Меню

Энергия магнитного поля постоянных токов



МАГНИТНОЕ ПОЛЕ ПОСТОЯННОГО ТОКА

В лекции изложены связь основных величин, характеризующих магнитное поле, основной закон магнитного поля в дифференциальной форме, рассмотрены скалярный и векторный потенциалы, энергия поля и силы в магнитных полях.

Магнитное поле постоянного тока – это один из компонентов электромагнитного поля, не изменяющегося во времени. Оно создается неизменными во времени токами, протекающими по проводящим телам, неподвижным в пространстве по отношению к наблюдателю.

Магнитное поле характеризуется индукцией , намагниченностью и напряжённостью магнитного поля .

Эти три величины связаны соотношением:

где — магнитная проницаемость вещества (Гн/м); — магнитная постоянная; в системе СИ

Если где-либо протекает электрический ток, то он неизбежно создаёт магнитное поле. Магнитное поле создаётся в равной мере током проводимости и током электрического смещения. Рассмотрим магнитное поле постоянного тока, когда ток смещения отсутствует.

Электрический ток, протекающий по поверхности, создаёт магнитный поток.

— поверхность не замкнута.

— поверхность замкнута сама на себя.

Вышедший внутрь любого объёма магнитный поток равен магнитному потоку, вышедшему из того же объёма. Сумма вышедшего в объём и вышедшего из объёма потоков равна нулю:

Это выражение представляет собой математическую запись принципа непрерывности магнитного потока.

Экспериментально установлено, что в однородных и изотропных средах циркуляция вектора магнитной индукции по замкнутому контуру пропорциональна полному току, сцепленному с этим контуром,

Здесь — коэффициент пропорциональности; i — полный ток, являющийся алгебраической суммой токов, сцепленных с замкнутым контуром l.

Слово «сцепленный» следует понимать в буквальном смысле. Поскольку контур l — замкнутый, а токи также могут существовать только в замкнутых контурах (первый закон Кирхгофа), то, следовательно, контур l и контур тока могут быть либо сцеплены друг с другом, как соседние звенья цепи, либо не сцеплены рис. 12.

При определении знака тока, сцепленного с контуром, указывают направление обхода контура и направление тока. Если эти направления, рис. 13, образуют правоходовую систему, то ток входит в уравнение со знаком (+), а если левоходовую, то со знаком (—).

Для рассматриваемого примера

Исходя из принципа непрерывности тока можно также утверждать, чтополный ток, сцепленный с контуром l, равен алгебраической сумме токов, пронизывающих любую поверхность, опирающуюся на замкнутый контур l. Коэффициент пропорциональности получил название — магнитная проницаемость вещества (Ом • с/м) или (Гн/м). Его обычно обозначают где: — магнитная проницаемость вакуума, равная = Гн/м; — относительная магнитная проницаемость, определяющая магнитные свойства среды. Например, для ферромагнетика = 10 3 — 10 6 , а значит, .

В соответствии с электронной теорией строения вещества в ферромагнетиках под воздействием внешнего поля , обусловленного макротоками, молекулярные микротоки упорядочение ориентируются, рис.14, и создают собственное поле ( ), при этом направления векторов и совпадают и, следовательно, величина суммарного поля становится больше поля, обусловленного макротоками, и равна

Таким образом, если в некоторой части однородного и изотропного пространств с магнитными свойствами существуют ориентированные микротоки, то закон полного тока нужно записать с учетом микротока , сцепленного с контуром:

Величину сцепленных микротоков принято оценивать с помощью вектора намагниченности вещества (А/м).

На рис. 15 схематически изображены плоскости и контуры молекулярных микротоков, перпендикулярные вектору внешнего поля ( ). Здесь же изображены три отрезка ( ) одинаковой длины ( ). Из рис. 71 видно, что максимальный микроток сцеплен с отрезком (ток ), меньший микроток сцеплен с отрезком , а с отрезком микроток не сцеплен вообще. Между токами и очевидна связь

Принимают, что вектор намагниченности вещества направлен по нормали к плоскости микротоков, а его величина равна максимальной плотности сцепленного микротока

откуда следует, что

Полный микроток, сцепленный с замкнутым контуром, математически представляется как циркуляция вектора по этому контуру. Тогда:

Выражение в скобках под знаком интеграла обозначают и называют вектором магнитной напряженности:

Размерность магнитной напряженности Н А/м.

Установлено, что в слабых полях векторы , , параллельны (в анизотропных средах это не так). Обозначив отношение , приведем выражение к виду

где — относительная магнитная проницаемость вещества.

Подстановка даетматематическое описание закона полного тока

Формулируется этот закон следующим образом:в магнитном поле циркуляция вектора магнитной напряженности по любому замкнутому контуру равна полному макротоку, сцепленному с этим контуром.

В стационарном поле тока для поверхности, опирающейся на замкнутый контур l, справедливо, что

и, следовательно, закон полного тока может быть представлен в виде

Для контуров токов с числом витком , сцепленных с замкнутым контуром l,

Правую часть математического описания закона полного тока называютмагнитодвижущей силойи обозначают

По аналогии с электростатикой интеграл в левой части математического описания закона полного тока типа

называютмагнитным напряжением (единица измерения — ампер).

Таким образом, разбивая замкнутый контур наn участков, получим:

Именно так закон полного тока формулируется в теории магнитных цепей.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Энергия магнитного поля постоянных токов

Вы будете перенаправлены на Автор24

Магнитное поле имеет энергию. Это можно показать экспериментальным путем. Например, рассмотрим процесс убывания силы тока в катушке, если от нее отключить источник тока.

Эмпирическое доказательство наличия энергии магнитного поля

Пусть до размыкания ключа (рис.1(a)) в катушке имеется ток $I$. Данный ток порождает магнитное поле. Если ключ разомкнут, то мы получаем последовательное соединение катушки и сопротивления (рис. 1(b)). Ток в катушке из-за процесса самоиндукции уменьшается постепенно. На сопротивлении при этом выделяется теплота. Но мы помним, что источник отключен, появляется вопрос об источнике энергии, которая тратится на тепло. Поскольку убывает ток и, соответственно, создаваемое им магнитное поле, то можно говорить об энергии тока или энергии магнитного поля, которое он создает.

Готовые работы на аналогичную тему

Рисунок 1. Энергия магнитного поля тока. Автор24 — интернет-биржа студенческих работ

Если магнитное поле создается постоянным током, то понять, где сосредоточена энергия невозможно, поскольку ток создает магнитное поле, а магнитные поля всегда сопровождаются токами.

Рассмотрим переменное магнитное поле в электромагнитной волне. В такой волне магнитные поля могут существовать при отсутствии токов. Известно, что электромагнитные волны переносят энергию, на этом основании сделаем вывод о том, что энергия заключена в магнитном поле.

И так, энергия электрического тока локализована в магнитном поле, то есть в среде, которая окружает этот ток.

Вычисление энергии магнитного поля

По закону сохранения энергии имеем, что в эксперименте рис.1 (a-b), вся энергия магнитного поля в результате выделяется в виде Джоулева тепла на сопротивлении $R$.

Уменьшение энергии магнитного поля можно найти как работу индукционного тока:

$-\Delta E_=A_\left( 1 \right)$.

Конечные величины силы тока, индукции магнитного поля и энергии равны нулю, обозначим начальное значение энергии магнитного поля как $E_m$, соответственно:

Элементарную работу, совершаемую током, найдем как:

$dA_=Ɛ_Idt=-L\, I\frac

dt=-L\, IdI\left( 3 \right),$

где $dt$ – время совершения работы током индукции; $Ɛ_=-L\, \frac

$ – ЭДС самоиндукции.

Возьмем интеграл от (3) учитывая, что ток изменяется от I до 0:

Выражение (4) является справедливым для всякого контура, она указывает на связь энергии магнитного поля, создаваемого током от силы тока и индуктивности контура.

Сопоставим выражение (4) с выражением для кинетической энергии поступательного движения:

Это сравнение показывает, что индуктивность контура связана с инерционностью контура. Нельзя остановить перемещающееся тело, без превращений энергии, так нет возможности остановить электрический ток без трансформации энергии.

Связь энергии магнитного поля и его основных характеристик

Рассмотрим энергию магнитного поля длинного соленоида. Пусть рассматриваемое нами поле можно считать однородным, и находится оно внутри соленоида. Тогда сила тока, текущая по соленоиду может быть выражена как:

где $H$ – напряженность магнитного поля соленоида; $l$ – длина соленоида; $N$ – число витков соленоида. Для соленоида:

$L=\mu \mu_<0>n^<2>Sl\, \left( 7 \right)$.

где $μ$ – магнитная проницаемость сердечника соленоида; $S$ – площадь сечения соленоида; $n=\frac$.

Принимая во внимание формулы (6) и (7) выражение (4) приведем к виду:

Часто в качестве энергетической характеристики магнитного поля используют такой параметр, как плотность энергии магнитного поля:

Читайте также:  При повороте ключа зажигания нет тока

Формула (9) применима для любого магнитного поля независимо от его происхождения, она показывает энергию магнитного поля в единице его объема.

Для магнитоизотропной среды мы можем записать:

$\vec=\mu \mu_<0>\vec\left( 10 \right)$.

Тогда уравнение (9) представим как:

Если магнитное поле является неоднородным, то его разбивают на элементарные объемы ($dV$) (малые объемы в которых магнитное поле можно считать однородным). Энергию магнитного поля, которая заключена в этих объемах, считают равной:

$dE_=wdV\left( 12 \right)$.

В таком случае суммарная энергия магнитного поля может быть найдена как:

где интегрирование проводят по всему объему, который занимает магнитное поле.

Ограничения в применении формулы для вычисления плотности энергии магнитного поля

При получении формулы (9) считалось, что:

  1. индуктивность контура, следовательно, магнитная проницаемость вещества не изменяются,
  2. вся энергия источника тока переходит в энергию магнитного поля.

Эти условия справедливы точно, только для вакуума (при $\mu$=1). При помещении контура с током в вещество, следует учитывать:

  • Намагничивание вещества, что ведет к увеличению ее температуры.
  • Объем и плотность вещества в магнитном поле способны меняться даже при неизменной температуре.

Данные нюансы указывают на то, что магнитная проницаемость вещества ($\mu$), которая изменяется при изменении температуры и плотности среды не может быть неизменной при намагничивании.

Кроме того, работа источника ЭДС не целиком переходит в энергию магнитного поля.

Выше сказанное дает основание полагать, что в общем случае формула (2) не выражает в точности работу при намагничивании и выражение (9) не дает объемную плотность энергии магнитного поля в веществе.

Допустим, что изменение объема вещества мало. Температура среды постоянна. Внешняя работа расходуется на рост энергии магнитного поля $E_m$ и на теплоотдачу $(Q)$, для поддержания постоянной температуры. Работа внешних сил, в нашем случае источника тока, которая совершается над телом при квазистатическом изотермическом процессе, будет равна приращению свободной энергии тела. Получается, что формула (9) отражает часть свободной энергии намагниченного вещества, которая связана с магнитным полем.

Если количества теплоты ($Q$) в сравнении с энергией поля $E_m$ мало, тогда выполняется равенство (2).

Условие неизменности магнитной проницаемости вещества, означает, что справедлива линейная зависимость (10). Даная зависимость выполняется для вакуума. Ее можно применять для парамагнетиков и диамагнетиков. Но для ферромагнетиков связь между магнитной индукцией и напряженностью магнитного поля является сильно нелинейной даже при $T=const$, поэтому выражение (9) для этих веществ не применяется.

Источник

Магнитное поле

Магнитное поле играет очень большую роль в электротехнике и электронике. Без магнитного поля не функционировали бы герконы, электромагнитные реле, соленоиды, катушки индуктивности, дроссели, трансформаторы, двигатели, динамики, генераторы электрической энергии да и вообще много чего.

Природа магнетизма

Согласно одной из легенд, когда-то давным-давно жил в Греции пастух по имени Магнес. И вот шел он как-то со своим стадом овец, присел на камень и обнаружил, что конец его посоха, сделанный из железа, стал притягиваться к этому камню. С тех пор стали называть этот камень магнетит в честь Магнеса. Этот камень представляет из себя оксид железа.

магнетит

Если такой камень положить на деревянную доску на воду или подвесить на нитке, то он всегда выстраивался в определенном положении. Один его конец всегда показывал на СЕВЕР, а другой – на ЮГ.

магнетит на воде

Этим свойством камня пользовались древние цивилизации. Поэтому, это был своего рода первый компас. Потом уже стали обтачивать такой камень и делать из разные фигурки. Например, так выглядел китайский древний компас, ложка которого была сделана из того самого магнетита. Ручка у этой ложки всегда показывала на ЮГ.

китайский древний компас

Ну а далее дело шло за практичностью и маленькими габаритами. Из магнетита вытачивали маленькие стрелки, которые подвешивали на тонкую иглу посередине. Так стали появляться первые малогабаритные компасы.

древний компас со стрелкой

Древние цивилизации, конечно, не знали еще что такое север и юг. Поэтому, одну сторону магнетита они назвали северным полюсом (North), а противоположный конец – южным (South). Названия на английском очень легко запомнить, если кто смотрел американский мультфильм “Южный парк”, он же Сауз (South) парк).

сауз парк

Магнитные линии и магнитный поток

Вокруг магнита экспериментальным путем были обнаружены магнитные силовые линии. Эти магнитные линии создают так называемое магнитное поле.

линии магнитного поля

Как вы могли заметить на рисунке, концентрация магнитных силовых линий на самых краях магнита намного больше, чем в его середине. Это говорит о том, что магнитное поле является более сильным именно на краях магнита, а в его середине практически равна нулю. Направлением магнитных силовых линий считается направление от севера к югу.

Ошибочно считать, что магнитные силовые линии начинают свое движение от северного полюса и заканчивают свой век на южном. Это не так. Магнитные линии – они замкнуты и непрерывны. В магните это будет выглядеть примерно так.

замкнутые магнитные линии

Если приблизить два разноименных полюса, то произойдет притягивание магнитов

взаимодействие разноименных магнитных полей

Если же приблизить одноименными полюсами, то произойдет их отталкивание

взаимодействие одноименных полюсов магнита

Итак, ниже важные свойства магнитных силовых линий.

  • Магнитные линии не поддаются гравитации.
  • Никогда не пересекаются между собой.
  • Всегда образуют замкнутые петли.
  • Имеют определенное направление с севера на юг.
  • Чем больше концентрация силовых линий, тем сильнее магнитное поле.
  • Слабая концентрация силовых линий указывает на слабое магнитное поле.

Магнитные силовые линии, которые образуют магнитное поле, называют также магнитным потоком.

Итак, давайте рассмотрим два рисунка и ответим себе на вопрос, где плотность магнитного потока будет больше? На рисунке “а” или на рисунке “б”?

плотность магнитного потока

Видим, что на рисунке “а” мало силовых магнитных линий, а на рисунке “б” их концентрация намного больше. Отсюда можно сделать вывод, что плотность магнитного потока на рисунке “б” больше, чем на рисунке “а”.

В физике формула магнитного потока записывается как

формула магнитного потока

Ф – магнитный поток, Вебер

В – плотность магнитного потока, Тесла

а – угол между перпендикуляром n (чаще его зовут нормалью) и плоскостью S, в градусах

S – площадь, через которую проходит магнитный поток, м 2

магнитный поток

Что же такое 1 Вебер? Один вебер – это магнитный поток, который создается полем индукцией 1 Тесла через площадку 1м 2 расположенной перпендикулярно направлению магнитного поля.

Напряженность магнитного поля

Формула напряженности

Слышали ли вы когда-нибудь такое выражение: “напряженность между ними все росла и росла”. То есть по сути напряженность – это что-то невидимое, какая-то сдерживающая сила, энергия. Здесь почти все то же самое. Напряженностью магнитного поля также часто называют силой магнитного поля. Напряженность магнитного поля напрямую зависит от плотности магнитного потока и выражается формулой

напряженность магнитного поля формула

H – напряженность магнитного поля, Ампер/метр

B – плотность магнитного потока, Тесла

μ – магнитная постоянная = 4π × 10 -7 Генри/метр или если написать по человечески 1,2566 × 10 -6 Генри/метр.

Эта формула работает только тогда, когда между витками катушки находится воздух, либо вакуум. Более крутая формула выглядит вот так.

напряженность магнитного поля в веществе формула

μ – это относительная магнитная проницаемость.

У разных веществ она разная

магнитная проницаемость веществ

Напряженность магнитного поля проводника с током

Итак, имеем какой-либо проводник, по которому течет электрический ток.

напряженность проводника с током

Для того, чтобы вычислить напряженность магнитного поля на каком-то расстоянии от проводника при условии, что проводник находится в воздушном пространстве либо в вакууме, достаточно воспользоваться формулой

напряженность магнитного поля проводника с током

H – напряженность магнитного поля, Ампер/метр

I – сила тока, текущая через проводник, Ампер

r – расстояние до точки, в которой измеряется напряженность, метр

Магнитное поле проводника с током

Оказывается, если через какой-либо проводник пропустить электрический ток, то вокруг проводника образуется магнитное поле.

правило буравчика

Здесь можно вспомнить знаменитое правило буравчика, но для наглядности я лучше буду использовать правило самореза, так как почти все хоть раз в жизни ввинчивали либо болт, либо саморез.

саморез

Ввинчиваем по часовой стрелке – саморез идет вниз. В нашем случае он показывает направление электрического тока. Движение наших рук показывает направление линий магнитного поля. Все то же самое, когда мы начинаем откручивать саморез. Он начинает вылазить вверх, то есть в нашем случае показывает направление электрического тока, а наша рука в этом время рисует в воздухе направление линий магнитного поля.

Читайте также:  За направление тока принимают выберите один ответ

Также часто в учебниках физики можно увидеть, что направление электрического тока от нас рисуют кружочком с крестиком, а к нам – кружочком с точкой. В этом случае опять представляем себе саморез и уже в голове увидим направление магнитного поля.

направление электрического тока

Как думаете, что будет если мы сделаем вот такую петельку из провода? Что изменится в этом случае?

суммирование магнитного поля

Давайте же рассмотрим этот случай более подробно. Так в этой плоскости оба проводника создают магнитное поле, то по идее они должны отталкиваться друг от друга. Но если они хорошо закреплены, то начинается самое интересное. Давайте рассмотрим вид сверху, как это выглядит.

сумма магнитных полей

Как вы можете заметить, в области, где суммируются магнитные силовые линии плотность магнитного потока прям зашкаливает.

Соленоид

А что если сделать много-много таких петелек? Взять какую-нибудь круглую бобину, намотать на нее провод и потом убрать бобину. У нас должно получится что-то типа этого.

соленоид

Если подать постоянное напряжение на такую катушку, магнитные силовые линии будут выглядеть вот так.

плотность магнитного потока в соленоиде

Вы только посмотрите, какая бешеная плотность магнитного потока внутри такой катушки! Получается, что от каждой петельки магнитное поле суммируется, что в итоге дает такую плотность магнитного потока. Такую катушку также называют катушкой индуктивности или соленоидом.

Вот также схема, показывающая как магнитные силовые линии складываются в соленоиде.

принцип работы соленоида

Плотность магнитного потока зависит от того, какая сила тока проходит через соленоид. Чтобы увеличить плотность магнитного потока, достаточно поверх витков намотать еще больше витков и вставить сердечник из специального материала – феррита.

многообмоточная катушка

Если в электрических цепях есть такое понятие, как ЭДС – электродвижущая сила, то и в магнитных цепях есть свой аналог – МДС – магнитодвижущая сила. Магнитодвижущая сила выражается в виде тока, протекающего через катушку из N витков и выражается в Амперах-витках.

многообмоточная катушка

I – это сила тока в катушке, Амперы

N – количество витков катушки, штуки)

Также советую посмотреть очень простое и интересное видео про магнитное поле.

Похожие статьи по теме “магнитное поле”

Источник

Магнитное поле

Магнитное поле – особая форма материи, существующая вокруг движущихся электрических зарядов – токов.

Источниками магнитного поля являются постоянные магниты, проводники с током. Обнаружить магнитное поле можно по действию на магнитную стрелку, проводник с током и движущиеся заряженные частицы.

Для исследования магнитного поля используют замкнутый плоский контур с током (рамку с током).

Впервые поворот магнитной стрелки около проводника, по которому протекает ток, обнаружил в 1820 году Эрстед. Ампер наблюдал взаимодействие проводников, по которым протекал ток: если токи в проводниках текут в одном направлении, то проводники притягиваются, если токи в проводниках текут в противоположных направлениях, то они отталкиваются.

Свойства магнитного поля:

  • магнитное поле материально;
  • источник и индикатор поля – электрический ток;
  • магнитное поле является вихревым – его силовые линии (линии магнитной индукции) замкнутые;
  • величина поля убывает с расстоянием от источника поля.

Важно!
Магнитное поле не является потенциальным. Его работа на замкнутой траектории может быть не равна нулю.

Магнитным взаимодействием называют притяжение или отталкивание электрически нейтральных проводников при пропускании через них электрического тока.

Магнитное взаимодействие движущихся электрических зарядов объясняется так: всякий движущийся электрический заряд создает в пространстве магнитное поле, которое действует на движущиеся заряженные частицы.

Силовая характеристика магнитного поля – вектор магнитной индукции ​ \( \vec \) ​. Модуль вектора магнитной индукции равен отношению максимального значения силы, действующей со стороны магнитного поля на проводник с током, к силе тока в проводнике ​ \( I \) ​ и его длине ​ \( l \) ​:

Обозначение – \( \vec \) , единица измерения в СИ – тесла (Тл).

1 Тл – это индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила 1 Н.

Направление вектора магнитной индукции совпадает с направлением от южного полюса к северному полюсу магнитной стрелки (направление, которое указывает северный полюс магнитной стрелки), свободно установившейся в магнитном поле.

Направление вектора магнитной индукции можно определить по правилу буравчика:

если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.

Для определения магнитной индукции нескольких полей используется принцип суперпозиции:

магнитная индукция результирующего поля, созданного несколькими источниками, равна векторной сумме магнитных индукций полей, создаваемых каждым источником в отдельности:

Поле, в каждой точке которого вектор магнитной индукции одинаков по величине и направлению, называется однородным.

Наглядно магнитное поле изображают в виде магнитных линий или линий магнитной индукции. Линия магнитной индукции – это воображаемая линия, в любой точке которой вектор магнитной индукции направлен по касательной к ней.

Свойства магнитных линий:

  • магнитные линии непрерывны;
  • магнитные линии замкнуты (т.е. в природе не существует магнитных зарядов, аналогичных электрическим зарядам);
  • магнитные линии имеют направление, связанное с направлением тока.

Густота расположения позволяет судить о величине поля: чем гуще расположены линии, тем сильнее поле.

На плоский замкнутый контур с током, помещенный в однородное магнитное поле, действует момент сил ​ \( M \) ​:

где ​ \( I \) ​ – сила тока в проводнике, ​ \( S \) ​ – площадь поверхности, охватываемая контуром, ​ \( B \) ​ – модуль вектора магнитной индукции, ​ \( \alpha \) ​ – угол между перпендикуляром к плоскости контура и вектором магнитной индукции.

Тогда для модуля вектора магнитной индукции можно записать формулу:

где максимальный момент сил соответствует углу ​ \( \alpha \) ​ = 90°.

В этом случае линии магнитной индукции лежат в плоскости рамки, и ее положение равновесия является неустойчивым. Устойчивым будет положение рамки с током в случае, когда плоскость рамки перпендикулярна линиям магнитной индукции.

Взаимодействие магнитов

Постоянные магниты – это тела, длительное время сохраняющие намагниченность, то есть создающие магнитное поле.

Основное свойство магнитов: притягивать тела из железа или его сплавов (например стали). Магниты бывают естественные (из магнитного железняка) и искусственные, представляющие собой намагниченные железные полосы. Области магнита, где его магнитные свойства выражены наиболее сильно, называют полюсами. У магнита два полюса: северный ​ \( N \) ​ и южный ​ \( S \) ​.

Важно!
Вне магнита магнитные линии выходят из северного полюса и входят в южный полюс.

Разделить полюса магнита нельзя.

Объяснил существование магнитного поля у постоянных магнитов Ампер. Согласно его гипотезе внутри молекул, из которых состоит магнит, циркулируют элементарные электрические токи. Если эти токи ориентированы определенным образом, то их действия складываются и тело проявляет магнитные свойства. Если эти токи расположены беспорядочно, то их действие взаимно компенсируется и тело не проявляет магнитных свойств.

Магниты взаимодействуют: одноименные магнитные полюса отталкиваются, разноименные – притягиваются.

Магнитное поле проводника с током

Электрический ток, протекающий по проводнику с током, создает в окружающем его пространстве магнитное поле. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле.

Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.

Направление линий магнитного поля вокруг проводника с током всегда находится в строгом соответствии с направлением тока, проходящего по проводнику.

Направление магнитных силовых линий можно определить по правилу буравчика: если поступательное движение буравчика (1) совпадает с направлением тока (2) в проводнике, то вращение его рукоятки укажет направление силовых линий (4) магнитного поля вокруг проводника.

При изменении направления тока линии магнитного поля также изменяют свое направление.

По мере удаления от проводника магнитные силовые линии располагаются реже. Следовательно, индукция магнитного поля уменьшается.

Читайте также:  Урок решения задач по теме законы постоянного тока

Направление тока в проводнике принято изображать точкой, если ток идет к нам, и крестиком, если ток направлен от нас.

Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют катушкой.

В проводнике, согнутом в виде витка, магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается.

Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле. Магнитное поле снаружи катушки также складывается из магнитных полей отдельных витков, однако магнитные силовые линии располагаются не так густо, вследствие чего интенсивность магнитного поля там не столь велика, как внутри катушки.

Магнитное поле катушки с током имеет такую же форму, как и поле прямолинейного постоянного магнита: силовые магнитные линии выходят из одного конца катушки и входят в другой ее конец. Поэтому катушка с током представляет собой искусственный электрический магнит. Обычно для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такую катушку называют электромагнитом.

Направление линий магнитной индукции катушки с током находят по правилу правой руки:

если мысленно обхватить катушку с током ладонью правой руки так, чтобы четыре пальца указывали направление тока в ее витках, тогда большой палец укажет направление вектора магнитной индукции.

Для определения направления линий магнитного поля, создаваемого витком или катушкой, можно использовать также правило буравчика:

если вращать ручку буравчика по направлению тока в витке или катушке, то поступательное движение буравчика укажет направление вектора магнитной индукции.

Электромагниты нашли чрезвычайно широкое применение в технике. Полярность электромагнита (направление магнитного поля) можно определить и с помощью правила правой руки.

Сила Ампера

Сила Ампера – сила, которая действует на проводник с током, находящийся в магнитном поле.

Закон Ампера: на проводник c током силой ​ \( I \) ​ длиной ​ \( l \) ​, помещенный в магнитное поле с индукцией ​ \( \vec \) ​, действует сила, модуль которой равен:

где ​ \( \alpha \) ​ – угол между проводником с током и вектором магнитной индукции ​ \( \vec \) ​.

Направление силы Ампера определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​ \( B_\perp \) ​ входила в ладонь, а четыре вытянутых пальца указывали направление тока в проводнике, то отогнутый на 90° большой палец покажет направление силы Ампера.

Сила Ампера не является центральной. Она направлена перпендикулярно линиям магнитной индукции.

Сила Ампера широко используется. В технических устройствах создают магнитное поле с помощью проводников, по которым течет электрический ток. Электромагниты используют в электромеханическом реле для дистанционного выключения электрических цепей, магнитном подъемном кране, жестком диске компьютера, записывающей головке видеомагнитофона, в кинескопе телевизора, мониторе компьютера. В быту, на транспорте и в промышленности широко применяют электрические двигатели. Взаимодействие электромагнита с полем постоянного магнита позволило создать электроизмерительные приборы (амперметр, вольтметр).

Простейшей моделью электродвигателя служит рамка с током, помещенная в магнитное поле постоянного магнита. В реальных электродвигателях вместо постоянных магнитов используют электромагниты, вместо рамки – обмотки с большим числом витков провода.

Коэффициент полезного действия электродвигателя:

где ​ \( N \) ​ – механическая мощность, развиваемая двигателем.

Коэффициент полезного действия электродвигателя очень высок.

Алгоритм решения задач о действии магнитного поля на проводники с током:

  • сделать схематический чертеж, на котором указать проводник или контур с током и направление силовых линий поля;
  • отметить углы между направлением поля и отдельными элементами контура;
  • используя правило левой руки, определить направление силы Ампера, действующей на проводник с током или на каждый элемент контура, и показать эти силы на чертеже;
  • указать все остальные силы, действующие на проводник или контур;
  • записать формулы для остальных сил, упоминаемых в задаче. Выразить силы через величины, от которых они зависят. Если проводник находится в равновесии, то необходимо записать условие его равновесия (равенство нулю суммы сил и моментов сил);
  • записать второй закон Ньютона в векторном виде и в проекциях;
  • решить полученную систему уравнений относительно неизвестной величины;
  • решение проверить.

Сила Лоренца

Сила Лоренца – сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.

Формула для нахождения силы Лоренца:

где ​ \( q \) ​ – заряд частицы, ​ \( v \) ​ – скорость частицы, ​ \( B \) ​ – модуль вектора магнитной индукции, ​ \( \alpha \) ​ – угол между вектором скорости частицы и вектором магнитной индукции.

Направление силы Лоренца определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​ \( B_\perp \) ​ входила в ладонь, а четыре вытянутых пальца указывали направление скорости положительно заряженной частицы, то отогнутый на 90° большой палец покажет направление силы Лоренца.

Если заряд частицы отрицательный, то направление силы изменяется на противоположное.

Важно!
Если вектор скорости сонаправлен с вектором магнитной индукции, то частица движется равномерно и прямолинейно.

В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы.

Если вектор скорости перпендикулярен вектору магнитной индукции, то частица движется по окружности, радиус которой равен:

где ​ \( m \) ​ – масса частицы, ​ \( v \) ​ – скорость частицы, ​ \( B \) ​ – модуль вектора магнитной индукции, ​ \( q \) ​ – заряд частицы.

В этом случае сила Лоренца играет роль центростремительной и ее работа равна нулю. Период (частота) обращения частицы не зависит от радиуса окружности и скорости частицы. Формула для вычисления периода обращения частицы:

Угловая скорость движения заряженной частицы:

Важно!
Сила Лоренца не меняет кинетическую энергию частицы и модуль ее скорости. Под действием силы Лоренца изменяется направление скорости частицы.

Если вектор скорости направлен под углом ​ \( \alpha \) ​ (0° \( \alpha \) \( \vec_2 \) ​, параллелен вектору \( \vec \) , а другой, \( \vec_1 \) , – перпендикулярен ему. Вектор \( \vec_1 \) не меняется ни по модулю, ни по направлению. Вектор \( \vec_2 \) меняется по направлению. Сила Лоренца будет сообщать движущейся частице ускорение, перпендикулярное вектору скорости \( \vec_1 \) . Частица будет двигаться по окружности. Период обращения частицы по окружности – ​ \( T \) ​.

Таким образом, на равномерное движение вдоль линии индукции будет накладываться движение по окружности в плоскости, перпендикулярной вектору \( \vec \) . Частица движется по винтовой линии с шагом ​ \( h=v_2T \) ​.

Важно!
Если частица движется в электрическом и магнитном полях, то полная сила Лоренца равна:

Особенности движения заряженной частицы в магнитном поле используются в масс-спектрометрах – устройствах для измерения масс заряженных частиц; ускорителях частиц; для термоизоляции плазмы в установках «Токамак».

Алгоритм решения задач о действии магнитного (и электрического) поля на заряженные частицы:

  • сделать чертеж, указать на нем силовые линии магнитного (и электрического) поля, нарисовать вектор начальной скорости частицы и отметить знак ее заряда;
  • изобразить силы, действующие на заряженную частицу;
  • определить вид траектории частицы;
  • разложить силы, действующие на заряженную частицу, вдоль направления магнитного поля и по направлению, ему перпендикулярному;
  • составить основное уравнение динамики материальной точки по каждому из направлений разложения сил;
  • выразить силы через величины, от которых они зависят;
  • решить полученную систему уравнений относительно неизвестной величины;
  • решение проверить.

Источник