- Электродвигатели серии А250
- Холостой ход электродвигателя
- Коэффициент мощности при холостом ходе электродвигателя
- Почему так важно при покупке электродвигателя получить профессиональную рекомендацию специалиста
- Основные характеристики асинхронных электродвигателей
- 1. Виды электродвигателей
- 2. Основные характеристики электродвигателей
- Определение мощности электродвигателя без бирки
- Определение мощности двигателя по диаметру вала и длине
- Проверить мощность по габаритам и крепежным размерам
Электродвигатели серии А250
Электродвигатели асинхронные серии А250 имеют привязку мощностей к установочно-присоединительным размерам по Российским стандартам – ГОСТ28330
Краткое описание конструкции электродвигателей серии А250:
Номинальная мощность обеспечивается в длительном режиме работы при температуре 40° С и высоте над уровнем моря не более 1000 м, при номинальном значении напряжения и частоты.
В основном исполнении электродвигатели выполняются для напряжения и частоты:
— 380/660 В Д/Y 50 Гц
По просьбе заказчика завод изготовитель производит электродвигатели на другие стандартные напряжения.
Электродвигатели могут работать без изменения номинальной мощности при колебаниях напряжения сети до ±5% от номинального значения.
Электродвигатели снабжены радиальными вентиляторами из пластмассы или алюминиевого сплава, работающими независимо от направления вращения.
Допустимые уровни вибрации электродвигателей установлены в ГОСТ 28330 (DIN EN 60034-14). В основном исполнении – уровень вибрации N (нормальный).
Стандартная окраска соответствует установке электродвигателей в помещениях или под навесом на открытом воздухе при умеренной температуре. Цвет – RAL 5017 (васильковый).
Электродвигатели основного исполнения предназначены для эксплуатации при температуре от -35° С до +40° С.
Электродвигатели имеют шпонки и пазы под шпонки, выполненные по ГОСТ 23360, исполнения 2 (DIN 6885 формы В). Длины шпонок отвечают ГОСТ 23360 (DIN 748, часть 3). Двигатели поставляются с вложенной шпонкой.
По просьбе заказчика завод изготовитель производит электродвигатели с двумя концами вала. Передаваемая мощность для второго конца вала – по запросу.
Насаживаемые на вал элементы привода (шкив, муфта) необходимо отбалансировать с учетом балансировки ротора электродвигателя.
В соответствии с ГОСТ 28173 (DIN EN 60034-1) при номинальном напряжении и частоте двигатели допускают следующие перегрузки:
— 1.5 номинального тока в течение 2 минут
— 1.6 номинального момента в течение 15 секунд
По просьбе заказчика завод изготовитель производит электродвигатели со встроенной температурной защитой.
Повышенный срок эксплуатации, надежность и термическую перегрузочную способность благодаря применению изоляции класса нагревостойкости F (перегрев обмотки двигателя – 80° C).
Климатическое исполнение: У2, У3, Т2 по ГОСТ 15150-69.
Конструктивное исполнение: IM1001, IM2001, IM3001, IM2101, IM3601 по ГОСТ 2479-79.
Степень защиты: IP54. IP 55 по ГОСТ 17494-87.
Завод изготовитель: Ярославский электромашиностроительный завод. ОАО «ELDIN».
Основные технические характеристики электродвигателей А250 при частоте 50 Гц.
Источник
Холостой ход электродвигателя
При наименьшем значении коэффициента мощности электродвигатель работает в режиме холостого хода. Исходя из соответствующих значений работы электродвигателя на холостом ходу определяют важные значения: намагничивающего тока, мощности и коэффициента потерь в магнитном проводе, в подшипниках или вентиляторе.
Коэффициент мощности при холостом ходе электродвигателя
- Режим холостого хода в асинхронном электродвигателе возникает в момент отсутствия нагрузки в форме редуктора или рабочего момента. При этом режим s=0 недостижим даже при условии, что трение в подшипниках не создаст момент нагрузки. Но если поле статора не пересекает непосредственно поле обмотки ротора и не индуцирует в нем ток, значит, не создается электромагнитное поле ротора.
- Как правило, коэффициент мощности асинхронного электродвигателя в режиме холостого хода не превышает предельно допустимых параметров, равных 0,2. Если увеличить нагрузку на вал электродвигателя, коэффициент мощности возрастет и достигнет наибольшего значения. Такой коэффициент создается при номинальной нагрузке.
- Дальнейшее же увеличение нагрузки приводит к индуктивному сопротивлению ротора, так как увеличивается скольжение и как следствие – частота тока в роторе. Чтобы увеличить коэффициент мощности, следует обеспечить электродвигателю нагрузку, параметры которой наиболее близки к номинальным значениям. Следовательно – необходимо правильно выбрать мощность самого электродвигателя.
- При систематической работе недогруженного электродвигателя подводимое к мотору напряжение пропорционально уменьшают. Сделать это вполне реально, переключив обмотку статора с треугольника на звезду. Такой способ подключения поможет уменьшить фазное напряжение в один раз. Активная же составляющая тока статора пропорционально увеличится. Коэффициент мощности также будет увеличен.
Почему так важно при покупке электродвигателя получить профессиональную рекомендацию специалиста
Неправильно выбранная мощность электродвигателя не позволит решить все поставленные задачи. При неполной загруженности электромотора вы будете иметь дополнительные расходы на его техническое обслуживание и ремонт. При недостатке мощности электродвигатель быстро выйдет из строя.
При покупке электродвигателя в нашей компании Вы получите профессиональную рекомендацию специалиста по подбору электродвигателя нужной модели и нужной мощности.
Источник
Основные характеристики асинхронных электродвигателей
1. Виды электродвигателей
Наибольшее распространение имеет трехфазный асинхронный электродвигатель. Электродвигатели постоянного тока и синхронные применяются редко.
Большинство электрифицированных машин нуждаются в приводе мощностью от 0,1 до 10 кВт, значительно меньшая часть — в приводе мощностью в несколько десятков кВт. Как правило, для привода рабочих машин используются короткозамкнутые трехфазные электродвигатели. По сравнению с фазным такой электродвигатель имеет более простую конструкцию, меньшую стоимость, большую надежность в эксплуатации и простоту в обслуживании, несколько более высокие эксплутационные показатели (коэффициент мощности и коэффициент полезного действия), а при автоматическом управлении требует простой аппаратуры. Недостаток короткозамкнутых электродвигателей — относительно большой пусковой ток. При соизмеримости мощностей трансформаторной подстанции и электродвигателя его пуск сопровождается заметным снижением напряжения сети, что усложняет как пуск самого двигателя, так и работу соседних токоприемников.
Наряду с трехфазными асинхронными короткозамкнутыми электродвигателями основного исполнения применяются также отдельные модификации этих двигателей: с повышенным скольжением, многоскоростные, с фазным ротором, с массивным ротором и т. д. Электродвигатели с фазным ротором применяют и в тех случаях, когда мощность питающей сети недостаточна для пуска двигателя с короткозамкнутым ротором.
Механические характеристики асинхронных электродвигателей с короткозамкнутым ротором в значительной мере зависят от формы и размеров пазов ротора, а также от способа выполнения роторной обмотки. По этим признакам
Рис. 1. Кривые моментов M = f(S) асинхронных электродвигателей
различают электродвигатели с нормальным ротором (нормальная беличья клетка), с глубоким пазом и с двумя клетками на роторе. Конструкция ротора короткозамкнутых асинхронных электродвигателей общего назначения мощностью свыше 500 Вт предопределяет явление вытеснения тока в обмотке, эквивалентно увеличению ее активного сопротивления. Поэтому, а также вследствие насыщения магнитных путей потоков рассеивания такие электродвигатели (в первую очередь обмотки ротора) обладают переменными параметрами и аналитические выражения их механических характеристик усложняются. Увеличение активного сопротивления ротора в период пуска вызывает увеличение начального пускового момента при некотором снижении силы начального пускового тока (рис. 1).
2. Основные характеристики электродвигателей
Номинальный режим электродвигателя соответствует данным, указанным на его щитке (паспорте). В этом режиме двигатель должен удовлетворять требованиям, установленным ГОСТом.
Существует восемь различных режимов работы, из них основными можно считать:
· продолжительный номинальный режим;
· кратковременный номинальный режим с длительностью рабочего периода 10, 30 и 90 мин;
· повторно-кратковременный номинальный режим с продолжительностью включения (ПВ) 15, 25, 40, 60%, с продолжительностью одного цикла не более 10 мин.
Номинальной мощностью Рн электродвигателя называется указанная на щитке полезная механическая мощность на валу при номинальном режиме работы. Номинальная мощность выражается в Вт или кВт.
Номинальная частота вращения nн вала электродвигателя называется указанное на щитке число оборотов в минуту, соответствующее номинальному режиму.
Номинальный момент вращения — момент, развиваемый двигателем на валу при номинальной мощности и номинальной частоте вращения:
Мн — номинальный момент вращения, Н·м (1 кгс·м = 9,81 Н·м ≈ 10 Н·м);
Рн — номинальная мощность, кВт;
nн — номинальная частота вращения, об/мин.
Номинальный к.п.д. hн электродвигателя — отношение его номинальной
мощности к мощности, потребляемой им из сети при номинальном напряжении:
Рн — номинальная мощность, кВт;
Uн — номинальное (линейное) напряжение, В;
Iн — номинальная сила тока, А;
cosφн — номинальный коэффициент мощности.
Номинальной силой тока электродвигателя называется сила тока, соответствующая номинальному режиму. Действительное значение силы тока при номинальном режиме может отличаться от указанного на щитке электродвигателя в пределах установленных допусков для к.п.д. и коэффициента мощности.
Максимальный вращающий момент электродвигателя — наибольший вращающий момент, развиваемый при рабочем соединении обмоток и постепенном повышении момента сопротивления на валу сверх номинального при условии, что напряжение на зажимах двигателя и частота переменного тока остаются неизменными и равными номинальным значениям.
Начальный пусковой вращающий момент электродвигателя — момент вращения его при неподвижном роторе, номинальных значениях напряжения и частоты переменного тока и рабочем соединении обмоток.
Минимальным вращающим моментом электродвигателя в процессе пуска называется наименьший вращающий момент, развиваемый двигателем при рабочем соединении обмоток и частоте вращения в пределах от нуля до значения, соответствующего максимальному вращающему моменту (напряжение на зажимах двигателя и частота переменного тока должны оставаться неизменными и равными их номинальным значениям).
Номинальная частота вращения вала электродвигателя является следующим за мощностью параметром, от которого в значительной мере зависят конструктивное оформление, габариты, стоимость и экономичность работы электропривода. Наиболее приемлемыми в диапазоне мощностей от 0,6 до 100 кВт являются частоты вращения 3000, 1500 и 1000 об/мин (синхронные). Электродвигатели с частотой вращения 750 об/мин (восьмиполюсные) малых мощностей имеют низкие энергетические показатели. При одинаковой мощности электродвигатели с более высокой частотой вращения имеют более высокие значения к.п.д. и cosφ, а также меньшие размеры и массу, что определяет их меньшую стоимость.
Сила тока холостого хода I в значительной мере определяется силой намагничивающего тока I0Р. приближенно можно считать I = I0P . Для машин
основного исполнения относительное значение силы тока холостого хода
I = (0,2—0,6)Iн (оно тем больше, чем меньше номинальная частота вращения и мощность электродвигателя). Зависимость тока холостого хода от частоты вращения электродвигателя приведена в таблице 2.1.
Таблица 2.1. Токи холостого хода для двигателей основного исполнения
Среднее значение токов холостого хода
(в долях от силы номинального тока) при синхронной частоте вращения, об/мин
Источник
Определение мощности электродвигателя без бирки
При отсутствии техпаспорта или бирки на двигателе возникает вопрос: как узнать мощность электродвигателя без таблички или технической документации? Самые распространенные и быстрые способы, о которых мы расскажем в статье:
- По диаметру и длине вала
- По габаритам и крепежным размерам
- По сопротивлению обмоток
- По току холостого хода
- По току в клеммной коробке
- С помощью индукционного счетчика (для бытовых электродвигателей)
Определение мощности двигателя по диаметру вала и длине
Простейшие способы определения мощности и марки двигателя – габаритные размеры – вал или крепежные отверстия. В таблице указаны длины и диаметры валов (D1) и длина (L1) для каждой модели асинхронного промышленного трехфазного мотора. Перейти к подробным габаритным размерам электродвигателей АИР
Р, кВт | 3000 об. мин | 1500 об. мин | 1000 об. мин | 750 об. мин | ||||
D1, мм | L1, мм | D1, мм | L1, мм | >D1, мм | L1, мм | D1, мм | L1, мм | |
1,5 | 22 | 50 | 22 | 50 | 24 | 50 | 28 | 60 |
2,2 | 24 | 28 | 60 | 32 | 80 | |||
3 | 24 | 32 | 80 | |||||
4 | 28 | 60 | 28 | 60 | 38 | |||
5,5 | 32 | 80 | 38 | |||||
7,5 | 32 | 80 | 38 | 48 | 110 | |||
11 | 38 | 48 | 110 | |||||
15 | 42 | 110 | 48 | 110 | 55 | |||
18,5 | 55 | 60 | 140 | |||||
22 | 48 | 55 | 60 | >140 | ||||
30 | 65 | |||||||
37 | 55 | >60 | 140 | 65 | 75 | |||
45 | 75 | 75 | ||||||
55 | 65 | 80 | 170 | |||||
75 | 65 | 140 | 75 | 80 | 170 | |||
90 | 90 | |||||||
110 | 70 | 80 | 170 | 90 | ||||
132 | 100 | 210 | ||||||
160 | 75 | 90 | 100 | 210 | ||||
200 | ||||||||
250 | 85 | 170 | 100 | 210 | ||||
315 | — | — |
Проверить мощность по габаритам и крепежным размерам
Таблица подбора мощности двигателя по крепежным отверстиям на лапах (L10 и B10):
Источник