Меню

Электромагнитная индукция катушки с током



Электромагнитная индукция

Явление электромагнитной индукции

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Магнитный поток

Магнитным потоком через площадь ​ \( S \) ​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​ \( B \) ​, площади поверхности ​ \( S \) ​, пронизываемой данным потоком, и косинуса угла ​ \( \alpha \) ​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Обозначение – ​ \( \Phi \) ​, единица измерения в СИ – вебер (Вб).

Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции:

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​ \( \alpha \) ​ магнитный поток может быть положительным ( \( \alpha \) \( \alpha \) > 90°). Если \( \alpha \) = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Закон электромагнитной индукции Фарадея

Закон электромагнитной индукции (закон Фарадея):

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​ \( N \) ​ витков, то ЭДС индукции:

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​ \( R \) ​:

При движении проводника длиной ​ \( l \) ​ со скоростью ​ \( v \) ​ в постоянном однородном магнитном поле с индукцией ​ \( \vec \) ​ ЭДС электромагнитной индукции равна:

где ​ \( \alpha \) ​ – угол между векторами ​ \( \vec \) ​ и \( \vec \) .

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Важно!
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
  • вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило Ленца

Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Алгоритм решения задач с использованием правила Ленца:

  • определить направление линий магнитной индукции внешнего магнитного поля;
  • выяснить, как изменяется магнитный поток;
  • определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
  • по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.

Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

Самоиндукция

Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.

При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.

В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.

При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.

Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.

Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.

При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.

ЭДС самоиндукции ​ \( \varepsilon_ \) ​, возникающая в катушке с индуктивностью ​ \( L \) ​, по закону электромагнитной индукции равна:

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

Индуктивность

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ​ \( \Phi \) ​ через контур из этого проводника пропорционален модулю индукции ​ \( \vec \) ​ магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.

Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Индуктивность – коэффициент пропорциональности ​ \( L \) ​ между силой тока ​ \( I \) ​ в контуре и магнитным потоком ​ \( \Phi \) ​, создаваемым этим током:

Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:

Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.

Энергия магнитного поля

При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.

Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:

Основные формулы раздела «Электромагнитная индукция»

Алгоритм решения задач по теме «Электромагнитная индукция»:

1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.

2. Записать формулу:

  • закона электромагнитной индукции;
  • ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.

3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.

4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).

5. Решить полученную систему уравнений относительно искомой величины.

Источник

Закон электромагнитной индукции

О чем эта статья:

Магнитный поток

Прежде, чем разобраться с тем, что такое электромагнитная индукция, нужно определить такую сущность, как магнитный поток.

Представьте, что вы взяли обруч в руки и вышли на улицу в ливень. Чем сильнее ливень, тем больше через этот обруч пройдет воды — поток воды больше.

магнитный поток

Если обруч расположен горизонтально, то через него пройдет много воды. А если начать его поворачивать — уже меньше, потому что он расположен не под прямым углом к вертикали.

пример потока

Теперь давайте поставим обруч вертикально — ни одной капли не пройдет сквозь него (если ветер не подует, конечно).

пример потока рис2

Магнитный поток по сути своей — это тот же самый поток воды через обруч, только считаем мы величину прошедшего через площадь магнитного поля, а не дождя.

Магнитным потоком через площадь ​S​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​B​, площади поверхности ​S​, пронизываемой данным потоком, и косинуса угла ​α​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Магнитный поток

формула

Ф — магнитный поток [Вб]

B — магнитная индукция [Тл]

S — площадь пронизываемой поверхности [м^2]

n — вектор нормали (перпендикуляр к поверхности) [-]

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​α магнитный поток может быть положительным (α 90°). Если α = 90°, то магнитный поток равен 0. Это зависит от величины косинуса угла.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура, магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Читайте также:  Формула тока направление движения частиц

Ученики Skysmart не боятся сложных понятий по физике и чувствуют себя уверенее на контрольных в школе. А еще — не могут оторваться от домашки: захватывает не хуже, чем тик-ток.

Запишите ребенка на вводное занятие: покажем, как все проходит на интерактивной платформе и вдохновим на учебу!

Электромагнитная индукция

Электромагнитная индукция — явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

Майкл Фарадей провел ряд опытов, которые помогли открыть явление электромагнитной индукции.

Опыт раз. На одну непроводящую основу намотали две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй — подключены к источнику тока.

При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.

Опыт два. Первую катушку подключили к источнику тока, а вторую — к гальванометру. При этом вторая катушка перемещалась относительно первой. При приближении или удалении катушки фиксировался ток.

Опыт три. Катушка замкнута на гальванометр, а магнит движется вдвигается (выдвигается) относительно катушки

опыт

Вот, что показали эти опыты:

Почему возникает индукционный ток?

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС.

Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Закон электромагнитной индукции

Закон электромагнитной индукции (закон Фарадея) звучит так:

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром.

Математически его можно описать формулой:

Закон Фарадея

закон Фарадея

Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре всегда направлен так, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​N витков (то есть он — катушка), то ЭДС индукции будет вычисляться следующим образом.

Закон Фарадея для контура из N витков

закон Фарадея для контура

Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

N — количество витков [-]

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​R​:

Закон Ома для проводящего контура

Закон Ома

Ɛi — ЭДС индукции [В]

I — сила индукционного тока [А]

R — сопротивление контура [Ом]

Если проводник длиной l будет двигаться со скоростью ​v​ в постоянном однородном магнитном поле с индукцией ​B​ ЭДС электромагнитной индукции равна:

ЭДС индукции для движущегося проводника

ЭДС индукции

Ɛi — ЭДС индукции [В]

B — магнитная индукция [Тл]

v — скорость проводника [м/с]

l — длина проводника [м]

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле
  • вследствие изменения во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило Ленца

Чтобы определить направление индукционного тока, нужно воспользоваться правилом Ленца.

Академически это правило звучит следующим образом: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Правило Ленца

Давайте попробуем чуть проще: катушка в данном случае — это недовольная бабуля. Забирают у нее магнитный поток — она недовольна и создает магнитное поле, которое этот магнитный поток хочет обратно отобрать.

Дают ей магнитный поток, забирай, мол, пользуйся, а она такая — «Да зачем сдался мне ваш магнитный поток!» и создает магнитное поле, которое этот магнитный поток выгоняет.

Источник

Катушки индуктивности и магнитные поля. Часть 2. Электромагнитная индукция и индуктивность

Взаимосвязь электрических и магнитных полей

Электромагнитная индукция и индуктивностьЭлектрические и магнитные явления изучались давно, вот только никому не приходило в голову каким-то образом связать эти исследования между собой. И только в 1820 году было обнаружено, что проводник с током действует на стрелку компаса. Это открытие принадлежало датскому физику Хансу Кристиану Эрстеду. Впоследствии его именем была названа единица измерения напряженности магнитного поля в системе СГС: русское обозначение Э (Эрстед), англоязычное – Oe. Такую напряженность магнитное поле имеет в вакууме при индукции в 1 Гаусс.

Это открытие наводило на мысль о том, что из электрического тока можно получить магнитное поле. Но вместе с тем возникали мысли и по поводу обратного преобразования, а именно, как из магнитного поля получить электрический ток. Ведь многие процессы в природе обратимы: из воды получается лед, который можно снова растопить в воду.

На изучение этого очевидного сейчас закона физики после открытия Эрстеда ушло целых двадцать два года. Получением электричества из магнитного поля занимался английский ученый Майкл Фарадей. Делались различной формы и размеров проводники и магниты, искались варианты их взаимного расположения. И только, видимо, случайно ученый обнаружил, что для получения на концах проводника ЭДС необходимо еще одно слагаемое – движение магнита, т.е. магнитное поле должно быть обязательно переменным.

Сейчас это никого уже не удивляет. Именно так работают все электрические генераторы, — пока его чем-то вращают, электроэнергия вырабатывается, лампочка светит. Остановили, перестали вращать, и лампочка погасла.

Электромагнитная индукция

Таким образом, ЭДС на концах проводника возникает лишь в том случае, если его определенным образом перемещать в магнитном поле. Или, точнее говоря, магнитное поле обязательно должно изменяться, быть переменным. Это явление получило название электромагнитной индукции, по-русски электромагнитное наведение: в этом случае говорят, что в проводнике наводится ЭДС. Если к такому источнику ЭДС подключить нагрузку, то в цепи будет протекать ток.

Величина наведенной ЭДС зависит от нескольких факторов: длины проводника, индукции магнитного поля B, и в немалой степени от скорости перемещения проводника в магнитном поле. Чем быстрее вращать ротор генератора, тем напряжение на его выходе выше.

Замечание: электромагнитную индукцию (явление возникновение ЭДС на концах проводника в переменном магнитном поле) не следует путать с магнитной индукцией – векторной физической величиной характеризующей собственно магнитное поле.

Три способа получения ЭДС

Индукция

Этот способ был рассмотрен в первой части статьи. Достаточно перемещать проводник в магнитном поле постоянного магнита, или наоборот перемещать (практически всегда вращением) магнит около проводника. Оба варианта однозначно позволят получить переменное магнитное поле. В этом случае способ получения ЭДС называется индукцией. Именно индукция используется для получения ЭДС в различных генераторах. В опытах Фарадея в 1831 году магнит поступательно перемещался внутри катушки провода.

Взаимоиндукция

Это название говорит о том, что в этом явлении принимают участие два проводника. В одном из них протекает изменяющийся ток, который создает вокруг него переменное магнитное поле. Если рядом находится еще один проводник, то на его концах возникает переменная же ЭДС.

Такой способ получения ЭДС называется взаимоиндукцией. Именно по принципу взаимоиндукции работают все трансформаторы, только проводники у них выполнены в виде катушек, а для усиления магнитной индукции применяются сердечники из ферромагнитных материалов.

Если ток в первом проводнике прекратится (обрыв цепи), или станет пусть даже очень сильным, но постоянным (нет никаких изменений), то на концах второго проводника никакой ЭДС получить не удастся. Вот почему трансформаторы работают только на переменном токе: если к первичной обмотке подключить гальваническую батарейку, то на выходе вторичной обмотки никакого напряжения однозначно не будет.

ЭДС во вторичной обмотке наводится только при изменении магнитного поля. Причем, чем сильнее скорость изменения, именно скорость, а не абсолютная величина, тем больше будет наведенная ЭДС.

Три способа получения ЭДС

Самоиндукция

Если убрать второй проводник, то магнитное поле в первом проводнике будет пронизывать не только окружающее пространство, но и сам проводник. Таким образом, под воздействием своего поля в проводнике наводится ЭДС, которая называется ЭДС самоиндукции.

Явления самоиндукции в 1833 году изучал русский ученый Ленц. На основании этих опытов удалось выяснить интересную закономерность: ЭДС самоиндукции всегда противодействует, компенсирует внешнее переменное магнитное поле, которое вызывает эту ЭДС. Эта зависимость называется правилом Ленца (не путать с законом Джоуля — Ленца).

Знак «минус» в формуле как раз и говорит о противодействии ЭДС самоиндукции причинам ее породившим. Если катушку подключить к источнику постоянного тока, ток будет возрастать достаточно медленно. Это очень заметно при «прозвонке» первичной обмотки трансформатора стрелочным омметром: скорость движения стрелки в сторону нулевого деления шкалы заметно меньше, чем при проверке резисторов.

При отключении катушки от источника тока ЭДС самоиндукции вызывает искрение контактов реле. В случае, когда катушка управляется транзистором, например катушка реле, то параллельно ей ставится диод в обратном направлении по отношению к источнику питания. Это делается для того, чтобы защитить полупроводниковые элементы от воздействия ЭДС самоиндукции, которая может в десятки и даже сотни раз превышать напряжение источника питания.

Для проведения опытов Ленц сконструировал интересный прибор. На концах алюминиевого коромысла закреплены два алюминиевых же кольца. Одно кольцо сплошное, а в другом был сделан пропил. Коромысло свободно вращалось на иголке.

cамоиндукция

При введении постоянного магнита в сплошное кольцо оно «убегало» от магнита, а при выведении магнита стремилось за ним. Те же самые действия с разрезанным кольцом никаких движений не вызывали. Это объясняется тем, что в сплошном кольце под воздействием переменного магнитного поля возникает ток, который создает магнитное поле. А в разомкнутом кольце тока нет, следовательно, нет и магнитного поля.

Немаловажная деталь этого опыта в том, что если магнит будет введен в кольцо и останется неподвижным, то никакой реакции алюминиевого кольца на присутствие магнита не наблюдается. Это лишний раз подтверждает, что ЭДС индукции возникает только в случае изменения магнитного поля, причем величина ЭДС зависит от скорости изменения. В данном случае просто от скорости перемещения магнита.

То же можно сказать и о взаимоиндукции и самоиндукции, только изменение напряженности магнитного поля, точнее скорость его изменения зависит от скорости изменения тока. Для иллюстрации этого явления можно привести такой пример.

Пусть через две достаточно большие одинаковые катушки проходят большие токи: через первую катушку 10А, а через вторую целых 1000, причем в обеих катушках токи линейно возрастают. Предположим, что за одну секунду ток в первой катушке изменился с 10 до 15А, а во второй с 1000 до 1001А, что вызвало появление ЭДС самоиндукции в обеих катушках.

Но, несмотря на такое огромное значение тока во второй катушке, ЭДС самоиндукции будет больше в первой, поскольку там скорость изменения тока 5А/сек, а во второй всего 1А/сек. Ведь ЭДС самоиндукции зависит от скорости возрастания тока (читай магнитного поля), а не от его абсолютной величины.

Читайте также:  Частицы образующие ток в полупроводниках

Индуктивность

Магнитные свойства катушки с током зависят от количества витков, геометрических размеров. Значительного усиления магнитного поля можно добиться введением в катушку ферромагнитного сердечника. О магнитных свойствах катушки с достаточной точностью можно судить по величине ЭДС индукции, взаимоиндукции или самоиндукции. Все эти явления были рассмотрены выше.

Характеристика катушки, которая рассказывает об этом, называется коэффициентом индуктивности (самоиндукции) или просто индуктивностью. В формулах индуктивность обозначается буквой L, а на схемах этой же буквой обозначаются катушки индуктивности.

Единица измерения индуктивности – генри (Гн). Индуктивностью 1Гн обладает катушка, в которой при изменении тока на 1А в секунду вырабатывается ЭДС 1В. Это величина достаточно большая: индуктивностью в один и более Гн обладают сетевые обмотки достаточно мощных трансформаторов.

Поэтому достаточно часто пользуются величинами меньшего порядка, а именно милли и микро генри (мГн и мкГн). Такие катушки применяются в электронных схемах. Одно из применений катушек – колебательные контура в радиоустройствах.

Также катушки используются в качестве дросселей, основное назначение которых пропустить без потерь постоянный ток при этом ослабив переменный (фильтры в источниках питания). Как правило, чем выше рабочая частота, тем меньшей индуктивности требуются катушки.

Индуктивное сопротивление

Если взять достаточно мощный сетевой трансформатор и померить мультиметром сопротивление первичной обмотки, то окажется, что оно всего несколько Ом, и даже близко к нулю. Выходит, что ток через такую обмотку будет очень большим, и даже стремиться к бесконечности. Кажется, короткое замыкание просто неизбежно! Так почему же его нет?

Одним из основных свойств катушек индуктивности является индуктивное сопротивление, которое зависит от индуктивности и от частоты переменного тока, который подведен к катушке.

Нетрудно видеть, что с увеличением частоты и индуктивности индуктивное сопротивление увеличивается, а на постоянном токе вообще становится равным нулю. Поэтому при измерении сопротивления катушек мультиметром измеряется только активное сопротивление провода.

Конструкция катушек индуктивности весьма разнообразна и зависит от частот, на которых работает катушка. Например, для работы в дециметровом диапазоне радиоволн достаточно часто используются катушки, выполненные печатным монтажом. При массовом производстве такой способ очень удобен.

Индуктивность катушки зависит от ее геометрических размеров, сердечника, количества слоев и формы. В настоящее время выпускается достаточное количество стандартных катушек индуктивности похожих на обычные резисторы с выводами. Маркировка таких катушек выполняется цветными кольцами. Также существуют катушки для поверхностного монтажа, применяемые в качестве дросселей. Индуктивность таких катушек составляет несколько миллигенри.

Источник

Что такое электромагнитная катушка?

Электромагнитные катушки

Электромагнитная катушка представляет собой электрический проводник, как правило провод, в форме катушки или другой подобной форме. Большинство этих катушек намотано на сердечник из железного материала.

Этот простой компонент может использоваться во множестве устройств, во многом благодаря уникальному взаимодействию между магнитными полями и электрическим током.

В системах обогрева устройство может представлять собой электромагнитную катушку, генерирующую тепло за счет индукции, или простой резистивный нагревательный элемент в форме катушки.

Назначение электромагнитных катушек

Чтобы соответствовать широкому спектру применений, существует множество типов электромагнитных катушек, различающихся по сечению, длине, диаметру катушки и материалам, на которые наматывается провод. Все разновидности электрических катушек могут быть адаптированы для удовлетворения конкретных требований.

Кроме того, помимо передачи тепла, звука или электричества, электрические катушки должны выполнять несколько различных функций. Например, электроника, автомобилестроение, медицина, компьютерная промышленность, бытовая техника и телекоммуникации в значительной степени полагаются на электрические катушки для обеспечения движения, регулирования потока и / или преобразования электрических токов.

Хотя это может показаться очень разными функциями, основные электромеханические принципы, используемые во всех электрических катушках, в целом одинаковы: проводящий металлический провод наматывается на изолятор, который может быть таким простым материалом, как картон, пластик или даже воздух.

схема электромагнитной катушки

Два конца провода обычно превращаются в электрические соединительные клеммы, называемые «ответвителями», которые затем подключаются к электрическому току. Когда ток проходит по спиральным проводам, сама катушка намагничивается (хотя в некоторых случаях она может размагничиваться).

Сила, создаваемая этим явлением, используется, в частности, такими компаниями, как производители электромагнитных клапанов, производители электродвигателей и поставщики аппаратов МРТ.

Применение электромагнитных катушек

Электромагнитные катушки используются в электротехнике в бесчисленных отраслях промышленности и в конкретных приложениях из-за важности взаимодействия между электрическими токами и магнитными полями во многих электрических устройствах.

Соответственно, электрические катушки встречаются почти во всех отраслях промышленности. В любой отрасли, использующей электричество, вероятно, есть по крайней мере несколько приложений, использующих электрические катушки, хотя они могут быть встроены в готовое оборудование и не являются предметом особой озабоченности компаний в каждой отрасли.

Отрасли с особыми сферами применения и уникальной потребностью в производстве обмоток электрических катушек или сборки катушек включают, но не ограничиваются:

  • Выработка энергии. Ключевой компонент при производстве любого электрического генератора или электродвигателя.
  • Тяжелая индустрия. Используется для различных двигателей и устройств управления, работающих в тяжелых условиях, а также в специальных электромагнитных устройствах.
  • Телекоммуникации. Используются как антенны, реле и т. д.
  • Медицина. Используется в различных устройствах формирования электромагнитных изображений и для определенных приложений, таких как биофильтры.
  • Компьютеры. Используется в магнитных запоминающих устройствах.
  • Бытовая техника. Многие нагревательные катушки используют одни и те же принципы электромагнитной индукции; там, где тепло было бы нежелательным побочным эффектом в других приложениях, это основная цель в различных домашних устройствах, таких как тепловые насосы или индукционные электрические плиты.
  • Автомобильная промышленность. Применяется для различных двигателей, генераторов. В частности, узел катушки, то есть катушки зажигания, катушка соленоида или реле стартера.
  • Контроль мощности. Используется в автоматических выключателях, контакторах, катушечных переключателях реле и различных других механизмах управления мощностью.

История

История электромагнитной катушки — это история электромагнитной науки в целом, так как именно с катушкой из проволоки и магнитом Майкл Фарадей впервые определил, что электрический ток может генерироваться с помощью магнитных сил. За прошедшие с тех пор годы практическое применение этих знаний проявилось во многих формах, хотя самым непосредственным ранним применением, конечно же, был электрический генератор Грамма в 1871 году.

электрический генератор Грамма

По мере того, как наше понимание и использование электромагнитных сил продвигалось вперед, появились и электромагнитные катушки. Для каждого потенциального применения бесчисленное количество раз изобретались, совершенствовались и модернизировались одна или несколько катушек с индивидуальными требованиями. Природа электрических катушек такова, что инновации в конструкции катушек присущи практически любому применению.

Конструкция электромагнитной катушки

Базовая конструкция электрической катушки может легко усложниться с добавлением дополнительных обмоток. Обмотка определяется как полный узел катушки с отводами и другими элементами. В то время как в где то может использоваться одна обмотка, то другие требуют добавления вторичных и даже третичных обмоток.

Электрический трансформатор, например, представляет собой электромагнитный компонент, который состоит из первичной и вторичной обмоток, что позволяет ему передавать электрическую энергию от одной электрической цепи к другой электрической цепи посредством магнитной муфты без движущихся частей.

электромагнитная катушка

Определенные как точки в проволочной катушке, которая состоит из открытого проводящего участка, отводы катушки могут различаться в основном по размеру, так же как и диаметр самой катушки. Когда катушка имеет большой диаметр, степень самоиндукции намного больше, и ток пытается течь внутри провода, а не снаружи, что может быть проблемой.

Кроме того, многослойные электрические катушки могут иметь проблемы с межслойной емкостью, которая относится к электрическому явлению, при котором сохраняется электрический заряд, поэтому форма катушки должна быть изменена.

В результате для многослойных электрических катушек спиральная форма является наиболее практичной формой. Величина самоиндукции намного больше, и ток пытается течь внутри провода, а не снаружи, что может быть проблемой.

Кроме того, многослойные электрические катушки могут иметь проблемы с межслойной емкостью, которая относится к электрическому явлению, при котором сохраняется электрический заряд, поэтому форма катушки должна быть изменена.

  • Проводящие материалы

Основа любой электрической катушки, включая простые резистивные нагревательные элементы — это проводящий материал, имеющий форму катушки. Чаще всего это медная проволока, но для этой роли можно использовать любой токопроводящий материал. Алюминий — популярная альтернатива.

  • Основные материалы

Для большинства электромагнитных катушек также необходимо учитывать материал сердечника. Обычно это какой-нибудь ферромагнитный материал, например, железо. Сердечник может представлять собой сплошной кусок, пучок проводов или любое количество других конфигураций.

Типы и формы электромагнитных катушек

В зависимости от используемого приложения, вы обычно будете довольно ограничены в общем стиле электрической катушки. Устройству, который требует статора, совместимого с постоянным током, не нужна катушка для электродвигателя переменного тока, так как ваши возможности, таким образом, будут довольно ограничены.

формы электромагнитных катушек

Специфика конструкции электрических катушек означает, что каждый небольшой аспект конфигурации может сильно повлиять на производительность конечного продукта. Например, на индуктивные свойства простой электромагнитной катушки напрямую влияют эти и многие другие факторы:

  • Количество обертываний
  • Площадь катушки
  • Длина катушки
  • Материал сердечника
  • Материал катушки

Несмотря на то, что в конструкции электрических катушек есть основное сходство, есть много способов, которыми каждая катушка может быть разработана специально для ее применения. Например, некоторые электрические катушки требуют защиты от суровых условий окружающей среды, таких как влажность, соль, масло и вибрация.

Чтобы защитить хрупкие катушки от агрессивных элементов, поскольку при длительном воздействии можно легко потерять проводимость, электрические катушки можно формовать или герметизировать.

В то время как формованные катушки заключены в пластиковые покрытия, которые герметизируют весь блок катушек, герметизированные катушки сделаны из проволоки, которая сама залита полимерно- эпоксидной смолой.

Другие типы электрических катушек, такие как катушки тороидального трансформатора, намотаны вокруг ферритовых колец и обернуты герметизирующей лентой для защиты окружающей среды.

катушки тороидального трансформатора

Один из наиболее распространенных типов электрических катушек, соленоидные катушки, иногда просто называют соленоидами. Часто используемые в качестве удаленного переключателя, соленоиды представляют собой катушки с током, которые становятся магнитными, когда ток проходит через катушку, которая обычно наматывается на железный сердечник.

Другие типы электромагнитных катушек включают:

катушки Роговского

  • катушки Гарретта, используемые в металлоискателях
  • катушки Роговского, используемые для измерения переменного тока (AC)
  • катушки Удина, которые являются катушками с разрушающим зарядом
  • катушки Браунбека, используемые в геомагнитных исследованиях.

Катушка Роговского

Оптимизация производительности электромагнитных катушек

Поскольку работа электрической катушки в конечном итоге очень проста, оптимизация производительности обычно сводится к точному согласованию конструкции катушки с применением. Это означает, что необходимо убедиться, что все совпадает, эффективно подходит и течет чисто, без потерь тепла, движения и т. д.

В зависимости от конкретного применения повышение производительности может означать замену катушки на лучшую конструкцию или замену компонентов, чтобы они лучше соответствовали вашей конструкции. катушка. Вам нужно будет решить, исходя из того, что вы пытаетесь сделать.

Конечно, чтобы сделать что-либо из этого, требуется понимание того, как работает ваша система, что делает аналитические инструменты и программное обеспечение идеальными для всех, кто пытается добиться максимальной производительности.

Вы можете обнаружить несколько поверхностных проблем без надлежащего оборудования, но для всего, что приближается к максимальной производительности, вам понадобится современное оборудование.

При выборе конструкции для вашей электрической катушки есть несколько других факторов, которые вы можете рассмотреть, прежде чем обращаться к компании, производящей обмотки. Если вы не уверены в чем-либо из них, не стесняйтесь спросить совета у любой компании, производящей обмотки, или спросите своего инженера-электрика.

Виды электромагнитных катушек

  • Катушки с воздушным сердечником (самонесущие катушки) — электромагнитные катушки, которые намотаны «вокруг воздуха» без сердечника, отсюда термины «воздушные катушки» и «самоподдерживаемые катушки».
  • Катушки с намоткой на шпульку — электромагнитный провод, намотанный на пластиковый сердечник или «шпульку». Пластиковые сердечники бывают разных размеров, а катушки, намотанные на бобину, могут быть пропитаны, отформованы или заклеены лентой, чтобы соответствовать различным медицинским устройствам, датчикам, реле и автомобилям.
  • Дроссельные катушки — представляют собой электрические катушки с низким сопротивлением и высокой индуктивностью, которые используются для блокировки высокочастотных переменных токов (AC) электричества, позволяя проходить низкочастотным постоянным токам (DC).

Дроссельные катушки

Катушка Тесла

  • Электрические катушки — альтернативное название электрических катушек, состоят из серии петель, изготовленных из токопроводящей металлической проволоки и намотанных на ферромагнитный сердечник.
  • Инкапсулированные катушки — это электрические катушки, заключенные в силиконовый, полиэфирный, жидкий или термоформованный эпоксидный кожух.
  • Катушки высокого напряжения — это электрические катушки, в которых используется напряжение выше, чем обычно считается безопасным.
  • Катушки зажигания — это электрические индукционные катушки, которые используются для преобразования более низких напряжений мощности в более высокие напряжения мощности, необходимые для зажигания свечей зажигания системы.
  • Пропитанные катушки — катушки, которые были сначала погружены в эпоксидную смолу или подвергнуты совместной экструзии перед намоткой. Ламинирующая эпоксидная смола изолирует проводящий электромагнитный провод от элементов, создавая блок, который эффективно защищен от погодных условий и грязи без затрат на инструменты, связанные с формованными катушками
  • Индукционные катушки — распространенный синоним электрических катушек, электромагнитные катушки используются для создания электродвижущей силы путем активации на магнетизм посредством электрических токов.
  • Магнитные катушки — которые также могут называться электромагнитными катушками или просто катушками, включают все типы электрических катушек, которые работают по принципу индукции.
  • Литые катушки — электромагнитные катушки, заключенные в термоформованные или отлитые под давлением пластиковые корпуса, защищающие катушку от погодных условий, грязи и вибрации.
  • Электромагнитные катушки — также называемые соленоидами, представляют собой трехмерные петли или катушки из проволоки, которые намотаны вокруг металлического сердечника и служат для создания магнитного поля при прохождении электрического тока через катушку.
  • Катушки, обмотанные лентой — катушки, обычно намотанные на сердечник, которые заключены в герметизирующую ленту для защиты электромагнитной катушки от погодных условий, грязи и вибрации. Бухты, намотанные лентой, не так эффективны в блокировании этих вредных элементов, как пропитанные или формованные бухты, но затраты на производство катушек, намотанных лентой, намного ниже
  • Катушка Тесла — электрическое устройство, которое генерирует чрезвычайно высокое напряжение, обычно с целью создания электрических дуг и эффектов молнии или для получения рентгеновских лучей.
Читайте также:  Как сделать ложное тока

Катушка Тесла

  • Тороиды / тороидальные катушки — медный провод, намотанный на ферритовое или железное кольцо в форме пончика. Ферритовый сердечник усиливает индуктивность катушки и может использоваться в транспортных средствах, аудио и источниках питания.
  • Катушки трансформатора — электромагнитные катушки, обычно пропитанные или ламинированные, которые используются для изменения напряжения входящего электрического тока, подавая ток обратно с той же частотой, но с другим напряжением.
  • Звуковые катушки — звуковая катушка, состоящая из обмотки, воротника и бобины, представляет собой своего рода электрическую катушку. Он прикрепляется к вершине диффузора громкоговорителя, где его цель — помочь усилить звук.

Электромагнитные катушки термины

  • Шпулька — пластиковый сердечник, вокруг которого часто наматываются электрические катушки.
  • Обмотка катушки — процесс наматывания электромагнитного провода вокруг сердечника или в самонесущую «воздушную» катушку; катушки могут быть однослойными или состоять из множества слоев. Для точных технических катушек часто требуется «прецизионная намотка».

Проводник — материал, часто металл (например, медь), который пропускает электрические токи за счет движения свободных электронов.

Электрический ток — Поток электрически заряженных электронов или ионов к положительному полюсу, вызванный путем введения электрического энергетического поля

  • Электромагнетизм — магнетизм, который создается электрическим током и зависит от него.
  • Поле катушки — представляет собой электромагнит используется для создания магнитного поля в электромагнитной машине, правило вращающейся электрической машины такой как двигатель или генератор. Он состоит из проволочной катушки, по которой течет ток.
  • Индуктивность — Электродвижущая сила или сила электромагнитной катушки (или цепи), создаваемая воздействием на катушку электрического тока.

    Преобразователь — электрическое устройство, преобразующее энергию из одной формы в другую.

  • Обороты — количество раз, когда электромагнитная катушка наматывается либо на ее сердечник, либо, в случае воздушных катушек, количество раз, когда катушка полностью закручивается
  • Источник

    Электромагнитная индукция — причины возникновения, значение и способы применения явления

    При изменении тока в электрической цепи возникает магнитное поле. Причиной этого является электромагнитная индукция. Это явление широко применяется на практике.

    В статье рассказывается о том, что это такое, и каковы его основные закономерности.

    Явление электромагнитной индукции

    При изменении тока происходит образование магнитного поля. Это явление, в свою очередь, влияет на движение электронов.

    Если рассматривать одиночный провод, расположенный прямо, то он будет создавать поле, направление силовых линий которого идёт по кругу в перпендикулярной ему плоскости.

    Если в магнитном поле происходят изменения, то это увеличивает или ослабляет силу тока, который проходит по проводнику. Направление изменения зависит от того, как меняется поле. Это явление позволяет преобразовывать электрическую энергию в механическую или наоборот.

    Учёный, которому принадлежит заслуга открытия взаимодействия электрического и магнитного полей — Майкл Фарадей.

    Были проведены опыты, которые показали, что изменение магнитного поля способно порождать движение электронов. Это явление впоследствии назвали индукционным током.

    Опыты, выполненные этим учёным, выглядят следующим образом:

    Фарадей сделал катушку с полой серединой. Её концы соединил с гальванометром. Взял в руки магнит и поместил его внутрь катушки. Если его вдвигать или выдвигать, то на гальванометре отклоняется стрелка, доказывая наличие тока. Чем быстрее выполняемое движение, тем выше его сила. Аналогичный эффект будет достигнут, если магнит будет неподвижен, но будет перемещаться соленоид.

    В следующем опыте были использованы две катушки. Большая подключена к гальванометру, а вторая — к источнику. Одна из катушек была настолько узкой, чтоб могла проходить внутрь второй. Если её поместить туда и несколько раз включить и выключить ток, то на гальванометре стрелка отклонится, показывая наличие тока.

    Если взять два соленоида под током и один из них подвигать рядом с другим, то в них также возникнет движение электронов.

    При проведении таких опытов более быстрое движение создаёт более сильное движение электронов.

    Одновременно с Фарадеем аналогичные исследования осуществил Джозеф Генри, однако опубликовал свои результаты позже.

    Объяснение явления

    Движение носителей заряда — электронов происходит в том случае, когда на них действует электродвижущая сила, создаваемая разностью потенциалов.

    Возникновение тока под действием изменения магнитного поля происходит из-за того, что оно создаёт такую силу, которая носит название ЭДС индукции. Хотя явление индуктивности было обнаружено Фарадеем, он не дал ему теоретического объяснения.

    Теория электромагнитного поля в физике была создана Максвеллом в 1861 году. Этому явлению присущи такие черты:

    источником движения электронов является переменное магнитное поле;

    его наличие можно обнаружить по производимому воздействию на электрические заряды;

    это поле не является потенциальным;

    силовые линии поля представляют собой замкнутые кривые.

    Работа магнитного поля выражается в создании электродвижущей силы для электронов.

    Закон электромагнитной индукции Фарадея

    Основной характеристикой магнитного поля является магнитный поток. Зрительно его можно представить, как силовые линии, пронизывающие перпендикулярную плоскую фигуру, ограниченную замкнутой линией. Эти линии выражают вектор магнитной индукции.

    Произведение модуля этой величины на площадь для равномерного и однородного магнитного поля равно потоку поля через рассматриваемый контур.

    При рассмотрении сложного поля, фигуру разбивают на небольшие участки, в которых поле равномерно и суммируют значения для каждого из них. Для вычисления в таких случаях используются методы дифференциального и интегрального исчисления.

    Электромагнитная индукция измеряется в Тесла (Тл). Эта единица получила своё название в честь великого учёного-физика.

    Закон Фарадея количественно описывает влияние магнитного поля на движение электронов. Он утверждает следующее: скорость изменения потока электромагнитного поля равна порождаемой им электродвижущей силе, воздействующей на электроны и создающей ток.

    Нужно заметить, что когда магнитное поле порождается изменением силы тока, то возникающая электродвижущая сила воздействует на него противоположным образом. Это можно прояснить на таком примере.

    Если рассматривается провод, и в нём увеличивается сила тока, то это создаёт магнитное поле. Оно, в свою очередь, создаёт ЭДС, которая препятствует увеличению.

    Правило Ленца

    Это правило даёт возможность правильно определить направление индукционного тока в различных ситуациях. Оно формулируется следующим образом: направление тока, порождённого индукцией, создаёт такое изменение магнитного потока, препятствующее изменению внешнего поля, благодаря которому оно возникло.

    Это можно пояснить на следующем примере. Будет рассмотрена ситуация, когда внешнее магнитное поле со временем будет возрастать, а его силовые линии направлены вверх.

    Это произойдёт, например, в той ситуации, когда снизу к контуру, расположенному горизонтально, будут приближать магнит так, чтобы его северный полюс был обращён вверх. В этом случае магнитный поток будет увеличиваться, создавая электродвижущую силу.

    В контуре будет создан индукционный ток. Он будет таким, чтобы магнитные силовые линии были противоположными по отношению к тем, которые характеризуют первоначальное. Теперь можно определить направление индукционного тока в контуре.

    Как известно, если смотреть со стороны создаваемого поля, то он будет направлен по часовой стрелке. То есть, если смотреть сверху, направление будет против неё.

    На этом примере можно увидеть, как с помощью правила Ленца можно определить направление магнитного поля и индукционного тока.

    Самоиндукция

    В этом случае рассматривается ситуация, когда изменение движения электронов порождает ЭДС, вызывающий индукционный ток в этом же проводнике.

    Взяв за основу правило Ленца, можно утверждать, что он имеет направление, противоположное первоначальному изменению.

    Самоиндукция похожа на явление инерции. Тяжёлое тело невозможно остановить мгновенно. Также нельзя изменить силу тока за один миг до нужной величины из-за наличия явления самоиндукции.

    Это свойство можно продемонстрировать следующим опытом. Нужно сделать две электрических цепи. В одной из них имеется источник и лампочка. Другая сделана аналогичным образом, но различие состоит в том, что в цепь добавлена катушка.

    В первой цепи после включения лампочка загорается сразу. Во второй, учитывая наличие индуктивного элемента, это происходит с заметным опозданием.

    После размыкания свет в первой лампочке отключается практически мгновенно, а во второй это происходит замедленно. Важно отметить, что в процессе выключения индукционный ток может превысить первоначальный. Поскольку в этой ситуации он направлен также, как и рабочий, то сила тока может возрасти. В некоторых цепях это может вызвать перегорание лампочки.

    Индуктивность

    Проводник, через который проходит изменяющийся ток, способен накапливать энергию путём использования магнитного поля. У прямолинейного отрезка провода эта способность имеет незначительную величину.

    Однако, если речь идёт о катушке, то её величина гораздо сильнее. Эта характеристика называется индуктивностью. Она обозначается как «L» и играет важную роль при определении различных характеристик электромагнитного поля.

    Магнитный поток в определённом контуре можно выразить посредством формулы Ф = L* I, а электродвижущую силу в виде E = L* (dI/dt).

    Ток, проходящий через контур, способен создать электромагнитное поле, причём оно будет тем сильнее, чем быстрее будут происходить его изменения.

    На практике для увеличения индуктивности катушки используют вставленные внутрь стержни из ферромагнетика.

    Энергия магнитного поля

    Электрический ток создаёт магнитное поле. При этом он затрачивает определённую энергию. Её величина равна той работе, которая была затрачена на создание поля. Она вычисляется по следующей формуле:

    Здесь использовались такие обозначения:

    W – энергия магнитного поля;

    Если магнитное поле по какой-то причине пропадёт, то его энергия выделится в той или иной форме.

    Применение электромагнитной индукции

    Это явление активно применяется в различных сферах жизни человеческого общества.

    Далее будут приведены несколько наиболее известных примеров:

    радиовещание невозможно без использования явления электромагнитной индукции;

    в медицине магнитотерапия является одним из эффективных методов лечения;

    при фундаментальных исследованиях для разгона элементарных частиц применяются синхрофазотроны, работа которых основана на явлении индуктивности;

    счётчики электричества, применяемые в быту для его учёта, используют рассматриваемое явление;

    для того, чтобы передавать произведённую электростанциями электрическую энергию на большие расстояния, применяются трансформаторы, работа которых построена на использовании электромагнитной индукции;

    в металлургии для плавки металла применяются индукционные печи.

    Использование этого явления очень широко распространено. Приведённые примеры являются только частью различных вариантов использования.

    Все формулы по теме «Электромагнитная индукция»

    Для того чтобы кратко освежить в памяти формулы, относящиеся к магнитной индукции, далее приводится перечень наиболее важных из них.

    Открытие законов, которые описывают поведение электромагнитного поля, является одним из важнейших достижений науки за всю историю. В современной жизни использование этого явления происходит практически во всех областях жизни общества.

    Источник