Электрические цепи с несинусоидальными периодическими токами

Электрические цепи с несинусоидальными периодическими токами

Цепи несинусоидального периодического тока

Цепями периодического несинусоидального тока называются цепи токи в ветвях которых или напряжения на ветвях которых носят несинусоидальный периодический характер. Причинами возникновения в электрических цепях несинусоидальных периодических токов являются

1.Несовершенство (неидеальность) источников синусоидальных напряжений и токов.

2. Наличие в ветвях эл. цепей генераторов напряжений и токов специальной формы ( прямоугольной, пилообразной, трапециедальной и т.п.)

3. Наличие нелинейных элементов в ветвях эл. цепей.

1. Представление несинусоидальных напряжений и токов рядами Фурье

Из курса математики известно, что любую несинусоидальную периодическую функцию F ( w t ) удовлетворяющую условиям Дирихле, т.е. имеющую за полный период конечное число максимумов, минимумов и разрывов первого рода, можно представить в виде ряда Фурье

где К=1, 2, 3….или представить в виде суммы бесконечного числа гармонических составляющих с частотами целыми и кратными основной частоте w . При этом все амплитудные коэффициенты ряда определяются формулами Эйлера -Фурье

Для основных типов периодических функций, имеющих прямоугольную, треугольную, трапециевидную и др. формы, выражения для коэффициентов ряда Фурье приводятся в справочниках. Примеры разложений несинусоидальных периодических сигналов типовых форм приведены на рис.10.1.

В тех случаях, когда представить аналитически несинусоидальную функцию не представляется возможным или она задана в виде графика (или осциллограммы), амплитудные коэффициенты ряда можно получить графо-аналитически.

Этот метод основан на замене определенного интеграла суммой конечного числа слагаемых. Для этого период функции f( w t)=f(x) разбивается на n равных отрезков D X=2 p /n, как показано на рис.10.2. и находятся значения функции f(x) в середине каждого интервала.

После этого вычисляют коэффициенты ряда по формулам

где f p (x), Cos p kx , Sin p kx -значение функции f(x), Cos kx и Sin kx в середине р-го интервала или

f p (x)= f(x) Ѕ x=(p-0.5) D x, Cos p kx= Coskx Ѕ x=(p-0.5) D x, Sin p kx= Sinkx Ѕ x=(p-0.5) D x.

После тривиальных преобразований ряд (10.1) можно переписать в виде

Таким образом после разложения аналитического или графо-аналитического периодические несинусоидальные ток и напряжение можно представить в виде

i = I 0 + I 1m sin( w t + y i 1 ) + I 2m sin(2 w t + y i 2 ) + ј + I rm sin(k w t + y i k ))+ ј , (10.3)

u = U 0 + U 1m sin( w t + y u1 ) + U 2m sin(2 w t + y u2 ) + ј + U km sin(k w t + y uk ))+ ..10.4)

Первыe члены рядов (10.3) и (10.4) ( I 0, U 0 ) называются постоянными составляющими или нулевыми гармоникми. Вторые члены I 1m sin( w t + y i 1 ) и U 1m sin( w t + y u1 ) имеют частоту равную частоте несинусоидальной периодической функции f( w t ) и называются первыми или основными гармоническими составляющими (коротко — гармониками). Остальные члены ряда вида A k sin( k w t + y k ) имеют частоты в целое число раз k больше частоты основной гармоники и называются высшими гармоническим составляющими или гармониками . Каждая высшая гармоника в отдельности именуется по номеру k , т.е. вторая гармоника, третья гармоника и т.д.

2. Мгновенные, средние и действующие значение несинусоидальных периодических величин.

Выражение (10.3) и (10.4) характеризуют мгновенные значения несинусоидальных тока и напряжения.

При несинусоидальных периодических токах и ЭДС в электрической цепи возможно ввести понятия действующих значений аналогично тому, как это было сделано для синусоидальных величин.

Действующее значение тока I определяется через мгновенные значения как

Если представить периодический несинусоидальный ток в виде (10. 3 ) и подставить в (10.5), то после интегрирования получим

Следовательно, действующее значение несинусоидального периодического тока равно корню квадратному из суммы квадратов постоянной составляющей и действующих значений всех гармоник.

Проведя аналогичные выкладки, можно получить выражения для действующих значений ЭДС и падения напряжения в виде

Средние за период значения несинусоидальных напряжений и токов определяются интегралом за период от соответствующего мгновенного значения и если последние представлены в виде соответственно ( 10. 3 ) и (10.4 ), то

Как видно, средние за период значения несинусоидальных периодических величин равны их постоянным составляющим.

Средние по модулю или средние за положительный полупериод значения несинусоидальных напряжений и токов определяются интегралом за период от соответствующего мгновенного значения и если последние представлены в виде соответственно (10. 3 ) и (10.4 ), то

3. Оценка формы кривых несинусоидальных периодических величин

Как уже упоминалось выше, реальные источники электрической энергии в силу конструктивных особенностей формируют ЭДС и токи, отличающиеся от синусоидальных. Чаще всего эти величины симметричны, т.к. симметрична конструкция электромеханических генераторов, и не содержат четных гармоник.

Для оценки формы симметричных кривых используют коэффициенты формы k f , амплитуды k A и искажений k d .

Под коэффициентом формы k ф понимают отношение действующего значения к среднему значению, взятому за положительную полуволну, т.е.

K ф = U /U ср мод.

Для синусоидальных величин k ф » 1.11.

Под коэффициентом амплитуды k A понимают отношение амплитудного значения несинусоидальной величины к действующему, т.е.

(для синусоиды это значение равно 1.414)

Коэффициент искажений k и это отношение действующего значения основной гармоники к действующему значению несинусоидальной кривой, т.е.

Поскольку идеальных синусоидальных величин практически не бывает, то в технике существует понятие практически синусоидальных кривых. Форма кривой считается практически синусоидальной, если все ее ординаты отличаются от ординат первой гармоники не более, чем на 5%. При этом количество контрольных точек должно быть не менее 12.

4. Мощность в цепях несинусоидального тока

Определим теперь среднюю мощность P в цепи при несинусоидальных токах и напряжениях. Она всегда может быть выражена в виде

Подставляя в это выражение напряжение и ток, представленные выражениями (10. 3 ) и ( 10. 4 ), получим

P=U 0 I 0 + U 1 I 1 Cos j 1 +…+ U k I k Cos j k +…,

где j k = y uk — y i k -фазовый сдвиг между к-ми гармониками напряжения и тока.

Из выражения (10.7) следует, что средняя или активная мощность в цепи с несинусоидальными токами и напряжениями равна сумме средних или активных мощностей отдельных гармоник .

По аналогии с цепями синусоидального тока можно ввести понятие полной или кажущейся мощности как произведение действующих значений тока и напряжения S = UI , тогда отношению P /( UI ) можно придать смысл коэффициента мощности cos j э .

Читайте также:  Направление тока в mosfet

Выражение нормально справедливо для некоторой электрической цепи синусоидального тока, в которой протекает ток с действующим значением I и существует падение напряжения U . При этом в цепи выделяется активная мощность P . Следовательно, при изучении некоторых явлений несинусоидальные токи и напряжения, не содержащие постоянных составляющих, можно заменить эквивалентными им по действующему значению синусоидальными со сдвигом фаз между ними j э , соответствующим коэффициенту мощности несинусоидальных величин .

Для цепи несинусоидального тока реактивную мощность определить формально по аналогии с активной мощностью в виде

Q = U 1 I 1 sin j 1 + U 2 I 2 sin j 2 + ј + U k I k sin j k + FACE=»Symbol» SIZE=4>ј

Без доказательства отметим, что в цепях несинусоидального тока не существует связи между активной, реактивной и полной мощностью в виде треугольника мощностей , т.е..

5. Расчет линейных ЭЦ с источниками периодических несинусоидальных напряжений и токов

Если все элементы электрической цепи с несинусоидальными токами и напряжениями линейны, т.е. параметры элементов не зависят от токов и падений напряжения, то анализ электромагнитных процессов в них можно проводить, используя разложение в ряды Фурье.

Расчет цепи при несинусоидальных токах проводится аналогично расчету при синусоидальных, но он должен выполняться отдельно для каждой гармоники, т.е. алгоритм расчета следующий:

-представить действующую в цепи ЭДС или ток рядом Фурье

-любыми методами расчета цепей синусоидального тока произвести расчет отдельно для каждой гармоники спектра;

-по полученному спектру искомых величин найти требуемые значения.

Пусть требуется найти активную мощность в цепи на рис.10.3 , где приложенное напряжение равно u ( t )=10+20sin(1000 t — 30 ° )+5sin(3000 t +45 ° ) В, а параметры элементов R = 20 Ом, C = 50 мкФ и L = 5 мГн.

Спектр приложенного напряжения содержит постоянную составляющую или нулевую гармонику, а также первую и третью гармоники.

Реактивные сопротивления цепи зависят от частоты. Для k -й гармоники их можно представить через сопротивления на частоте основной гармоники в виде

X Lk =k w 1 L=kX L1 ; X Ck =1/k w 1 C=X c1 /k;

где x L 1 = w 1 L = 5 Ом и x C 1 = 1/( w 1 C ) = 20 Ом — индуктивное и емкостное сопротивления на частоте основной гармоники. При расчете реактивных сопротивлений можно формально считать постоянную составляющую нулевой гармоникой. При этом x L 0 = 0, а x C 0 = µ , что соответствует отсутствию этих элементов и вполне согласуется с теорией цепей постоянного тока, где в статических режимах реактивных элементов нет.

Общее комплексное сопротивление цепи на частоте k -й гармоники будет

Подставляя в это выражение значения k = 0, 1, 3, получим значения общих комплексных сопротивлений на всех гармониках в виде Z 0 = 20 Ом ; Z 1 = 10 — j 5 Ом ; Z 3 = 2+ j 9 Ом . Из этих выражений видно, что комплексные сопротивления на разных частотах могут иметь реактивную составляющую разного знака. Отсюда комплексные значения токов — I 0 = U 0 / Z 0 = 10/20 = 0.5 А;

m 1 = m 1 / Z 1 = 20 e — j 30 ° /(10 — j 5) = 1.78 e — j 3.4 ° А; m 3 = Um 3 / Z 3 = 5 e j 45 ° /(2+ j 9) = 0.54 e — j 32.4 ° А.

Полученные комплексные значения составляющих спектра токов можно представить рядом Фурье в виде

i = 0.5+1.78sin(1000 t — 3.4 ° )+0.54sin(1000 t — 32.4 ° ) А.

Теперь можно определить активную мощность в цепи как

P=U 0 I 0 + U 1 I 1 Cos j 1 + U 3 I 3 Cos j 3 =

10 ґ 0.5+ (20 ґ 1.78/2) ґ Cos[-30 o –(-3.4 o )]+ (5 ґ 0.54/2) ґ Cos[45 o –(-32.4 o )]=22.2 Вт

Источник

Электрические цепи с несинусоидальными периодическими токами

Предыдущие лекции были посвящены анализу электрических цепей при синусоидальных токах и напряжениях. На практике ЭДС и токи в большей или меньшей степени являются несинусоидальными. Это связано с тем, что реальные генераторы не обеспечивают, строго говоря, синусоидальной формы кривых напряжения, а с другой стороны, наличие нелинейных элементов в цепи обусловливает искажение формы токов даже при синусоидальных ЭДС источников.

На практике к несинусоидальности напряжений и токов следует подходить двояко:

  • в силовой электроэнергетике несинусоидальные токи обусловливают в общем случае дополнительные потери мощности, пульсации момента на валу двигателей, вызывают помехи в линиях связи; поэтому здесь необходимо «всеми силами» поддержание синусоидальных режимов;
  • в цепях автоматики и связи, где несинусоидальные токи и напряжения лежат в основе принципа действия электротехнических устройств, задача наоборот заключается в их усилении и передаче с наименьшими искажениями.

В общем случае характер изменения величин может быть периодическим, почти периодическим и непериодическим. В данном разделе будут рассматриваться цепи только с периодическими переменными.

Периодическими несинусоидальными величинами называются переменные, изменяющиеся во времени по периодическому несинусоидальному закону. Причины возникновения несинусоидальных напряжений и токов могут быть обусловлены или несинусоидальностью источника питания или (и) наличием в цепи хотя бы одного нелинейного элемента. Кроме того, в основе появления несинусоидальных токов могут лежать элементы с периодически изменяющимися параметрами.

В качестве примера на рис. 1,а представлена цепь с нелинейным резистором (НР), нелинейная вольт-амперная характеристика (ВАХ) которого обусловливает несинусоидальную форму тока i в цепи при синусоидальном напряжении u на ее входе (см. рис. 1,б).

Характеристики несинусоидальных величин

Для характеристики несинусоидальных периодических переменных служат следующие величины и коэффициенты (приведены на примере периодического тока):

  1. Максимальное значение — .
  2. Действующее значение — .
  3. Среднее по модулю значение — .
  4. Среднее за период значение (постоянная составляющая) — .
  5. Коэффициент амплитуды (отношение максимального значения к действующему) — .
  6. Коэффициент формы (отношение действующего значения к среднему по модулю) — .
  7. Коэффициент искажений (отношение действующего значения первой гармоники к действующему значению переменной) — .
  8. Коэффициент гармоник (отношение действующего значения высших гармонических к действующему значению первой гармоники) — .

Разложение периодических несинусоидальных
кривых в ряд Фурье

Из математики известно, что всякая периодическая функция , где Т – период, удовлетворяющая условиям Дирихле, может быть разложена в тригонометрический ряд. Можно отметить, что функции, рассматриваемые в электротехнике, этим условиям удовлетворяют, в связи с чем проверку на их выполнение проводить не нужно.

При разложении в ряд Фурье функция представляется следующим образом:

Здесь — постоянная составляющая или нулевая гармоника; — первая (основная) гармоника, изменяющаяся с угловой частотой , где Т – период несинусоидальной периодической функции.

Читайте также:  Куда направлена сила тока в витке

В выражении (1) , где коэффициенты и определяются по формулам

Свойства периодических кривых, обладающих симметрией

Коэффициенты ряда Фурье для стандартных функций могут быть взяты из справочной литературы или в общем случае рассчитаны по приведенным выше формулам. Однако в случае кривых, обладающих симметрией, задача существенно упрощается, поскольку из их разложения выпадают целые спектры гармоник. Знание свойств таких кривых позволяет существенно сэкономить время и ресурсы при вычислениях.

    Кривые, симметричные относительно оси абсцисс.

К данному типу относятся кривые, удовлетворяющие равенству (см. пример на рис. 2). В их разложении отсутствуют постоянная составляющая и четные гармоники, т.е. .

Кривые, симметричные относительно оси ординат.

К данному типу относятся кривые, для которых выполняется равенство (см. пример на рис. 3). В их разложении отсутствуют синусные составляющие, т.е. .

Кривые, симметричные относительно начала координат.

К этому типу относятся кривые, удовлетворяющие равенству (см. пример на рис. 4). При разложении таких кривых отсутствуют постоянная и косинусные составляющие, т.е. .

Действующее значение периодической несинусоидальной переменной

Как было показано выше, действующим называется среднеквадратичное за период значение величины:

При наличии аналитического выражения функции i(t) и возможности взятия интеграла от ее квадрата действующее значение i(t) определяется точно. Однако в общем случае на практике действующее значение переменной определяется на основе информации о действующих значениях конечного ряда гармонических.

Очевидно, что каждый из интегралов от тригонометрических функций в последнем выражении равен нулю. Таким образом,

Аналогичные выражения имеют место для ЭДС, напряжения и т.д.

Мощность в цепях периодического несинусоидального тока

Тогда для активной мощности можно записать

Как было показано при выводе соотношения для действующего значения несинусоидальной переменной, среднее за период значение произведения синусоидальных функций различной частоты равно нулю. Следовательно,

Таким образом, активная мощность несинусоидального тока равна сумме активных мощностей отдельных гармонических:

Аналогично для реактивной мощности можно записать

где Т – мощность искажений, определяемая произведениями действующих значений разнопорядковых гармонических тока и напряжения.

Методика расчета линейных цепей при периодических несинусоидальных токах

Возможность разложения периодических несинусоидальных функций в ряд Фурье позволяет свести расчет линейной цепи при воздействии на нее несинусоидальных ЭДС (или токов) источников к расчету цепей с постоянными и синусоидальными токами в отдельности для каждой гармоники. Мгновенные значения искомых токов и напряжений определяются на основе принципа наложения путем суммирования найденных при расчете гармонических составляющих напряжений и токов. В соответствии с вышесказанным цепь на рис. 5 при воздействии на нее ЭДС

(при расчете спектр рассматриваемых гармоник ограничивается) в расчетном плане представляется суммой цепей на рис. 6.

Тогда, например, для тока в ветви с источником ЭДС, имеем

где каждая к-я гармоника тока рассчитывается символическим методом по своей к-й расчетной схеме. При этом (поверхностный эффект не учитывается) для всех гармоник параметры и С постоянны.

Необходимо помнить, что ввиду различия частот суммировать комплексы различных гармоник недопустимо.

Таким образом, методика расчета линейных цепей при несинусоидальных токах сводится к следующему:

  1. ЭДС и токи источников раскладываются в ряды Фурье.
  2. Осуществляется расчет цепи в отдельности для каждой гармонической.
  3. Искомые величины определяются как алгебраические суммы соответствующих гармонических.
  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  3. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия- 1972. –240с.

Контрольные вопросы

  1. Что является причиной появления несинусоидальных токов и напряжений в электрических цепях?
  2. Какие величины и коэффициенты характеризуют периодические несинусоидальные переменные?
  3. Какие гармонические отсутствуют в спектрах кривых, симметричных относительно: 1) оси абсцисс; 2) оси ординат; 3) начала системы координат?
  4. Достаточно ли для определения величины полной мощности в цепи несинусоидального тока наличие информации об активной и реактивной мощностях?
  5. Для каких цепей справедлива методика расчета цепей несинусоидального тока, основанная на разложении ЭДС и токов источников в ряды Фурье?
  6. Не прибегая к разложению в ряд Фурье, определить коэффициенты амплитуды и формы кривой на рис. 4.

Определить действующее значение напряжения на зажимах ветви с последовательным соединением резистора с и катушки индуктивности с , если ток в ней . Рассчитать активную мощность в ветви.

Ответ: U=218 В; Р=1260 Вт.

Определить действующее значение тока в ветви с источником ЭДС в схеме на рис. 5, если ; .

Источник

Электрические цепи с периодическими несинусоидальными токами и напряжениями

На практике в большинстве случаев кривые эдс и токов отличны от синусоиды. Несинусоидальными являются эдс, создаваемые генераторами периодических импульсов — пилообразных, ступенчатых, прямоугольных и др. В электрических цепях, содержащих нелинейные сопротивления, индуктивности или емкости, даже при синусоидальных эдс, возникают несинусоидальные токи и напряжения. Расчет таких электрических цепей можно упростить, воспользовавшись методами расчета при синусоидальных эдс. При расчете периодических несинусоидальных функций пользуются разложением их в тригонометрический ряд:

где А — постоянная составляющая; — основная гармоника; — высшие гармоники (k>l); ω=2πf=2π/T— основная частота; Т — период несинусоидальной периодической кривой.

►Если функция задается графиком, то она может быть представлена конечным рядом.

Существует много способов графического решения, в том числе использование специальных шаблонов, гармонических анализаторов и синтезаторов и др.

Разложение несинусоидальной периодической функции на ряд гармонических сводится к определению амплитуд и начальных фаз каждой гармоники.

Периодически изменяющаяся несинусоидальная функция характеризуется тремя значениями: максимальным аmах, среднеквадратическим (или действующим) и средним. Для каждой гармоники эти значения определяются так же, как и при рассмотрении электрических цепей синусоидального тока. Действующее значение несинусоидальной величины зависит только от действующего значения ее гармоник и не зависит от их фаз. Амплитуды гармонических составляющих ряда уменьшаются с увеличением номера гармоники. Поэтому часто при анализе электрических цепей несинусоидального тока ограничиваются первыми членами ряда.

Среднее значение синусоидальной функции за период равно постоянной составляющей, так как суммарная площадь, ограниченная кривой, за период любой гармонической составляющей равна нулю. Например, среднее значение функции рис. 43, а равно 0, а рис. 43, б равно аmах/2. Действующее значение несинусоидальных электрических величин равно корню квадратному из суммы квадратов действующих значений составляющих гармоник и постоянной составляющей

Сравнивать несинусоидальные величины удобно по коэффициентам: формы kф, амплитуды ka и искажения kи.

где Ат, Аср и А — соответственно амплитудное, среднее и действующее значения; А1—действующее значение основной гармоники.

►Расчет электрической цепи с несинусоидальными эдс и токами, проводят методом наложения, при котором счи тается, что линейная электрическая цепь для каждой гармонической составляющей эдс независима.

Метод наложения состоит из трех этапов: 1) разложения действующей в цепи эдс на гармонические составляющие; 2) расчета токов и напряжений в цепи для каждой из гармонических составляющих эдс; 3) суммирования решений, полученных для каждой составляющей. Например, если в цепи эдс , то она аналогична действию трех последовательно соединенных эдс Е, Е(1) и E(2). Мгновенное значение тока цепи будет равно сумме составляющих токов отдельных гармоник i=I+i(1)+i(2)

► При расчете электрической цепи следует учитывать, что емкостное сопротивление с увеличением порядка гармоники уменьшается в k раз: , а индуктивное сопротивление в k раз увеличивается: .

Активное сопротивление с ростом частоты за счет поверхностного эффекта возрастает, но при невысоких частотах можно считать его практически неизменным, равным сопротивлению постоянному току. Поэтому ток в электрической цепи, содержащей L, по форме более близок к синусоиде, чем в цепи с С, где кривая тока более искажена. В последнем случае постоянная составляющая тока отсутствует, так как сопротивление емкости постоянному току равно бесконечности.

Если цепь состоит из элементов R, L и С, то полное сопротивление цепи для любой гармоники

Значение тока определяется по формуле

Зная действующее значение токов каждой гармоники, можно определить активную мощность электрической цепи. Полагая неизменным активное сопротивление (область невысоких частот), имеем

Дата добавления: 2015-04-16 ; просмотров: 37 ; Нарушение авторских прав

Источник

Электрические цепи с несинусоидальными периодическими напряжениями и токами

Основные понятия

Периодическими несинусоидальными токами называют токи, изменяющиеся в времени по периодическому несинусоидальному закону.

Несинусоидальные токи возникают при различных режимах работы электрических цепей. Таких режимов четыре.

  1. Источник электрической энергии вырабатывает несинусоидальную ЭДС или несинусоидальный ток, а все элементы цепи (активные сопротивления, индуктивности и ёмкости) линейны, т.е. от величины тока не зависят.
  2. Источник электрической энергии вырабатывает синусоидальную ЭДС, но один или несколько элементов цепи нелинейны, т.е. имеют нелинейные характеристики (катушки со стальным сердечником, выпрямители).
  3. Источник электрической энергии вырабатывает несинусоидальную ЭДС, ЭДС, а в электрическую цепь входит одно или несколько нелинейных сопротивлений.
  4. Источник электрической энергии вырабатывает постоянную или синусоидальную ЭДС, а один или несколько элементов цепив процессе работы изменяют свои параметры.

Гармоники

При рассмотрении периодических несинусоидальных колебаний можно воспользоваться теоремой Фурье, согласно которой любая периодически изменяющаяся величина может быть представлена в виде суммы постоянной составляющей и ряда синусоидальных составляющих с кратными частотами.

Синусоидальные составляющие несинусоидальных колебавний называются гармониками.

Синусоидальная составляющая, частота которой равна частоте несинусоидальной периодической величины, называется основой, или первичной, гармоникой. А синусоидальные составляющие, частоты которых в 2,3, …, раз больше частоты несинусоидальной величины, называются соответственно 2-й, 3-й, -ой гармоникой.

Аналитическое выражение несинусоидальной функции можно записать так:

Электрические цепи с несинусоидальными периодическими напряжениями и токами

где Электрические цепи с несинусоидальными периодическими напряжениями и токами— несинусоидальная величина, изменяющаяся с частотой Электрические цепи с несинусоидальными периодическими напряжениями и токами. Электрические цепи с несинусоидальными периодическими напряжениями и токами— постоянная составляющаяся несинусоидальной величины; Электрические цепи с несинусоидальными периодическими напряжениями и токами— амплитуды соответственно 1-й, 2-й, 3-й, Электрические цепи с несинусоидальными периодическими напряжениями и токами-й, гармоник, т.е. синусоидальных составляющих с частотой Электрические цепи с несинусоидальными периодическими напряжениями и токами— начальные фазы соответственно 1-й, 2-й, 3-й и Электрические цепи с несинусоидальными периодическими напряжениями и токами-й гармоник.

Электрические цепи с несинусоидальными периодическими напряжениями и токами

Гармоники можно преобразовать, применив из тригонометрии формулу синуса суммы углов. -ю гармонику можно представить в виде

Электрические цепи с несинусоидальными периодическими напряжениями и токами

Обозначив постоянные величины выражения можно получить

Электрические цепи с несинусоидальными периодическими напряжениями и токами

Тогда ряд Фурье для несинусоидальных периодической функции, примет вид

Электрические цепи с несинусоидальными периодическими напряжениями и токами

В отличии от амплитуды Электрические цепи с несинусоидальными периодическими напряжениями и токами-й гармоники Электрические цепи с несинусоидальными периодическими напряжениями и токами, постоянные величины Электрические цепи с несинусоидальными периодическими напряжениями и токамии Электрические цепи с несинусоидальными периодическими напряжениями и токамимогут быть положительными или отрицательными. Такая запись характерна тем, что гармоники составляются ряд синусов и ряд косинусов с начальными фазами, равными нулю Электрические цепи с несинусоидальными периодическими напряжениями и токами.

Свойства периодических кривых Несинусоидальные переодические кривые, с которыми приходится встречаться в электротехнике, являются симметричными относительно оси абсцисс или ординат или начала координат.

Периодическая кривая называется симметрической относительно абсцисс, если на расстоянии половины периода они имеют ординаты, одинаковые по величине, но обратные по знаку (рис. 12.1 а), т.е. отрицательная полуволна такой кривой представляет собой зеркальное изображение положительной полуволны. Кривые симметрые относительно оси абсцисс, не содержат постоянной составляющей и четных гармоник. Такая кривая содержит только нечётные гармоники:

Электрические цепи с несинусоидальными периодическими напряжениями и токами

Электрические цепи с несинусоидальными периодическими напряжениями и токами

Кривые, симметричные относительно начала координат, не содержат постоянной составляющей и косинусоид. Такая кривая содержит только синусоиды (рис. 12.16):

Электрические цепи с несинусоидальными периодическими напряжениями и токами

Кривая, симметричная относительно оси ординат, изображена на рисунке 12.1 г. Такая кривая не содержит синусоид. Она содержит постоянную составляющую и косинусоиды:

Электрические цепи с несинусоидальными периодическими напряжениями и токами

Эта страница взята со страницы лекций по предмету теоретические основы электротехники (ТОЭ):

Возможно эти страницы вам будут полезны:

Помощь студентам в учёбе
Помощь студентам в учёбе
Помощь студентам в учёбе

Помощь студентам в учёбе

Изучу , оценю , оплатите , через 2-3 дня всё будет на «4» или «5» !

Откройте сайт на смартфоне, нажмите на кнопку «написать в чат» и чат в whatsapp запустится автоматически.

Помощь студентам в учёбе

Помощь студентам в учёбеf9219603113@gmail.com


Помощь студентам в учёбе

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.9219603113.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Источник

Поделиться с друзьями
Блог электрика
Adblock
detector