Меню

Физика 10 класс электрический ток в вакууме электронно лучевая трубка



§ 3.11. Электрический ток в вакууме

Когда говорят об электрическом токе в вакууме, то имеют в виду такую степень разрежения газа, при которой можно пренебречь соударениями между его молекулами. В этом случае средняя длина свободного пробега молекул больше размеров сосуда.

Такой разреженный газ является изолятором, так как в нем нет (или почти нет) свободных заряженных частиц — носителей электрического тока.

На рисунке 3.27 изображена схема цепи, содержащей сосуд, из которого откачан воздух. В этот сосуд впаяны два электрода, один из которых (анод (А) соединен с положительным полюсом источника тока (батарея G1), другой (катод К) — с отрицательным. Несмотря на достаточно большое напряжение, которое обеспечивает источник тока (около 100 В), включенный в цепь чувствительный гальванометр не фиксирует тока; это указывает на отсутствие в вакууме свободных носителей заряда.

Электронная эмиссия

Электрический ток в вакууме будет существовать, если ввести в сосуд свободные носители заряда. Как это осуществить?

Наиболее просто проводимость межэлектродного промежутка в вакууме можно обеспечить с помощью электронной эмиссии с поверхности электродов. Электронная эмиссия возникает в случаях, когда часть электронов металла (электрода) приобретает в результате внешних воздействий энергию, достаточную для преодоления их связи с металлом (для совершения работы выхода Авых).

В § 3.8 мы уже познакомились с двумя видами электронной эмиссии: ионно-электронной эмиссией (при бомбардировке катода положительными ионами) и термоэлектронной эмиссией (испускание электронов с поверхности достаточно нагретого металла). Электроны испускаются также при воздействии на поверхность металла электромагнитным излучением. Такое явление называется фотоэлектронной эмиссией. И наконец, с поверхности металла испускаются электроны при бомбардировке ее быстрыми электронами. Это вторичная электронная эмиссия.

Все виды эмиссии широко используются для получения электрического тока в вакууме. Однако в большинстве современных электронных вакуумных приборов используется термоэлектронная эмиссия.

Получение электрического тока в вакууме

Посмотрим, как, используя термоэлектронную эмиссию, можно получить ток в вакууме. Для этой цели внесем изменения в цепь, схема которой изображена на рисунке 3.27. В качестве катода в вакуумном баллоне теперь впаяна вольфрамовая нить, концы которой выведены наружу и присоединены к источнику тока — батарее накала G2 (рис. 3.28). Замкнем ключ S2 и, когда вольфрамовая нить накалится, замкнем и ключ S1. Стрелка прибора при этом отклонится, в цепи появился ток. Значит, накаленная нить обеспечивает появление необходимых для существования тока носителей заряда — заряженных частиц.

С помощью опыта нетрудно убедиться, что эти частицы заряжены отрицательно.

Изменим полярность анодной батареи G1 — нить станет анодом, а холодный электрод — катодом (рис. 3.29). И хотя нить по-прежнему накалена и по-прежнему посылает в вакуум заряженные частицы, тока в цепи нет.

Из этого опыта следует, что частицы, испускаемые накаленной нитью, заряжены отрицательно — отталкиваются от холодного катода и притягиваются к аноду. Измерением заряда и массы было доказано, что катод испускает электроны.

Итак, электрический ток в вакууме представляет собой направленный поток электронов.

В отличие от тока в металлическом проводнике (где проводимость тоже электронная), в вакууме электроны движутся между электродами, ни с чем не сталкиваясь. Поэтому под действием электрического поля электроны непрерывно ускоряются. Скорость электронов у анода даже в маломощных электровакуумных приборах достигает нескольких тысяч километров в секунду, что в десятки миллиардов раз превышает среднюю скорость направленного движения электронов в металле.

Источник

Физика. 10 класс

Конспект урока

Физика, 10 класс

Урок 35. Электрический ток в вакууме и газах

Перечень вопросов, рассматриваемых на уроке:

1) особенности протекания электрического тока в вакууме и газах;

2) газовый разряд;

3) рекомбинация, ионизация;

4) самостоятельный разряд и несамостоятельный разряды;

6) зависимость силы тока от напряжения;

7) зависимость силы тока от внешних условий.

Глоссарий по теме:

Термоэлектронная эмиссия – явление испускания электронов нагретыми металлами.

Катодные лучи – это испускаемые катодом потоки электронов, движущиеся в вакууме.

Электрический ток газах или газовый разряд – это процесс прохождения электрического тока через газ.

Ионизация – это распад атомов и молекул на ионы.

Рекомбинация – это образование из ионов нейтральных атомов и молекул.

Самостоятельный разряд – это разряд, происходящий в газе без внешнего ионизатора.

Несамостоятельный разряд – это разряд, происходящий в газе только под влиянием внешнего ионизатора.

Плазма – это частично или полностью ионизированный газ.

Основная и дополнительная литература по теме урока:

Г.Я. Мякишев., Б.Б.Буховцев., Н.Н.Сотский. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 372-375, 380-385.

Рымкевич А.П. Сборник задач по физике. 10-11 класс М.: Дрофа,2009.

Фортов В. Е., Храпак А. Г., Якубов И. Т. Физика неидеальной плазмы. Издательство: Физматлит, 2010 г.

Теоретический материал для самостоятельного изучения

Вакуум является идеальным диэлектриком. Чтобы в вакууме мог проходить электрический ток, в нем необходимо предварительно «создать» некоторую концентрацию свободных носителей заряда, это осуществляется с помощью явления термоэлектронной эмиссии. Термоэлектронная эмиссия – явление испускания веществом электронов при нагревании. Вакуумные приборы, работа которых основана на явлении термоэлектронной эмиссии, называются электронными лампами (вакуумный диод, электронно-лучевая трубка).

Читайте также:  Измерение количества потребляемого тока

Электрический ток в газах, другими словами газовый разряд, — это совокупность электрических, оптических и тепловых явлений, возникающих при протекании электрического тока через вещество, находящееся в газообразном состоянии. Когда газ находится в своем обычном состоянии, он является диэлектриком. Чтобы протекание тока стало возможным, необходимо создать подходящие для этого условия, т. е. ионизировать газ. Ионизация происходит в результате воздействия:

1) космических лучей;

2) рентгеновского излучения;

3) ультрафиолетового излучения;

4) высокой температуры;

5) электрического поля.

Все газовые разряды делятся на 2 вида:

К самостоятельным относятся: искровой, дуговой, тлеющий и коронный разряды.

Электронно-лучевые трубки находят широкое применение в осциллографах, дисплеях компьютеров, радиолокаторах, медицинской аппаратуре.

Плазма – это частично или полностью ионизированный газ. В целом плазма является электрически нейтральной системой.

Частицы плазмы легко перемещаются под воздействием электрических и магнитных полей. Поэтому любое нарушение электрической нейтральности отдельных областей плазмы быстро ликвидируется, и нейтральность плазмы восстанавливается. Проводимость плазмы увеличивается по мере роста степени её ионизации.

При высоких температурах проводимость полностью ионизированной плазмы приближается к сверхпроводимости.

Примеры и разбор решения заданий:

  1. Выберите правильный ответ.

Электронная пушка создаёт пучок электронов в стеклянной вакуумной камере. Все электроны, покинувшие катод пушки, ударяются в экран электронно-лучевой трубки. Если увеличить ускоряющее напряжение в пушке в 2 раза, то сила тока, идущего в вакууме через трубку.

  1. 1 не изменится;
  2. возрастёт примерно в раза;
  3. возрастёт примерно в 2 раза;
  4. возрастёт примерно в 4 раза.

Правильный вариант: 1) не изменится;

Подсказка: вспомните определение тока насыщения в вакууме.

  1. Решите задачу: «Скорость электрона при выходе с поверхности катода, покрытого оксидом бария, уменьшилась в 2 раза. Работа выхода электрона из оксида бария равна 1,6·10 -19 Дж. Найдите скорость электрона до выхода из катода и после выхода из катода».

Источник

Электрический ток в вакууме. Электронно-лучевая трубка. Физика. 10 класс.

Электрический ток в вакууме. Электронно-лучевая трубка. Физика. 10 класс.

  • Оглавление
  • Занятия
  • Обсуждение
  • О курсе

Вопросы

Задай свой вопрос по этому материалу!

Поделись с друзьями

Комментарии преподавателя

Электрический ток в вакууме

Термоэлектронная эмиссия

Перед тем, как говорить, по какому механизму распространяется электрический ток в вакууме, необходимо понять, что же это за среда.

Определение. Вакуум – состояние газа, при котором свободный пробег частицы больше размера сосуда. То есть такое состояние, при котором молекула или атом газа пролетает от одной стенки сосуда к другой, не сталкиваясь с другими молекулами или атомами. Существует также понятие глубины вакуума, которое характеризует то малое количество частиц, которое всегда остается в вакууме.

Для существования электрического тока необходимо наличие свободных носителей заряда. Откуда они берутся в области пространства с очень малым содержанием вещества? Для ответа на этот вопрос необходимо рассмотреть опыт, проведенный американским физиком Томасом Эдисоном (рис. 1). В ходе эксперимента две пластины помещались в вакуумную камеру и замыкались за ее пределами в цепь с включенным электрометром. После того как одну пластину нагревали, электрометр показывал отклонение от нуля (рис. 2).

Рис. 1. Томас Эдисон

Результат опыта объясняется следующим образом: в результате нагревания металл из своей атомной структуры начинает испускать электроны, по аналогии испускания молекул воды при испарении. Разогретый металл окружает электронное озеро. Такое явление называется термоэлектронной эмиссией.

Рис. 2. Схема опыта Эдисона

Свойство электронных пучков

В технике очень важное значение имеет использование так называемых электронных пучков.

Определение. Электронный пучок – поток электронов, длина которого много больше его ширины. Получить его довольно просто. Достаточно взять вакуумную трубку, по которой проходит ток, и проделать в аноде, к которому и идут разогнанные электроны, отверстие (так называемая электронная пушка) (рис. 3).

Рис. 3. Электронная пушка

Электронные пучки обладают рядом ключевых свойств:

В результате наличия большой кинетической энергии они имеют тепловое воздействие на материал, в который врезаются. Данное свойство применяется в электронной сварке. Электронная сварка необходима в тех случаях, когда важно сохранение чистоты материалов, например, при сваривании полупроводников.

— При столкновении с металлами электронные пучки, замедляясь, излучают рентгеновское излучение, применяемое в медицине и технике (рис. 4).

Рис. 4. Снимок, сделанный при помощи рентгеновского излучения

— При попадании электронного пучка на некоторые вещества, называющиеся люминофорами, происходит свечение, что позволяет создавать экраны, помогающие следить за перемещением пучка, конечно же, невидимого невооруженным глазом.

— Возможность управлять движением пучков с помощью электрических и магнитных полей.

Следует отметить, что температура, при которой можно добиться термоэлектронной эмиссии, не может превышать той температуры, при которой идет разрушение структуры металла.

Читайте также:  Как изменяется сила тока в реостате

На первых порах Эдисон использовал следующую конструкцию для получения тока в вакууме. В вакуумную трубку с одной стороны помещался проводник, включенный в цепь, а с другой стороны – положительно заряженный электрод (см. рис. 5):

В результате прохождения тока по проводнику он начинает нагреваться, эмиссируя электроны, которые притягиваются к положительному электроду. В конце концов, возникает направленное движение электронов, что, собственно, и является электрическим током. Однако количество таким образом испускаемых электронов слишком мало, что дает слишком малый ток для какого-либо использования. С этой проблемой можно справиться добавлением еще одного электрода. Такой электрод отрицательного потенциала называется электродом косвенного накаливания. С его использованием количество движущихся электронов в разы увеличивается (рис. 6).

Рис. 6. Использование электрода косвенного накаливания

Стоит отметить, что проводимость тока в вакууме такая же, как и у металлов – электронная. Хотя механизм появления этих свободных электронов совсем иной.

Применение тока в вакууме

На основе явления термоэлектронной эмиссии был создан прибор под названием вакуумный диод (рис. 7).

Рис. 7. Обозначение вакуумного диода на электрической схеме

Вакуумный диод

Рассмотрим подробнее вакуумный диод. Существует две разновидности диодов: диод с нитью накаливания и анодом и диод с нитью накаливания, анодом и катодом. Первый называется диодом прямого накала, второй – косвенного накала. В технике применяется как первый, так и второй тип, однако диод прямого накала имеет такой недостаток, что при нагревании сопротивлении нити меняется, что влечет за собой изменение тока через диод. А так как для некоторых операций с использованием диодов необходим совершенно неизменный ток, то целесообразнее использовать второй тип диодов.

В обоих случаях температура нити накаливания для эффективной эмиссии должна равняться .

Диоды используются для выпрямления переменных токов. Если диод используется для преобразования токов промышленного значения, то он называется кенотроном.

Электрод, расположенный вблизи испускающего электроны элемента, называется катодом (), другой – анодом (). При правильном подключении при увеличении напряжения растет сила тока. При обратном же подключении ток идти не будет вообще (рис. 8). Этим вакуумные диоды выгодно отличаются от полупроводниковых, в которых при обратном включении ток хоть и минимальный, но есть. Благодаря этому свойству вакуумные диоды используются для выпрямления переменных токов.

Рис. 8. Вольтамперная характеристика вакуумного диода

Другим прибором, созданным на основе процессов протекания тока в вакууме, является электрический триод (рис. 9). Его конструкция отличается от диодной наличием третьего электрода, называемого сеткой. На принципах тока в вакууме основан также такой прибор, как электронно-лучевая трубка, составляющий основную часть таких приборов, как осциллограф и ламповые телевизоры.

Рис. 9. Схема вакуумного триода

Электронно-лучевая трубка

Как уже было сказано выше, на основе свойств распространения тока в вакууме было сконструировано такое важное устройство, как электронно-лучевая трубка. В основе своей работы она использует свойства электронных пучков. Рассмотрим строение этого прибора. Электронно-лучевая трубка состоит из вакуумной колбы, имеющей расширение, электронной пушки, двух катодов и двух взаимно перпендикулярных пар электродов (рис. 10).

Рис. 10. Строение электронно-лучевой трубки

Принцип работы следующий: вылетевшие вследствие термоэлектронной эмиссии из пушки электроны разгоняются благодаря положительному потенциалу на анодах. Затем, подавая желаемое напряжение на пары управляющих электродов, мы можем отклонять электронный пучок, как нам хочется, по горизонтали и по вертикали. После чего направленный пучок падает на люминофорный экран, что позволяет нам видеть на нем изображение траектории пучка.

Электронно-лучевая трубка используется в приборе под названием осциллограф (рис. 11), предназначенном для исследования электрических сигналов, и в кинескопических телевизорах за тем лишь исключением, что там электронные пучки управляются магнитными полями.

Рис. 11. Осциллограф

К занятию прикреплен файл «Это интересно!». Вы можете скачать файл в любое удобное для вас время.

Источник

Презентация по физике на тему «Электрический ток в вакууме» (10 класс)

Электрический ток в вакууме Урок изучения нового материала 10 класс

Описание презентации по отдельным слайдам:

Электрический ток в вакууме Урок изучения нового материала 10 класс

Термоэлектронная эмиссия Термоэлектронная эмиссия - это испускание электронов

Что такое вакуум? Вакуум — это такая степень разрежения газа, при которой соударений молекул практически нет (длина свободного пробега частиц от столкновения до столкновения больше размеров сосуда) (p 3 слайд

Термоэлектронная эмиссия Термоэлектронная эмиссия — это испускание электронов твердыми или жидкими телами при их нагревании до температур, соответствующих видимому свечению раскаленного металла. Условие вылета электронов: Ек≥Авых Ек

f (свойства вещества) Нагретый металлический электрод непрерывно испускает электроны, образуя вокруг себя электронное облако. В равновесном состоянии число электронов, покинувших электрод, равно числу электронов, возвратившихся на него (т.к. электрод при потере электронов заряжается положительно). Чем выше температура металла, тем выше плотность электронного облака.

Фотоэлектронная эмиссия Фотоэлектронная эмиссия — это испускание электронов твердыми или жидкими телами при облучении Условие вылета электронов: Ек≥Авых Ек

Читайте также:  Источник тока в электрической цепи строение силы

f (свойства вещества) Облученный металлический электрод непрерывно испускает электроны, образуя вокруг себя электронное облако. Чем выше энергия облучения, тем выше плотность электронного облака. Катод выполняется из щелочных и щелочно- земельных металлов с малой работой выхода

Вакуумный диод Электрический ток в вакууме возможен в электронных лампах. Электронная лампа — это устройство, в котором применяется явление термоэлектронной эмиссии. А К Н Вакуумный диод — это двухэлектродная электронная лампа. Внутри стеклянного баллона создается очень низкое давление. В баллон впаяны два электрода — анод и катод. Если сам катод подогревается – это катод прямого накала Если катод подогревает проводник – это катод косвенного накала А – анод К – катод Н – нить накала

Вакуумный диод Поверхность нагретого катода испускает электроны, поэтому проводимость в вакууме электронная Если анод соединен с + источника тока, а катод с -, то в цепи протекает постоянный термоэлектронный ток. А К Н А – анод К – катод Н – нить накала Т.е. ток в аноде возможен, если потенциал анода выше потенциала катода. В этом случае электроны из электронного облака притягиваются к аноду, создавая электрический ток в вакууме. Вакуумный диод обладает односторонней проводимостью.

нить накала — — — — — — — катод анод + — Е 1. Прямое включение Электроны, вылетевшие из разогретого катода, устремляются к аноду, замыкая цепь Вакуумный диод хорошо проводит ток в прямом направлении При увеличении напряжения на аноде происходит насыщение – все электроны достигают анода U (В) I (A) Вакуумный диод

нить накала — — — — — — — катод анод — Е 2. Обратное включение Электроны, вылетевшие из разогретого катода, тормозятся электрическим полем и возвращаются к катоду Вакуумный диод не проводит ток в обратном направлении + Вакуумный диод I (мA) U (В)

Вольт — амперная характеристика вакуумного диода При малых напряжениях на аноде не все электроны, испускаемые катодом, достигают анода, и ток небольшой. При больших напряжениях ток достигает насыщения, т.е. максимального значения. Вакуумный диод используется для выпрямления переменного тока (кенотрон) ток до выпрямления ток после выпрямления

Электронные пучки Электронные пучки — это поток быстро летящих электронов в электронных лампах и газоразрядных устройствах.

Свойства электронных пучков отклоняются в электрических полях отклоняются в магнитных полях под действием силы Лоренца при торможении пучка, попадающего на вещество возникает рентгеновское излучение вызывают свечение ( люминесценцию ) некоторых твердых и жидких тел ( люминофоров ) нагревают вещество, попадая на него.

Электронно- лучевая трубка Электронно – лучевая трубка – электровакуумный прибор, в котором используется электронный пучок малого сечения, который может отклоняться в любом направлении, и, попадая на люминесцентный экран, создавать изображение.

Устройство электронно – лучевой трубки 1 – катод 2 – анод (1-30 кВ) 3 – горизонтальные пластины 4 – вертикальные пластины 5 – электронный луч 6 – экран

Работа электронно — лучевой трубки В электронной пушке электроны, испускаемые подогреваемым катодом, проходят через управляющий электрод-сетку и ускоряются анодами. Электронная пушка фокусирует электронный пучок в точку и изменяет яркость свечения на экране. Отклоняющие горизонтальные и вертикальные пластины позволяют перемещать электронный пучок на экране в любую точку экрана. Экран трубки покрыт люминофором, который начинает светиться при бомбардировке его электронами.

Электронно – лучевая трубка С электростатическим управлением электронного пучка (отклонение электрического пучка только электрическим полем) С электромагнитным управлением (есть магнитные отклоняющие катушки ) Существуют два вида электронно-лучевых трубок Кинескоп – электронно – вакуумная трубка, предназначенная для создания телевизионного изображения

Применение электронно – лучевой трубки кинескопы в телеаппаратуре дисплеи ЭВМ электронные осциллографы в измерительной технике Электронные осциллографы широко применяются для исследования электрических сигналов, измерений, настройки радиотехнических устройств

  • Все материалы
  • Статьи
  • Научные работы
  • Видеоуроки
  • Презентации
  • Конспекты
  • Тесты
  • Рабочие программы
  • Другие методич. материалы

Номер материала: ДБ-080218

  • Свидетельство каждому участнику
  • Скидка на курсы для всех участников

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник