S — площадь рамки (в м²)

Другие формулы, где встречается B

Эти формулы также можно использовать для её расчёта.

Сила Ампера:

Формулы вычисления магнитной индукции Fa=IBL sinα

Сила Ампера: Fa=IBL sinα

Где:

  • Fa — сила Ампера (в Н — ньютон)
  • I — сила тока (в А — ампер)
  • B — индукция магнитного поля (в Тл)
  • L — длина проводника (в м)
  • α — угол между вектором В и одним из направлений (силы тока, скорости или др.; измеряется в рад. или град.)

Сила Лоренца:

Формулы вычисления магнитной индукции Fл = qvB sinα

Сила Лоренца: Fл = qvB sinα

Где:

  • Fл — сила Лоренца (в Н — ньютон)
  • q — заряд частицы (в Кл — кулон)
  • v — скорость (в м/с)
  • B — индукция (в Тл)
  • α — угол между вектором В и одним из направлений (силы тока, скорости, или др.; измеряется в рад. или град.))

Магнитный поток:

Формулы вычисления магнитной индукции Ф = BS cosα

Магнитный поток: Ф = BS cosα

Где:

  • Ф — магнитный поток (в Вб — вебер)
  • B — индукция (в Тл)
  • S — площадь рамки (в м²)
  • α — угол между вектором В и одним из направлений (силы тока, скорости, или др.; измеряется в рад. или град.))

Электромагнитная индукция и магнитная индукция: какая между ними разница?

Электромагнитная индукция — это производство электродвижущей силы, создаваемой в результате относительного движения между магнитным полем и проводником.

Магнитная индукция может производить постоянный магнит, но может и не производить.

Электромагнитная индукция создаёт ток, но таким образом, что этот созданный ток противодействует изменению магнитного поля.

В электромагнитной индукции используются магниты и электрические цепи, а в магнитной индукции используются только магниты и магнитные материалы.

Источник

Базовые формулы

Здесь изложены основные формулы теории магнетизма. Информация для школьников, студентов и всех кого интересует этот вопрос

Правило правой руки или буравчика:

Направление силовых линий магнитного поля и направление создающего его тока связаны между собой известным правилом правой руки или буравчика, которые ввел еще Д.Максвелл и иллюстрируется следующими рисунками:

Правило правой руки Правило правой руки

правило буравчика

Мало кто знает, что буравчик — это инструмент для бурения-сверления отверстий в дереве. Поэтому более понятно можно это правило назвать правилом винта, шурупа или штопора. Однако хвататься за провод как на рисунке иногда опасно для жизни!

Магнитная индукция B :

Магнитная индукция — является основной фундаментальной характеристикой магнитного поля, аналогичной вектору напряженности электрического поля E . Вектор магнитной индукции всегда направлен по касательной к магнитной линии и показывает ее направление и силу. За единицу магнитной индукции в B = 1Тл принимается магнитная индукция однородного поля, в котором на участок проводника длиной в l = 1 м, при силе тока в нем в I = 1 А, действует со стороны поля максимальная сила Ампера — F = 1 H. Направление силы Ампера определяется по правилу левой руки . В системе СГС магнитная индукция поля измеряется в гауссах (Гс), в системе СИ — в теслах (Тл).

Напряженность магнитного поля H :

Еще одной характеристикой магнитного поля является напряженность, которая является аналогом вектора электрического смещения D в электростатике. Определяется по формуле:

Напряженность магнитного поля — величина векторная, является количественной характеристикой магнитного поля и не зависит от магнитных свойств среды. В системе СГС напряженность магнитного поля измеряется в эрстедах (Э), в системе СИ — в амперах на метр (А/м).

Магнитный поток Ф:

Магнитный поток Ф — скалярная физическая величина, характеризующая число линий магнитной индукции, пронизывающих замкнутый контур. Рассмотрим частный случай. В однородном магнитном поле , модуль вектора индукции которого равен ∣ В ∣, помещен плоский замкнутый контур площадью S. Нормаль n к плоскости контура составляет угол α с направлением вектора магнитной индукции B . Магнитным потоком через поверхность называется величина Ф, определяемая соотношением:

В общем случае магнитный поток определяется как интеграл вектора магнитной индукции B через конечную поверхность S.

surface

Стоит отметить, что магнитный поток через любую замкнутую поверхность равен нулю (теорема Гаусса для магнитных полей). Это означает, что силовые линии магнитного поля нигде не обрываются т.е. магнитное поле имеет вихревую природу, а также что невозможно существование магнитных зарядов, которые создавали бы магнитное поле подобно тому, как электрические заряды создают электрическое поле. В СИ единицей магнитного потока является Вебер (Вб), в системе СГС — максвелл (Мкс); 1 Вб = 10 8 Мкс.

Читайте также:  Как определить термический импульс полного квадратичного тока интеграл джоуля

Индуктивность — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность, краем которой является этот контур.

Иначе, индуктивность — коэффициент пропорциональности в формуле самоиндукции .

В системе единиц СИ индуктивность измеряется в генри (Гн). Контур обладает индуктивностью в один генри, если при изменении тока на один ампер в секунду на выводах контура будет возникать ЭДС самоиндукции в один вольт.

Термин «индуктивность» был предложен Оливером Хевисайдом – английским ученым-самоучкой в 1886 году. Говоря просто, индуктивность это свойство проводника с током накапливать энергию в магнитном поле, эквивалентна емкости для электрического поля. Она не зависит от величины тока, а только от формы и размеров проводника с током. Для увеличения индуктивности проводник наматывают в катушки, расчету которых и посвящена программа Coil32

Источник

Магнитное действие тока. Вектор магнитной индукции. Магнитный поток.

Магнитное действие электрического тока

1820 г. X. Эрстед — датский физик, открыл магнитное дей­ствие тока. (Опыт: действие электрического тока на магнитную стрелку). 1820 г. А. Ампер — французский ученый, открыл механическое взаимо­действие токов и установил закон это­го взаимодействия.

Магнитное действие электрического тока

Магнитное взаимодействие, как и электрическое, удобно рассматриватьвводя понятие магнитного поля:

Магнитное поле порождается током, т. е. движущимися электрическими зарядами. противоположно направленные токи отталкиваются, однонаправленные токи притягиваются

Для двух параллельных бесконечно длинных проводников было установлено:

противоположно направленные токи отталкиваются,

однонаправленные токи притягиваются,

причем противоположно направленные токи отталкиваются, однонаправленные токи притягиваются, где k — коэффициент пропорциональности.

Для двух параллельных бесконечно длинных проводников

Отсюда устанавливается единица силы тока ампер в СИ: сила тока равна 1 А , если между отрезками двух бесконечных проводников по 1 м каждый, находящимися в вакууме на расстоянии 1 м друг от друга, действует сила магнитного взаимодействия 2 . 10 7 Н .

сила тока равна 1 А, если между отрезками двух бесконечных проводников по 1 м каждый, находящимися в вакууме на расстоянии 1 м друг от друга, действует сила магнитного взаимодействия 2.10 7Н

В СИ удобно ввести магнитную проницаемость вакуума В СИ удобно ввести магнитную проницаемость вакуума.

В СИ удобно ввести магнитную проницаемость вакуума

Вектор магнитной индукции.

Вектор магнитной индукции (В) – аналог напряженности электрического поля. Основной силовой характеристикой маг­нитного поля является вектор магнитной индукции.

Вектор магнитной индукции

Направление этого вектора для поля прямого проводника с током и соленоида можно определить по пра­вилу буравчика: если направление поступательного движения буравчика (винта с правой нарезкой) совпадает с направлением тока, то направление вращения ручки буравчика покажет направление линий магнитной индукции. Вектор магнитной индукции направлен по касательной к линиям.

Направление этого вектора для поля прямого проводника с током и соленоида можно определить по пра­вилу буравчика

На практике удобно пользоваться следующим правилом: если большой палец правой руки направить по току, то направление обхвата тока остальными пальцами совпадет с направлением линий магнитной индукции.

Модуль вектора магнитной индукции

Магнитная индукция В зависит от I и r , где r — расстояние от проводника с током до исследуемой точки. Если расстояние от проводника много меньше его длины (т. е. рассматривать модель бесконечно длинного проводника), тоМодуль вектора магнитной индукции,

где k — коэффициент пропорциональности. Подставляя эту формулу в уравнение для силы взаимодействия двух проводников с током, получим F=B . I . ℓ.

Отсюда Таким образом, модуль вектора магнитной индукции есть отношение максималь­ной силы, действующей со стороны магнитного поля на участок проводника с током, к произведению силы тока на длину этого участка..

Таким образом, модуль вектора магнитной индукции Вектор магнитной индукцииесть отношение максималь­ной силы, действующей со стороны магнитного поля на участок проводника с током, к произведению силы тока на длину этого участка.

Таким образом, модуль вектора магнитной индукции есть отношение максималь­ной силы, действующей со стороны магнитного поля на участок проводника с током, к произведению силы тока на длину этого участка.

Единица измерения в СИ — тесла (Тл). Единица названа в честь сербского электротехника Н. Тесла.

диница измерения в СИ - тесла (Тл)

Магнитный поток

Магнитный поток (поток линий магнитной индукции) через контур численно равен произведению модуля вектора магнитной индукции на площадь, ограниченную контуром, и на косинус угла между направлением вектора магнитной индукции и нормалью к поверхности, ограниченной этим контуром.

Магнитный поток (поток линий магнитной индукции)

Магнитный поток (поток линий магнитной индукции), где Вcosα представляет собой проекцию вектора В на нормаль к плоскости контура. Магнитный поток показывает, какое количество линий магнитной индукции пронизывает данный контур.

Магнитный поток (поток линий магнитной индукции)

Единица магнитного потока в СИ — вебер (Вб) . В честь немецкого физика В. Вебера.

Единица магнитного потока в СИ - вебер (Вб)

Опыт показывает, что линии магнитной индукции всегда замкнуты, и полный магнитный поток через замкнутую поверхность равен нулю. Этот факт является следствием отсутствия магнитных зарядов в природе.

Источник