- Энергия катушки индуктивности
- Энергия катушки при постоянной силе тока
- Катушка индуктивности. Устройство и принцип работы.
- Устройство и принцип работы катушки индуктивности.
- Катушка индуктивности в цепи постоянного тока.
- Катушка индуктивности в цепи переменного тока.
- Катушка индуктивности в цепи постоянного и переменного тока
- Катушка индуктивности в цепи постоянного тока
- Катушка индуктивности в цепи переменного тока
- Опыт N1
- Опыт N2
- Реактивное сопротивление катушки индуктивности
- Заключение
Энергия катушки индуктивности
Энергия катушки индуктивности (W) — это энергия магнитного поля, порождаемого электрическим током I, текущим по проводу данной катушки. Главная характеристика катушки — ее индуктивность L, то есть способность создавать магнитное поле при похождении по ее проводу электрического тока. У каждой катушки индуктивность и форма свои, поэтому и магнитное поле для каждой катушки будет отличаться величиной и направлением, хотя ток может быть абсолютно одинаковым.
В зависимости от геометрии конкретной катушки, от магнитных свойств среды внутри и около нее, — создаваемое пропускаемым током магнитное поле в каждой рассматриваемой точке будет обладать определенной индукцией B, как и величина магнитного потока Ф — тоже будет определенной на каждой из рассматриваемых площадок S.
Если попытаться объяснить совсем просто, то индукция показывает интенсивность магнитного действия (связанного с силой Ампера), которое способно оказать данное магнитное поле на проводник с током, в это поле помещенный, а магнитный поток обозначает то, как распределена магнитная индукция по рассматриваемой поверхности. Таким образом, энергия магнитного поля катушки с током локализована не непосредственно в витках катушки, а в том объеме пространства, в котором существует магнитное поле, c током катушки связанное.
То, что магнитное поле катушки с током обладает реальной энергией, можно обнаружить экспериментально. Соберем схему, в которой параллельно катушке с железным сердечником подключим лампу накаливания. Подадим на катушку с лампочкой постоянное напряжение от источника питания. В цепи нагрузки тут же установится ток, он потечет через лампочку и через катушку. Ток через лампочку будет обратно пропорционален сопротивлению ее нити накала, а ток через катушку — обратно пропорционален сопротивлению провода, которым она намотана.
Ежели сейчас резко разомкнуть тумблер между источником питания и цепью нагрузки, то лампочка кратковременно но довольно заметно вспыхнет. Это значит, что когда мы отключили источник питания, ток из катушки устремился в лампу, а значит данный ток в катушке был, он имел вокруг себя магнитное поле, и в момент исчезновения магнитного поля в катушке возникла ЭДС.
Данная индуцированная ЭДС называется ЭДС самоиндукции, поскольку навелась она собственным магнитным полем катушки с током на саму эту катушку. Тепловое действие Q тока в данном случае можно выразить через произведение величин тока, который был установлен в катушке на момент размыкания тумблера, сопротивления R цепи (провода катушки и лампы) и продолжительности времени исчезновения тока t. Напряжение, которое возникло на сопротивлении цепи, можно выразить через индуктивность L, полное сопротивление цепи R, а также с учетом времени исчезновения тока dt.
Применим теперь выражение для энергии катушки W к частному случаю — к соленоиду с сердечником, обладающим определенной магнитной проницаемостью, отличной от магнитной проницаемости вакуума.
Для начала выразим магнитный поток Ф через площадь сечения S соленоида, количество витков N и магнитную индукцию B по всей его длине l. Распишем сначала индукцию B через ток витка I, число витков на единицу длины n, и магнитную проницаемость вакуума.
Подставим затем сюда объем соленоида V. Мы нашли формулу для магнитной энергии W, и имеем право взять отсюда величину w – объемную плотность магнитной энергии внутри соленоида.
Джеймс Клерк Максвелл в свое время показал, что выражение объемной плотности магнитной энергии справедливо не только для соленоидов, но и для магнитных полей вообще.
Источник
Энергия катушки при постоянной силе тока
Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре.
Коэффициент пропорциональности в этой формуле называется коэффициентом самоиндукции или индуктивностью катушки. Единица индуктивности в СИ называется генри (Гн). Индуктивность контура или катушки равна , если при силе постоянного тока собственный поток равен :
. |
В качестве примера рассчитаем индуктивность длинного соленоида, имеющего витков, площадь сечения и длину . Магнитное поле соленоида определяется формулой (см. § 1.17)
= μ, |
где – ток в соленоиде, – число витков на единицу длины соленоида.
Магнитный поток, пронизывающий все витков соленоида, равен
Φ = = μ 2 . |
ЭДС самоиндукции , возникающая в катушке с постоянным значением индуктивности, согласно закона Фарадея равна
ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.
Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы (рис. 1.21.1). Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.
Из закона сохранения энергии следует, что вся энергия, запасенная в катушке, выделится в виде джоулева тепла. Если обозначить через полное сопротивление цепи, то за время Δ выделится количество теплоты .
Ток в цепи равен
Выражение для Δ можно записать в виде
Δ = –Δ = –Φ () Δ. |
Эту формулу можно получить графическим методом, изобразив на графике зависимость магнитного потока Φ () от тока (рис. 1.21.2). Полное количество выделившейся теплоты, равное первоначальному запасу энергии магнитного поля, определяется площадью изображенного на рис. 1.21.2 треугольника.
Источник
Катушка индуктивности. Устройство и принцип работы.
Приветствую всех на нашем сайте!
Мы продолжаем изучать электронику с самых основ, и темой сегодняшней статьи будет катушка индуктивности. Забегая вперед скажу, что сначала мы обсудим теоретические аспекты, а несколько будущих статей посвятим целиком и полностью рассмотрению различных электрических схем, в которых используются катушки индуктивности, а также элементы, которые мы изучили ранее в рамках нашего курса – резисторы и конденсаторы.
Устройство и принцип работы катушки индуктивности.
Как уже понятно из названия элемента – катушка индуктивности, в первую очередь, представляет из себя именно катушку 🙂 То есть большое количество витков изолированного проводника. Причем наличие изоляции является важнейшим условием – витки катушки не должны замыкаться друг с другом. Чаще всего витки наматываются на цилиндрический или тороидальный каркас:
Важнейшей характеристикой катушки индуктивности является, естественно, индуктивность, иначе зачем бы ей дали такое название 🙂 Индуктивность – это способность преобразовывать энергию электрического поля в энергию магнитного поля. Это свойство катушки связано с тем, что при протекании по проводнику тока вокруг него возникает магнитное поле:
А вот как выглядит магнитное поле, возникающее при прохождении тока через катушку:
В общем то, строго говоря, любой элемент в электрической цепи имеет индуктивность, даже обычный кусок провода. Но дело в том, что величина такой индуктивности является очень незначительной, в отличие от индуктивности катушек. Собственно, для того, чтобы охарактеризовать эту величину используется единица измерения Генри (Гн). 1 Генри – это на самом деле очень большая величина, поэтому чаще всего используются мкГн (микрогенри) и мГн (милигенри). Величину индуктивности катушки можно рассчитать по следующей формуле:
Давайте разберемся, что за величину входят в это выражение:
- \mu_0 – магнитная проницаемость вакуума. Это табличная величина (константа) и равна она следующему значению: \mu_0 = 4 \pi \cdot 10^<-7>\medspace\frac <Гн>
- \mu – магнитная проницаемость магнитного материала сердечника. А что это за сердечник и для чего он нужен? Сейчас выясним. Дело все в том, что если катушку намотать не просто на каркас (внутри которого воздух), а на магнитный сердечник, то индуктивность возрастет многократно. Посудите сами – магнитная проницаемость воздуха равна 1, а для никеля она может достигать величины 1100. Вот мы и получаем увеличение индуктивности более чем в 1000 раз
- S – площадь поперечного сечения катушки
- N – количество витков
- l – длина катушки
Из формулы следует, что при увеличении числа витков или, к примеру, диаметра (а соответственно и площади поперечного сечения) катушки, индуктивность будет увеличиваться. А при увеличении длины – уменьшаться. Таким образом, витки на катушке стоит располагать как можно ближе друг к другу, поскольку это приведет к уменьшению длины катушки.
С устройством катушки индуктивности мы разобрались, пришло время рассмотреть физические процессы, которые протекают в этом элементе при прохождении электрического тока. Для этого мы рассмотрим две схемы – в одной будем пропускать через катушку постоянный ток, а в другой -переменный!
Катушка индуктивности в цепи постоянного тока.
Итак, в первую очередь, давайте разберемся, что же происходит в самой катушке при протекании тока. Если ток не изменяет своей величины, то катушка не оказывает на него никакого влияния. Значит ли это, что в случае постоянного тока использование катушек индуктивности и рассматривать не стоит? А вот и нет 🙂 Ведь постоянный ток можно включать/выключать, и как раз в моменты переключения и происходит все самое интересное. Давайте рассмотрим цепь:
Резистор выполняет в данном случае роль нагрузки, на его месте могла бы быть, к примеру, лампа. Помимо резистора и индуктивности в цепь включены источник постоянного тока и переключатель, с помощью которого мы будем замыкать и размыкать цепь. Что же произойдет в тот момент когда мы замкнем выключатель?
Ток через катушку начнет изменяться, поскольку в предыдущий момент времени он был равен 0. Изменение тока приведет к изменению магнитного потока внутри катушки, что, в свою очередь, вызовет возникновение ЭДС (электродвижущей силы) самоиндукции, которую можно выразить следующим образом:
Возникновение ЭДС приведет к появлению индукционного тока в катушке, который будет протекать в направлении, противоположном направлению тока источника питания. Таким образом, ЭДС самоиндукции будет препятствовать протеканию тока через катушку (индукционный ток будет компенсировать ток цепи из-за того, что их направления противоположны). А это значит, что в начальный момент времени (непосредственно после замыкания выключателя) ток через катушку I_L будет равен 0. В этот момент времени ЭДС самоиндукции максимальна. А что же произойдет дальше? Поскольку величина ЭДС прямо пропорциональна скорости изменения тока, то она будет постепенно ослабевать, а ток, соответственно, наоборот будет возрастать. Давайте посмотрим на графики, иллюстрирующие то, что мы обсудили:
На первом графике мы видим входное напряжение цепи – изначально цепь разомкнута, а при замыкании переключателя появляется постоянное значение. На втором графике мы видим изменение величины тока через катушку индуктивности. Непосредственно после замыкания ключа ток отсутствует из-за возникновения ЭДС самоиндукции, а затем начинает плавно возрастать.
Напряжение на катушке наоборот в начальный момент времени максимально, а затем уменьшается. График напряжения на нагрузке будет по форме (но не по величине) совпадать с графиком тока через катушку (поскольку при последовательном соединении ток, протекающий через разные элементы цепи одинаковый). Таким образом, если в качестве нагрузки мы будем использовать лампу, то они загорится не сразу после замыкания переключателя, а с небольшой задержкой (в соответствии с графиком тока).
Аналогичный переходный процесс в цепи будет наблюдаться и при размыкании ключа. В катушке индуктивности возникнет ЭДС самоиндукции, но индукционный ток в случае размыкания будет направлен в том же самом направлении, что и ток в цепи, а не в противоположном, поэтому запасенная энергия катушки индуктивности пойдет на поддержание тока в цепи:
После размыкания ключа возникает ЭДС самоиндукции, которая препятствует уменьшению тока через катушку, поэтому ток достигает нулевого значения не сразу, а по истечении некоторого времени. Напряжение же в катушке по форме идентично случаю замыкания переключателя, но противоположно по знаку. Это связано с тем, что изменение тока, а соответственно и ЭДС самоиндукции в первом и втором случаях противоположны по знаку (в первом случае ток возрастает, а во втором убывает).
Кстати, я упомянул, что величина ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, так вот, коэффициентом пропорциональности является ни что иное как индуктивность катушки:
На этом мы заканчиваем с катушками индуктивности в цепях постоянного тока и переходим к цепям переменного тока.
Катушка индуктивности в цепи переменного тока.
Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:
Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:
Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:
Собственно, график нам и демонстрирует эту зависимость! Смотрите сами – между точками 1 и 2 ток у нас изменяется, причем чем ближе к точке 2, тем изменения меньше, а в точке 2 в течении какого-то небольшого промежутка времени ток и вовсе не изменяет своего значения. Соответственно скорость изменения тока максимальна в точке 1 и плавно уменьшается при приближении к точке 2, а в точке 2 равна 0, что мы и видим на графике ЭДС самоиндукции. Причем на всем промежутке 1-2 ток возрастает, а значит скорость его изменения положительна, в связи с этим на ЭДС на всем этом промежутке напротив принимает отрицательные значения.
Аналогично между точками 2 и 3 – ток уменьшается – скорость изменения тока отрицательная и увеличивается – ЭДС самоиндукции увеличивается и положительна. Не буду расписывать остальные участки графика – там все процессы протекают по такому же принципу 🙂
Кроме того, на графике можно заметить очень важный момент – при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: \varepsilon i > 0, участок 3-4: \varepsilon > 0, i w – круговая частота: w = 2 \pi f . [/latex]f[/latex] – это частота переменного тока. Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный ( f = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.
Давайте вернемся к нашим графикам, которые мы построили для случая использования катушки индуктивности в цепи переменного тока. Мы определили ЭДС самоиндукции катушки, но каким же будет напряжение u ? Здесь все на самом деле просто! По 2-му закону Кирхгофа:
Построим на одном графике зависимости тока и напряжения в цепи от времени:
Как видите ток и напряжение сдвинуты по фазе (ссылка) друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:
Вот и с включением катушки в цепь переменного тока мы разобрались!
На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому разговор о катушках индуктивности мы продолжим в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!
Источник
Катушка индуктивности в цепи постоянного и переменного тока
Как ведет себя катушка индуктивности в цепи постоянного и переменного тока?
Катушка индуктивности в цепи постоянного тока
Итак, для этого опыта нам понадобится блок питания, который выдает постоянное напряжение, лампочка накаливания и собственно сама катушка индуктивности.
Чтобы сделать катушку индуктивности с хорошей индуктивностью, нам надо взять ферритовый сердечник:
Намотать на него лакированного медного провода и зачистить выводы:
Замеряем индуктивность нашей катушки с помощью LC метра:
Теперь собираем все это вот по такой схеме:
L – катушка индуктивности
La – лампочка накаливания на напряжение 12 Вольт
Bat – блок питания, с выставленным напряжением 12 Вольт
Как вы помните из прошлой статьи, конденсатор у нас не пропускал постоянный электрический ток:
Делаем вывод: постоянный электрический ток почти беспрепятственно течет через катушку индуктивности. Сопротивлением обладает только сам провод, из которого намотана катушка.
Катушка индуктивности в цепи переменного тока
Для того, чтобы узнать, как ведет себя катушка индуктивности в цепи переменного тока, нам понадобится осциллограф, генератор частоты, собственно сама катушка индуктивности и резистор на 100 Ом. Чем больше сопротивление, тем меньше будет проседать напряжение с моего генератора частоты, поэтому я взял резистор на 100 Ом.Он у меня будет в качестве шунта. Падение напряжения на этом резисторе будет зависеть от тока, протекающего через него
Собираем все это дело по такой схеме:
Получилось как то так:
Сразу договоримся, что у нас первый канал будет красным цветом, а второй канал – желтым. Следовательно, красная синусоида – это частота, которую нам выдает генератор частоты, а желтая синусоида – это сигнал, который снимается с резистора.
Мы с вами узнали, что при нулевой частоте (постоянный ток), катушка почти беспрепятственно пропускает через себя электрический ток. В нашем опыте мы будем подавать с генератора частоты синусоидальный сигнал с разной частотой и смотреть, меняется ли напряжение на резисторе.
Опыт N1
Для начала подаем сигнал с частотой в 1 Килогерц.
Давайте разберемся, что есть что. В зеленой рамочке я вывел автоматические замеры, которые делает осциллограф
Красный кружок с цифрой “1” – это замеры “красного”канала. Как мы видим, F (частота) =1 Килогерц, а Ма (амплитуда) = 1,96 Вольт. Ну грубо скажем 2 Вольта. Смотрим на кружочек с цифрой “2”. F=1 Килогерц, а Ма=1,96 Вольт. То есть можно сказать, что сигнал на выходе точно такой же, как и на входе.
Увеличиваем частоту до 10 Килогерц
Амплитуда не уменьшилась. Сигнал какой есть, такой и остался.
Увеличиваем до 100 Килогерц
Заметили разницу? Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается вправо, то есть запаздывает, или научным языком, появляется сдвиг фаз. Красный сигнал никуда не сдвигается, запаздывает именно желтый. Это имейте ввиду.
Сдвиг фаз – это разность между начальными фазами двух измеряемых величин. В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота. Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз:
Увеличиваем частоту до 200 Килогерц
На частоте 200 Килогерц амплитуда упала вдвое, да и разность фаз стала больше.
Увеличиваем частоту до 300 Килогерц.
Амплитуда желтого сигнала упала уже до 720 милливольт. Разность фаз стала еще больше.
Увеличиваем частоту до 500 Килогерц
Амплитуда уменьшилась до 480 милливольт.
Добавляем еще частоту до 1 Мегагерц
Амплитуда желтого канала стала 280 милливольт.
Ну и добавляем частоту до предела, который позволяет выдать генератор частоты: 2 Мегагерца
Амплитуда “желтого” сигнала стала настолько маленькой, что мне пришлось ее даже увеличить в 5 раз.
И можно сказать, что сдвиг фаз стал почти 90 градусов или π/2.
Но станет ли сдвиг фаз больше, чем 90 градусов, если подать очень-очень большую частоту? Эксперименты говорят, что нет. Если сказать просто, то при бесконечной частоте сдвиг фаз будет равняться 90 градусов. Если совместить наши графики на бесконечной частоте, то можно увидеть примерно вот такой рисунок:
Так какой вывод можно сделать?
С увеличением частоты сопротивление катушки растет, а также увеличивается сдвиг фаз. И чем больше частота, тем больше будет сдвиг фазы, но не более, чем 90 градусов.
Опыт N2
Давайте же уменьшим индуктивность катушки. Прогоним еще раз по тем же самым частотам. Я убрал половину витков и сделал витки на край феррита, тем самым уменьшил индуктивность до 33 микрогенри.
Итак, прогоняем все по тем же значениям частоты
При частоте в 1 Килогерц у нас значение почти не изменилось.
Здесь тоже ничего не изменилось.
Тоже почти ничего не изменилось, кроме того, что желтый сигнал стал тихонько сдвигаться.
Здесь уже видим, что амплитуда на желтом сигнале начинает проседать и сдвиг фаз наращивает обороты.
Сдвиг фаз стал больше и амплитуда просела еще больше
Сдвиг стал еще больше и амплитуда желтого сигнала тоже просела.
Амплитуда желтого сигнала падает, сдвиг фаз прибавляется. 😉
2 Мегагерца, предел моего генератор частоты
Сдвиг фаз стал почти равен 90 градусов, а амплитуда стала даже меньше, чем пол Вольта.
Обратите внимание на амплитуду в Вольтах на тех же самых частотах. В первом случае у нас индуктивность была больше, чем во втором случае, но амплитуда желтого сигнала во втором случае больше, чем в первом.
Отсюда вывод напрашивается сам собой:
При уменьшении индуктивности, сопротивление катушки индуктивности также уменьшается.
Реактивное сопротивление катушки индуктивности
С помощью нехитрых умозаключений, физиками была выведена формула:
П – постоянная и равна приблизительно 3,14
В данном опыте мы с вами получили фильтр низких частот (ФНЧ). Как вы видели сами, на низких частотах катушка индуктивности почти не оказывает сопротивление напряжению, следовательно амплитуда и мощность на выходе такого фильтра будет почти такой же, как и на входе. Но с увеличением частоты у нас амплитуда гасится. Применив такой фильтр на динамик, можно с уверенностью сказать, что будет усиливаться только бас, то есть низкая частота звука.
Видео про катушку индуксивности:
Заключение
Постоянный ток протекает через катушку индуктивности без каких-либо проблем. Сопротивлением обладает только сам провод, из которого намотана катушка.
Сопротивление катушки зависит от частоты протекающего через нее тока и выражается формулой:
Источник