Меню

Энергия магнитного поля проводника с током объемная плотность энергии магнитного поля



Плотность энергии магнитного поля

Одной из характеристик магнитного излучения, показывающей распределение его энергии в объеме пространства, является плотность энергии магнитного поля. При изучении электромагнетизма необходимо усвоить, что это за величина, что она характеризует и как измеряется.

Катушка или дроссель генерирует вокруг себя магнитное поле

Объемная плотность магнитной энергии

Формула нахождения объемной плотности энергии имеет такой вид:

Под ω здесь подразумевается собственно искомая плотность, под W – энергия имеющегося поля, под V – объем пространства, в котором поле проявляет активность. Если выразить значение W через магнитную проницаемость µ и индукцию В и подставить в формулу, она приобретет следующий вид:

ω=В2/2* µ0* µ (здесь µ0 – это магнитная постоянная).

Преобразование с использованием вектора индукции применяется, чтобы исключить привязку активного магнитного поля к особенностям дросселя. Формула для вычисления индукционной характеристики выглядит так:

I здесь – токовая сила в катушечной цепочке, через n выражается такая величина, как плотность обмотки. Она равна частному количества витков в соленоидной обмотке и длины фрагмента, на котором размещены витки. Тогда формула для W:

Подставив выражение в основную формулу плотности, можно привести его к ранее обозначенному виду.

Наличие магнитного поля вокруг проводника или катушки с током

При подключении соленоида (катушки) в электрическую цепь вокруг нее формируется поле. Характеристики поля зависят от ряда параметров: от средовых особенностей окружения, токовой силы (она измеряется в амперах) и материала, из которого изготовлен проводник или обмотка катушки. В полевом пространстве могут образовываться электромагнитные волны. Так как на полевой энергетический потенциал, прежде всего, оказывает влияние сила текущего в системе электротока, можно сделать вывод, что работа тока по генерированию магнитного пространства будет эквивалентной энергии последнего. Если в систему подключена катушка с магнитным сердечником, то на энергетическую плотность будет влиять полевая энергия в вакууме и в материале, из которого сделан сердечниковый элемент.

Подключение индуктивной катушки к источнику тока

Для изучения динамики явления можно рассмотреть электроцепь, включающую в себя дроссель, лампу, замыкающий ключ и источник постоянного электротока. Когда ключик замыкается, токовый путь будет идти от «положительного» зажима источника через лампу и индуктивную катушку. Поначалу лампа накаливания загорится ярче, что связано со значительной величиной сопротивления дроссели. По мере того, как сопротивление будет падать, а проходящий через обмотку ток увеличиваться, интенсивность горения лампочки будет понижаться. Связано это с тем, что первое время подаваемый на дроссель ток имеет значение, пропорциональное току высокой частоты.

Чтобы практически построить цепь, подходящую для расчета, нужно, чтобы энергетический ресурс источника питания затрачивался на генерирование магнитного поля. Поэтому параметрами внутреннего сопротивления дроссели и питательного источника допустимо пренебрегать.

Важно! Согласно второму закону Кирхгофа, сумма подсоединенных к электрической цепи напряжений равняется сумме снижений напряжения для всех компонентов цепочки.

Второй закон Кирхгофа

Измерение плотности энергии магнитных полей

Данная величина показывает энергию, содержащуюся в единице объема окружающей среды, подпадающей под влияние поля. Обозначается она греческой буквой ω. Для вычисления применяется формула:

ω=W/V, в данном случае W – это полевая энергия в объеме пространства V.

Единица измерения плотности поля в международной системе СИ тоже выглядит как частное единиц, в которых измеряются эти величины: джоулей и кубических метров (Дж/м3). Показатель для аккумуляторов (ионных, свинцово-кислотных и других) указывают в прилагающейся документации.

Для соленоида, подсоединенного в электрическую цепь, оба составляющих этого частного можно выразить через следующие единицы:

  1. Значение энергетического ресурса поля будет равным уполовиненному произведению индуктивности соленоида на квадрат токовой силы в его обмотке:
  1. В качестве «пространства» рассматривается сама катушка, тогда V=S*l, где S – площадь сечения катушечного элемента в поперечнике, а l – его длина.

Тогда конечная формула принимает следующий облик:

Формула индуктивного сопротивления катушки

Вычислить величину сопротивления дросселя XL можно, воспользовавшись следующей формулой:

Здесь буква L обозначает параметр индуктивности дроссели, а f – токовую частоту. Исходя из этого выражения, поначалу попадающий на обмотку ток будет пропорциональным электротоку большой чистоты. В это время дроссель проявляет поведение, аналогичное ситуации цепного разрыва, с сильным повышением индуктивного сопротивления. С течением времени последнее падает до нулевого значения.

Читайте также:  Как мерить ток утечки аккумулятора

Вмонтированная в лампу нитка отличается высоким показателем сопротивления, тогда как активный показатель обмотки, напротив, стремится к нулю. Из-за этого возникает ситуация, когда почти весь цепной ток проходит через дроссель. Когда цепь размыкают при помощи ключа, лампа не затухает постепенно. Напротив, она сначала резко начинает гореть интенсивно, потом – медленно угасать. Чтобы лампа горела, требуется энергетический ресурс. Он поступает из магнитного поля, генерируемого индуктивной катушкой. Таким образом, дроссель проявляет себя источником самоиндукции.

В рассмотренном примере катушка с обмотками, подключенная в цепь, выступает как источник магнитного поля. Поскольку в такой ситуации это поле не является однородным, для выполнения расчетов необходимо использование показателя, характеризующего концентрацию и распределение энергии в поле. Можно заключить, что смысл введения параметра плотности поля состоит именно в этом.

Видео

Источник

Энергия магнитного поля. Объемная плотность энергии магнитного поля.

date image2015-10-16
views image13029

facebook icon vkontakte icon twitter icon odnoklasniki icon

Проводник, по которому протекает электрический ток, всегда окружен магнитным полем, причем магнитное поле появляется и исчезает вместе с появлением и исчезнове­нием тока. Магнитное поле, подобно электрическому, является носителем энергии. Естественно предположить, что энергия магнитного поля равна работе, которая затра­чивается током на создание этого поля.

Рассмотрим контур индуктивностью L, по которому течет ток I. С данным кон­туром сцеплен магнитный поток Ф=LI, причем при изменении тока на dI магнитный поток изменяется на dФ=LdI. Однако для изменения магнитного потока на величину dФ необходимо совершить работу dА=I=LIdI. Тогда работа по созданию магнитного потока Ф будет равна

Следовательно, энергия магнитного поля, связанного с контуром, W = LI 2 /2 (130.1)

Исследование свойств переменных магнитных полей, в частности распространения электромагнитных волн, явилось доказательством того, что энергия магнитного поля локализована в пространстве. Это соответствует представлениям теории поля.

Энергию магнитного поля можно представить как функцию величин, характеризу­ющих это поле в окружающем пространстве. Для этого рассмотрим частный слу­чай — однородное магнитное поле внутри длинного соленоида. Подставив в формулу (130.1) выражение , получим

Так как I=Bl/(mmN) и В=mmH, то

, где Sl = V — объем соленоида. (130.2)

Магнитное поле соленоида однородно и сосредоточено внутри него, поэтому энергия (см. (130.2)) заключена в объеме соленоида и распределена в нем с постоянной объемной плотностью

(130.3)

Выражение (130.3) для объемной плотности энергии магнитного поля имеет вид, аналогичный объемной плотности энергии электростатического поля, с той разницей, что электрические величины заменены в нем магнитными. Формула (130.3) выведена для однородного поля, но она справедлива и для неоднород­ных полей. Выражение (130.3) справедливо только для сред, для которых зависимость В от Н линейная, т.е. оно относится только к пара- и диамагнетикам.

Источник

Энергия проводника и системы проводников с током. Объемная плотность энергии магнитного поля.

При изменении тока в замкнутой цепи в ней возникает самоиндукции.

Работа по перемещению заряда против этой э.д.с. идет на изменение энергии тока.
.
Пусть ток возрастает от 0 до , тогда в случае отсутствия ферромагнетика и

Эта энергия W проводника с током индуктивностью L.

Работа источника сторонней э.д.с. идет и на изменение внутренней энергии проводника, т.е. на выделение джоулева тепла
, и на изменение энергии тока в нем (в таком виде формула справедлива и в присутствии ферромагнетика):

Обычно проводники с токами взаимодействуют друг с другом.

Энергия системы двух замкнутых проводников с токами и имеет вид . Здесь величина ( ), которая всегда положительна, называется собственной энергией проводников с токами I1и I2 , а величина L12I1I2 — взаимной энергией токов, т.е. энергией их взаимодействия.

Читайте также:  Ротор электродвигателя постоянного тока это

Магнитное поле соленоида однородно и сосредоточено внутри него, поэтому энергия (см. (130.2)) заключена в объеме соленоида и распределена в нем с постоянной объемной плотностью

(130.3)

Выражение (130.3) для объемной плотности энергии магнитного поля имеет вид, аналогичный объемной плотности энергии электростатического поля, с той разницей, что электрические величины заменены в нем магнитными. Формула (130.3) выведена для однородного поля, но она справедлива и для неоднород­ных полей. Выражение (130.3) справедливо только для сред, для которых зависимость В от Н линейная, т.е. оно относится только к пара- и диамагнетикам.

Магнитное поле в веществе, микро и макро токи. Магнитные моменты атомов. Типы магнетиков. Намагниченность.

Магнитное поле в веществе может создаваться двумя способами:

1. макроскопическими токами проводимости (ток по проводникам)

2. микротоками обусловленными движением электронов в атомах и молекулах.

Все вещества обладают магнитными свойствами. Вещество или тело рассматриваются с точки зрения магнитных свойств – магнетик.

Намагничивание – явление возникновения объектного макроскопического магнитного момента. Намагничивание характеризуется намагниченностью. Намагниченность ( ) – есть магнитный момент единицы объема.

Pм=IS
В вакууме молекулярные токи отсутствуют и jвакуум=0

Вектор магнитной индукции создает макротоки и микротоки.

Существует три вида микроскопических магнитных моментов.

1. Электронный орбитальный магнитный момент – из-за вращения электронов вокруг ядер.

2. Электронный спиновой магнитный момент.

, где Ls – спиновой механический момент.

3. Ядерный магнитный момент.

Электронный орбитальный магнитный момент зависит от состояния электронов, и он либо равен 0 или порядка момента Бора:

Магнитные моменты атомов

В соответствии с современной теорией магнетизма все вещества обладают магнитными свойствами, которые обнаруживаются при помещении этих тел в магнитное поле. Так как все вещества состоят из атомов, то их магнитные свойства должны проявляться уже на атомарном уровне.

Намагниченность вещества

Внешнее магнитное поле, характеризуемое напряженностью , действуя на магнитные атомные системы, индуцирует (наводит) в них магнитные моменты и ориентирует существующие магнитные моменты в направлении поля. В результате такого воздействия возникает собственное магнитное поле внутри вещества, т. е. вещество намагничивается. Степень намагничивания характеризуется вектором намагниченности , который равен суммарному магнитному моменту единицы объема вещества

,

Источник

Энергия магнитного поля проводника с током объемная плотность энергии магнитного поля

Любой электрический ток окружает магнитное поле. Нетривиальным является вопрос о локализации собственной энергии тока, – находится она в проводнике, где перемещаются заряды, или в магнитом поле (веществе, которое окружает ток)?

Ответ на заданный вопрос получают при исследовании переменных магнитных полей или электромагнитных волн. В электромагнитной волне магнитные поля, переменные в пространстве и времени, могут существовать при отсутствии токов. Мы знаем, что электромагнитные волны переносят энергию, следовательно, можно сделать вывод о том, что энергия локализуется в магнитном поле.

Объемная плотность энергии магнитного поля

Допустим, что у нас имеется замкнутая тороидальная катушка. Индуктивность этой катушки:

$L=\mu \mu_<0>\fracS>\left( 1 \right)$, где:

  • $\mu $ – магнитная проницаемость вещества;
  • $\mu_<0>$ – магнитная постоянная;
  • $N$ -количество витков;
  • $l$ – длина катушки;
  • $S$ – площадь поперечного сечения.

Готовые работы на аналогичную тему

Собственную энергию тока, текущего в катушке найдем как:

где величина $\frac=H$ – напряженность магнитного поля внутри тороида, значит формулу (2) представим в виде:

где $V=Sl$ — объем катушки.

Выражение (3) говорит нам о том, что если магнитное поле можно считать однородным, то его энергия прямо пропорциональна объему, который это поле занимает.

Следовательно, объемную плотность энергии магнитного поля определим как:

В случае неоднородности магнитного поля для вычисления его энергии, проводят его разбиение на малые элементы с объемом $dV$ (элементы такого размера, что в нем поле можно считать однородным). Энергия, которую несет каждый элемент поля, будет равна: $wdV$. Полную энергию произвольного магнитного поля можно найти как:

где интегрирование проводят по всему объему, который занимает поле.

Ограничения применения формулы для вычисления плотности энергии магнитного поля

Все сказанное выше предполагало, что магнитная проницаемость вещества, в котором находится поле, остается неизменной. Вся работа источника тока переходит в энергию магнитного поля. Это абсолютно точно только для вакуума. Формула для объемной плотности энергии магнитного поля в виде (4) является приближенной, так как она не учитывает точно, что поле выполняет работу при намагничивании.

Предположение о неизменности магнитной проницаемости означает, что:

Данная зависимость точна для многих веществ, парамагнетиков и диамагнетиков и неприменима для ферромагнетиков.

Применяя формулу (6) плотность энергии магнитного поля представим как:

Формулу (7), определяющую плотность энергии магнитного поля, можно использовать и для неоднородных магнитных полей.

Единицей измерения плотности энергии магнитного поля служит джоуль, деленный на кубический метр ( $\frac<Дж><м^<3>>$).

Напряженность магнитного поля

Напряженность магнитного поля является вспомогательной величиной, помогающей в математическом описании магнитного поля.

Вектор напряженности магнитного поля (H ⃗) можно рассматривать как комбинацию принципиально разных физических величин, часть из них относится к полю (слагаемое, содержащее вектор магнитной индукции), часть к веществу, и, следовательно, напряженность магнитного поля физическим смыслом не обладает:

где $\vec

_$ – вектор намагниченности (вектор интенсивности намагничения вещества). Однако вектор напряженности является количественной характеристикой магнитного поля, которая не зависит от магнитных свойств вещества, в котором его рассматривают. Применение $\vec$ упрощает количественные описания магнитного поля в веществе.

В однородном магнитном веществе напряженность магнитного поля определим как:

Важность данной физической величины заключается в том, что она не зависит от магнитных свойств вещества, в котором локализовано магнитное поле (в отличии от $\vec$).

Напряженность магнитного поля определяют:

  • сила тока, создающая магнитное поле;
  • геометрия объекта, по которому следует электрический ток (форма тела);
  • расположение точки, в которой рассматривается поле относительно источник поля.

Для однородной магнитной среды направления векторов магнитной индукции и напряженности магнитного поля совпадают.

Напряжённость магнитного поля для постоянных токов разной конфигурации можно рассчитать, применяя закон Био-Савара-Лапласа:

  • $Idl$ – элемент тока на проводнике, который создает магнитное поле;
  • $\vec$ – радиус – вектор, который провели от элемента тока в точку, в которой исследуем поле;
  • $\propto =\hat\vec>$ — угол между соответсвующим вектором и направлением течения тока;
  • $dH$ – величина элементарного магнитного поля, которое в рассматриваемой точке создает элемент тока.

Уравнение (10) можно записать в векторной форме:

В соответствии с правилами векторных произведений мы получаем, что $d\vec$ нормален плоскости, в которой находятся векторы $d\vec$ и $\vec$.

Вектор напряженности магнитного поля подчиняется принципу суперпозиции, поэтому напряженность магнитного поля, которое создает весь проводник с постоянным током, в рассматриваемой точке равна:

Закон (11) бы эмпирически получен учеными Ж.Б. Био и Ф. Саваром при исследованиях действия электрических токов на магнитную стрелку. П.С. Лаплас провел анализ результатов экспериментов Био и Савара понял, что напряженность магнитного поля тока является суммой напряженностей полей, которые создают отдельные токи.

Закон полного тока

В некоторых случаях для нахождения напряженности магнитного поля вместо закона Био-Савара-Лапласа применяют закон полного тока, который формулируется в следующем виде:

где $\oint dl> $ — циркуляция вектора напряженности по замкнутому контуру $l$, $\sum I_$ — сумма токов (с учетом знака), которые охватывает контур $l$.

Рисунок 1. Контур. Автор24 — интернет-биржа студенческих работ

Так, если контур $l$ на рис.1 охватывает четыре тока, при этом токи $I_1$, $I_2,$ $I_3$ , больше нуля, $I_4$

Источник