Меню

Электрические машины постоянного тока генераторы двигатели



ЭЛЕКТРОМАШИННЫЕ ГЕНЕРАТОРЫ И ЭЛЕКТРОДВИГАТЕЛИ

- б

— б

- г

— г

Рис. 2. ДВА ВРАЩАЮЩИХСЯ ВИТКА дают кривую тока е, равную сумме тока ааа, даваемого одним витком, и тока bbb, даваемого другим витком, перпендикулярным первому.

Рис. 2. ДВА ВРАЩАЮЩИХСЯ ВИТКА дают кривую тока е, равную сумме тока ааа, даваемого одним витком, и тока bbb, даваемого другим витком, перпендикулярным первому.

Рис. 3. КОНСТРУКЦИЯ ГЕНЕРАТОРА с многочисленными витками, расположенными по окружности цилиндрического якоря. Генератор дает практически постоянный ток. 1 - коллектор; 2 - щетки; 3 - магнитные полюса; 4 - витки; 5 - вал; 6 - якорь. Коллектор состоит из секций, число которых равно числу витков якоря. Ток вырабатывается при вращении вала за счет механической энергии.

Рис. 3. КОНСТРУКЦИЯ ГЕНЕРАТОРА с многочисленными витками, расположенными по окружности цилиндрического якоря. Генератор дает практически постоянный ток. 1 — коллектор; 2 — щетки; 3 — магнитные полюса; 4 — витки; 5 — вал; 6 — якорь. Коллектор состоит из секций, число которых равно числу витков якоря. Ток вырабатывается при вращении вала за счет механической энергии.

Рис. 4. ГЕНЕРАТОР С ПАРАЛЛЕЛЬНЫМ ВОЗБУЖДЕНИЕМ (схема включения). Поле возбуждения создает обмотка, питаемая током, который вырабатывает сам якорь.

Рис. 4. ГЕНЕРАТОР С ПАРАЛЛЕЛЬНЫМ ВОЗБУЖДЕНИЕМ (схема включения). Поле возбуждения создает обмотка, питаемая током, который вырабатывает сам якорь.

Рис. 5. ГЕНЕРАТОР СО СМЕШАННЫМ ВОЗБУЖДЕНИЕМ снабжен дополнительной обмоткой возбуждения, включенной последовательно: а - с нагрузкой; б - с якорем.

Рис. 5. ГЕНЕРАТОР СО СМЕШАННЫМ ВОЗБУЖДЕНИЕМ снабжен дополнительной обмоткой возбуждения, включенной последовательно: а — с нагрузкой; б — с якорем.

Рис. 6. ХАРАКТЕРИСТИКИ ВЫХОДНОГО НАПРЯЖЕНИЯ трех разных генераторов: А - перекомпаундированного, В - плоско-компаундированного, D - с параллельным возбуждением.

Рис. 6. ХАРАКТЕРИСТИКИ ВЫХОДНОГО НАПРЯЖЕНИЯ трех разных генераторов: А — перекомпаундированного, В — плоско-компаундированного, D — с параллельным возбуждением.

Рис. 7. ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА, принцип действия. а - сила, действующая на один провод витка в магнитном поле, направлена вниз; б - сила, действующая на второй провод, направлена вверх; в - две силы поворачивают виток в вертикальное положение; г - направление тока в проводах реального двигателя при этом изменяется на обратное (что показано точками и крестиками в кружках), и витки продолжают вращаться.

Рис. 7. ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА, принцип действия. а — сила, действующая на один провод витка в магнитном поле, направлена вниз; б — сила, действующая на второй провод, направлена вверх; в — две силы поворачивают виток в вертикальное положение; г — направление тока в проводах реального двигателя при этом изменяется на обратное (что показано точками и крестиками в кружках), и витки продолжают вращаться.

Рис. 8. ВРАЩАЮЩИЙ МОМЕНТ двигателя постоянного тока: А - с последовательным, В - со смешанным и С - с параллельным возбуждением, в зависимости от тока, наводимого в якоре.

Рис. 8. ВРАЩАЮЩИЙ МОМЕНТ двигателя постоянного тока: А — с последовательным, В — со смешанным и С — с параллельным возбуждением, в зависимости от тока, наводимого в якоре.

Рис. 9. ПУСКАТЕЛЬ двигателя с последовательным возбуждением (схема включения). Обмотка возбуждения включается последовательно с якорем. При удвоении тока якоря магнитное поле тоже удваивается.

Рис. 9. ПУСКАТЕЛЬ двигателя с последовательным возбуждением (схема включения). Обмотка возбуждения включается последовательно с якорем. При удвоении тока якоря магнитное поле тоже удваивается.

Рис. 10. ЧАСТОТА ВРАЩЕНИЯ в зависимости от тока нагрузки для двигателей постоянного тока: А - с последовательным, В - со смешанным, С - с параллельным возбуждением.

Рис. 10. ЧАСТОТА ВРАЩЕНИЯ в зависимости от тока нагрузки для двигателей постоянного тока: А — с последовательным, В — со смешанным, С — с параллельным возбуждением.

Рис. 11. ЧЕТЫРЕХПОЛЮСНЫЙ ПУСКАТЕЛЬ двигателя с параллельным возбуждением. Ручка пускателя удерживается в рабочем положении соленоидом. При обесточивании сети ручка под действием пружины возвращается в исходное положение.

Рис. 11. ЧЕТЫРЕХПОЛЮСНЫЙ ПУСКАТЕЛЬ двигателя с параллельным возбуждением. Ручка пускателя удерживается в рабочем положении соленоидом. При обесточивании сети ручка под действием пружины возвращается в исходное положение.

Рис. 12. ДОБАВОЧНЫЕ ПОЛЮСА: а - в генераторе, б - в двигателе. Малые полюса, расположенные между большими, компенсируют изменения магнитного поля, вызываемые коммутацией тока в витках.

Рис. 12. ДОБАВОЧНЫЕ ПОЛЮСА: а — в генераторе, б — в двигателе. Малые полюса, расположенные между большими, компенсируют изменения магнитного поля, вызываемые коммутацией тока в витках.

Рис. 13. ФОРМА РОТОРА синхронного двигателя. При постоянной частоте переменного тока частота вращения постоянна.

Рис. 13. ФОРМА РОТОРА синхронного двигателя. При постоянной частоте переменного тока частота вращения постоянна.

Рис. 14. МЕХАНИЧЕСКАЯ ХАРАКТЕРИСТИКА. 1 - зависимость вращающего момента от частоты вращения и скольжения ротора для двигателя с короткозамкнутым ротором; 2 - то же после увеличения сопротивления ротора; 3 - то же после того, как сопротивление ротора сделано равным реактивному сопротивлению в отсутствие вращения.

Рис. 14. МЕХАНИЧЕСКАЯ ХАРАКТЕРИСТИКА. 1 — зависимость вращающего момента от частоты вращения и скольжения ротора для двигателя с короткозамкнутым ротором; 2 — то же после увеличения сопротивления ротора; 3 — то же после того, как сопротивление ротора сделано равным реактивному сопротивлению в отсутствие вращения.

Рис. 15. ВРАЩАЮЩИЙ МОМЕНТ И СКОЛЬЖЕНИЕ в случае двух вращающихся магнитных полей Т1 и Т2.

Рис. 15. ВРАЩАЮЩИЙ МОМЕНТ И СКОЛЬЖЕНИЕ в случае двух вращающихся магнитных полей Т1 и Т2.

Энциклопедия Кольера. — Открытое общество . 2000 .

Смотреть что такое «ЭЛЕКТРОМАШИННЫЕ ГЕНЕРАТОРЫ И ЭЛЕКТРОДВИГАТЕЛИ» в других словарях:

Генераторы — получить на Академике актуальный промокод на скидку Карвильшоп или выгодно генераторы купить с дисконтом на распродаже в Карвильшоп

Электромашинные помещения — 5.1.2. Электромашинными помещениями (ЭМП) называются помещения, в которых совместно могут быть установлены электрические генераторы, вращающиеся или статические преобразователи, электродвигатели, трансформаторы, распределительные устройства, щиты … Официальная терминология

ДПТ — Рис. 1 Устройство простейшего коллекторного двигателя постоянного тока с двухполюсным статором и с двухполюсным ротором Двигатель постоянного тока электрическая машина, машина постоянного тока, преобразующая электрическую энергию постоянного тока … Википедия

Двигатель постоянного тока — Рис. 1 Устройство простейшего коллекторного двигателя постоянного тока с двухполюсным статором и с двухполюсным ротором Двигатель постоянного тока электрическая машина, машина постоянного тока, преобразующая электрическую энергию постоянного тока … Википедия

Постоянного тока электродвигатель — Рис. 1 Устройство простейшего коллекторного двигателя постоянного тока с двухполюсным статором и с двухполюсным ротором Двигатель постоянного тока электрическая машина, машина постоянного тока, преобразующая электрическую энергию постоянного тока … Википедия

Электродвигатель постоянного тока — Рис. 1 Устройство простейшего коллекторного двигателя постоянного тока с двухполюсным статором и с двухполюсным ротором Двигатель постоянного тока электрическая машина, ма … Википедия

ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ — раздел физики, охватывающий знания о статическом электричестве, электрических токах и магнитных явлениях. ЭЛЕКТРОСТАТИКА В электростатике рассматриваются явления, связанные с покоящимися электрическими зарядами. Наличие сил, действующих между… … Энциклопедия Кольера

ЭЛЕКТРИЧЕСКАЯ ЭНЕРГИЯ — один из самых важных видов энергии. Электроэнергия в своей конечной форме может передаваться на большие расстояния потребителю. См. также ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ. ЭЛЕКТРОЭНЕРГЕТИКА Производство и распределение электроэнергии. На районной (т.е.… … Энциклопедия Кольера

МАШИНЫ И МЕХАНИЗМЫ — механические устройства, облегчающие труд и повышающие его производительность. Машины могут быть разной степени сложности от простой одноколесной тачки до лифтов, автомобилей, печатных, текстильных, вычислительных машин. Энергетические машины… … Энциклопедия Кольера

ВОЕННО-ИНЖЕНЕРНОЕ ДЕЛО — проектирование и строительство военных объектов, коммуникаций, укреплений и мостов, обеспечение войск водой, энергией и вспомогательными средствами, применение или обезвреживание обычных взрывчатых средств, в том числе мин, в целях облегчения… … Энциклопедия Кольера

ГИДРОЭНЕРГЕТИКА — использование энергии естественного движения, т.е. течения, водных масс в русловых водотоках и приливных движениях. Чаще всего используется энергия падающей воды. До середины 19 в. для этого применялись водяные колеса, преобразующие энергию… … Энциклопедия Кольера

Источник

Электрические машины постоянного и переменного тока

Машины постоянного тока могут работать в качестве генераторов и электродвигателей. Это свойство электрических машин постоянного тока называют обратимостью. Машины постоянного тока состоят из неподвижной магнитной системы (статора), в которой смонтированы обмотки возбуждения, создающие основное магнитное поле машины; якоря — вращающейся части машины, в обмотке которого индуктируется ЭДС, и коллектора, посредством которого получают выпрямленный ток в генераторах и подводят напряжение к якорю в электродвигателях.

Машины переменного тока могут работать в качестве асинхронных двигателей, синхронных генераторов переменного тока и синхронных двигателей.

Машину, преобразующую электрическую энергию в механическую, называют электрическом двигателем. Основными узлами электродвигателя являются статор и ротор. Статором называют неподвижную, а ротором – вращающуюся часть машины. В пазах статора так же, как и в пазах ротора, укладывают обмотку. Среди электрических двигателей наибольшее распространение получил асинхронный двигатель. Асинхронный двигатель – машина переменного тока, у которой скорость вращения ротора меньше скорости вращения магнитного поля статора и зависит от нагрузки. В зависимости от конструкции ротора асинхронные двигатели бывают с короткозамкнутым и фазным роторами.

Электродвигатели переменного тока бывают бесколлекторными и коллекторными. Наибольшее распространение получили как более простые, безотказные в работе и имеющие более высокий к.п.д., бесколлекторные двигатели.

Принцип работы асинхронного двигателя заключается в следующем: при подключении обмотки статора к сети трехфазного переменного тока, внутри статора создается вращающееся магнитное поле. Магнитные линии поля будут пересекать обмотку неподвижного ротора и индуктировать в ней э.д.с. Под действием э.д.с. в обмотке ротора будет протекать ток. Ток ротора, взаимодействуя с вращающимся магнитным полем статора, создает вращающий момент, под действием которого ротор начинает вращаться в сторону вращения поля статора.

Синхронной называется такая машина, скорость вращения которой постоянна.

Синхронные генераторы переменного тока.
Синхронные генераторы переменного тока предназначены для преобразования механической энергии первичных двигателей (турбины, электродвигателя и т.п.) в электрическую. Генератор состоит из статора и ротора. Часть генератора, в которой индуктируется э.д.с. и проходит рабочий ток, называют якорем, а другую часть, которая создает магнитное поле – индуктором.

В основу работы синхронных генераторов положен закон электромагнитной индукции. В связи с тем, что принципиально безразлично, будет ли движущийся проводник пересекать неподвижное магнитное поле или наоборот, конструктивно синхронные генераторы изготовляют двух видов.

В одном случае магнитные полюсы (обмотку возбуждения) помещают на статоре и питают их обмотку постоянным током, а проводники (обмотку якоря) располагают на роторе, с которых снимают переменный ток при помощи колец и щеток. Во втором случае магнитные полюсы устанавливаются на роторе, а обмотки якоря – на статоре.

Синхронные двигатели.
Синхронный генератор может работать как электрической двигатель. В этом случае двигатель называют синхронным. Синхронные двигатели применяются реже, чем асинхронные.

Источник

Генератор постоянного тока: устройство, принцип работы, классификация

На заре электрификации генератор постоянного тока оставался безальтернативным источником электрической энергии. Довольно быстро эти альтернаторы были вытеснены более совершенными и надёжными трехфазными генераторами переменного тока. В некоторых отраслях постоянный ток продолжал быть востребованным, поэтому устройства для его генерации совершенствовались и развивались.

Даже в наше время, когда изобретены мощные выпрямительные устройства, актуальность генераторов постоянного электротока не потерялась. Например, они используются для питания силовых линий на городском электротранспорте, используемых трамваями и троллейбусами. Такие генераторы по-прежнему используют в технике электросвязи в качестве источников постоянного электротока в низковольтных цепях.

Устройство и принцип работы

В основе действия генератора лежит принцип, вытекающий из закона электромагнитной индукции. Если между полюсами постоянного магнита поместить замкнутый контур, то при вращении он будет пересекать магнитный поток (см. рис. 1). По закону электромагнитной индукции в момент пересечения индуцируется ЭДС. Электродвижущая сила возрастает по мере приближения проводника к полюсу магнита. Если к коллектору (два жёлтых полукольца на рисунке) подсоединить нагрузку R, то через образованную электрическую цепь потечёт ток.

Принцип действия генератора постоянного тока

Рис. 1. Принцип действия генератора постоянного тока

По мере выхода витков рамки из зоны действия магнитного потока ЭДС ослабевает и приобретает нулевое значение в тот момент, когда рамка расположится горизонтально. Продолжая вращение контура, его противоположные стороны меняют магнитную полярность: часть рамки, которая находилась под северным полюсом, занимает положение над южным магнитным полюсом.

Величины ЭДС в каждой активной обмотке контура определяются по формуле: e1 = Blvsinw t; e2 = -Blvsinw t; , где B магнитная индукция, l – длина стороны рамки, v – линейная скорость вращения контура, t время, w t – угол, под которым рамка пересекает магнитный поток.

При смене полюсов меняется направление тока. Но благодаря тому, что коллектор поворачивается синхронно с рамкой, ток на нагрузке всегда направлен в одну сторону. То есть рассматриваемая модель обеспечивает выработку постоянного электричества. Результирующая ЭДС имеет вид: e = 2Blvsinw t, а это значит, что изменение она подчиняется синусоидальному закону.

Читайте также:  Расчет линейной электрической цепи при несинусоидальных напряжениях токах

Строго говоря, данная конструкция обеспечивает только полярность неподвижных щеток, но не устраняет пульсации ЭДС. Поэтому график сгенерированного тока имеет вид, как показано на рис.2.

График тока, выработанного примитивным генератором

Рисунок 2. График тока, выработанного примитивным генератором

Такой ток, за исключением редких случаев, не пригоден для использования. Приходится сглаживать пульсации до приемлемого уровня. Для этого увеличивают количество полюсов постоянных магнитов, а вместо простой рамки используют более сложную конструкцию – якорь, с большим числом обмоток и соответствующим количеством коллекторных пластин (см. рис. 3). Кроме того, обмотки соединяются разными способами, о чём речь пойдёт ниже.

Ротор генератора

Рис. 3. Ротор генератора

Якорь изготавливается из листовой стали. На сердечниках якоря имеются пазы, в которые укладываются несколько витков провода, образующего рабочую обмотку ротора. Проводники в пазах соединены последовательно и образуют катушки (секции), которые в свою очередь через пластины коллектора создают замкнутую цепь.

С точки зрения физики процесса генерации не имеет значения, какие детали вращаются – обмотки контура или сам магнит. Поэтому на практике якоря для маломощных генераторов делают из постоянных магнитов, а полученный переменный ток выпрямляют диодными мостами и другими схемами.

И напоследок: если на коллектор подать постоянное напряжение, то генераторы постоянного тока могут работать в режиме синхронных двигателей.

Конструкция двигателя (он же генератор) понятна из рисунка 4. Неподвижный статор состоит из двух сердечников полюсов, состоящих из ферримагнитных пластин, и обмоток возбуждения, соединённых последовательно. Щётки расположены по одной линии друг против друга. Для охлаждения обмоток используется вентилятор.

Классификация

Различают два вида генераторов постоянного тока:

  • с независимым возбуждением обмоток;
  • с самовозбуждением.

Для самовозбуждения генераторов используют электричество, вырабатываемое самим устройством. По принципу соединения обмоток якоря самовозбуждающиеся альтернаторы с делятся на типы:

  • устройства с параллельным возбуждением;
  • альтернаторы с последовательным возбуждением;
  • устройства смешанного типа (компудные генераторы).

Рассмотрим более подробно особенности каждого типа соединения якорных обмоток.

С параллельным возбуждением

Для обеспечения нормальной работы электроприборов, требуется наличие стабильного напряжения на зажимах генераторов, не зависящее от изменения общей нагрузки. Задача решается путём регулировки параметров возбуждения. В альтернаторах с параллельным возбуждением выводы катушки подключены через регулировочный реостат параллельно якорной обмотке.

Реостаты возбуждения могут замыкать обмотку «на себя». Если этого не сделать, то при разрыве цепи возбуждения, в обмотке резко увеличится ЭДС самоиндукции, которая может пробить изоляцию. В состоянии, соответствующем короткому замыканию, энергия рассеивается в виде тепла, предотвращая разрушение генератора.

Электрические машины с параллельным возбуждением не нуждаются во внешнем источнике питания. Благодаря наличию остаточного магнетизма всегда присутствующего в сердечнике электромагнита происходит самовозбуждение параллельных обмоток. Для увеличения остаточного магнетизма в катушках возбуждения сердечники электромагнитов делают из литой стали.

Процесс самовозбуждения продолжается до момента, пока сила тока не достигнет своей предельной величины, а ЭДС не выйдет на номинальные показатели при оптимальных оборотах вращения якоря.

Достоинство: на генераторы с параллельным возбуждением слабо влияют токи при КЗ.

С независимым возбуждением

В качестве источника питания для обмоток возбуждения часто используют аккумуляторы или другие внешние устройства. В моделях маломощных машин используют постоянные магниты, которые обеспечивают наличие основного магнитного потока.

На валу мощных генераторов расположен генератор-возбудитель, вырабатывающий постоянный ток для возбуждения основных обмоток якоря. Для возбуждения достаточно 1 – 3% номинального тока якоря и не зависит от него. Изменение ЭДС осуществляется регулировочным реостатом.

Преимущество независимого возбуждения состоит в том, что на возбуждающий ток никак не влияет напряжение на зажимах. А это обеспечивает хорошие внешние характеристики альтернатора.

С последовательным возбуждением

Последовательные обмотки вырабатывают ток, равен току генератора. Поскольку на холостом ходе нагрузка равна нулю, то и возбуждение нулевое. Это значит, что характеристику холостого хода невозможно снять, то есть регулировочные характеристики отсутствуют.

В генераторах с последовательным возбуждением практически отсутствует ток, при вращении ротора на холостых оборотах. Для запуска процесса возбуждения необходимо к зажимам генератора подключить внешнюю нагрузку. Такая выраженная зависимость напряжения от нагрузки является недостатком последовательных обмоток. Такие устройства можно использовать только для питания электроприборов с постоянной нагрузкой.

Со смешанным возбуждением

Полезные характеристики сочетают в себе конструкции генераторов со смешанным возбуждением. Их особенности: устройства имеют две катушки – основную, подключённую параллельно обмоткам якоря и вспомогательную, которая подключена последовательно. В цепь параллельной обмотки включён реостат, используемый для регулировки тока возбуждения.

Процесс самовозбуждения альтернатора со смешанным возбуждением аналогичен тому, который имеет генератор с параллельными обмотками (из-за отсутствия начального тока последовательная обмотка в самовозбуждении не участвует). Характеристика холостого хода такая же, как у альтернатора с параллельной обмоткой. Это позволяет регулировать напряжения на зажимах генератора.

Смешанное возбуждение сглаживает пульсацию напряжения при номинальной нагрузке. В этом состоит главное преимущество таких альтернаторов перед прочими типами генераторов. Недостатком является сложность конструкции, что ведёт к удорожанию этих устройств. Не терпят такие генераторы и коротких замыканий.

Технические характеристики генератора постоянного тока

Работу генератора характеризуют зависимости между основными величинами, которые называются его характеристиками. К основным характеристикам можно отнести:

  • зависимости между величинами при работе на холостом ходе;
  • характеристики внешних параметров;
  • регулировочные величины.

Некоторые регулировочные характеристики и зависимости холостого хода мы раскрыли частично в разделе «Классификация». Остановимся кратко на внешних характеристиках, которые соответствуют работе генератора в номинальном режиме. Внешняя характеристика очень важна, так как она показывает зависимость напряжения от нагрузки, и снимается при стабильной скорости оборотов якоря.

Внешняя характеристика генератора постоянного тока с независимым возбуждением выглядит следующим образом: это кривая, зависимости напряжения от нагрузки (см. рис. 5). Как видно на графике падение напряжения наблюдается, но оно не сильно зависит от тока нагрузки (при сохранении скорости оборотов двигателя, вращающего якорь).

Внешняя характеристика ГПТ

Рис. 5. Внешняя характеристика ГПТ

В генераторах с параллельным возбуждением зависимость напряжения от нагрузки сильнее выражена (см. рис. 6). Это связано с падением тока возбуждения в обмотках. Чем выше нагрузочный ток, тем стремительнее будет падать напряжение на зажимах генератора. В частности, при постепенном падении сопротивления до уровня КЗ, напряжение падёт до нуля. Но резкое замыкание в цепи вызывает обратную реакцию генератора и может быть губительным для электрической машины этого типа.

Характеристика ГПТ с параллельным возбуждением

Рис. 6. Характеристика ГПТ с параллельным возбуждением

Увеличение тока нагрузки при последовательном возбуждении ведёт к росту ЭДС. (см. верхнюю кривую на рис. 7). Однако напряжение (нижняя кривая) отстаёт от ЭДС, поскольку часть энергии расходуется на электрические потери от присутствующих вихревых токов.

Внешняя характеристика генератора с последовательным возбуждением

Рис. 7. Внешняя характеристика генератора с последовательным возбуждением

Обратите внимание на то, что при достижении своего максимума напряжение, с увеличением нагрузки, начинает резко падать, хотя кривая ЭДС продолжает стремиться вверх. Такое поведение является недостатком, что ограничивает применение альтернатора этого типа.

В генераторах со смешанным возбуждением предусмотрены встречные включения обеих катушек – последовательной и параллельной. Результирующая намагничивающая сила при согласном включении равна векторной сумме намагничивающих сил этих обмоток, а при встречном – разнице этих сил.

В процессе плавного увеличении нагрузки от момента холостого хода до номинального уровня, напряжение на зажимах будет практически постоянным (кривая 2 на рис. 8). Увеличение напряжения наблюдается в том случае, если количество проводников последовательной обмотки будет превышать количество витков соответствующее номинальному возбуждению якоря (кривая 1).

Изменение напряжения для случая с меньшим числом витков в последовательной обмотке, изображает кривая 3. Встречное включение обмоток иллюстрирует кривая 4.

Внешняя характеристика ГПТ со смешанным возбуждением

Рис. 8. Внешняя характеристика ГПТ со смешанным возбуждением

Генераторы со встречным включением используют тогда, когда необходимо ограничить токи КЗ, например, при подключении сварочных аппаратов.

В нормально возбуждённых устройствах смешанного типа ток возбуждения постоянный и от нагрузки почти не зависит.

Реакция якоря

Когда к генератору подключена внешняя нагрузка, то токи в его обмотке образуют собственное магнитное поле. Возникает магнитное сопротивление полей статора и ротора. Результирующее поле сильнее в тех точках, где якорь набегает на полюсы магнита, и слабее там, где он с них сбегает. Другими словами якорь реагирует на магнитное насыщение стали в сердечниках катушек. Интенсивность реакции якоря зависит от насыщения в магнитопроводах. Результатом такой реакции является искрение щёток на коллекторных пластинах.

Снизить реакцию якоря можно путём применения компенсирующих дополнительных магнитных полюсов или сдвигом щёток с осевой линии геометрической нейтрали.

Среднее значение электродвижущей силы пропорционально магнитному потоку, количеству активных проводников в обмотках и частоте вращения якоря. Увеличивая или уменьшая указанные параметры можно управлять величиной ЭДС, а значит и напряжением. Проще всего, желаемого результата можно достичь путём регулировки частоты вращения якоря.

Мощность

Различают полную и полезную мощность генератора. При постоянной ЭДС полная мощность пропорциональна току: P = EIa. Отдаваемая в цепь полезная мощность P1 = UI.

Важной характеристикой альтернатора является его КПД – отношение полезной мощности к полной. Обозначим данную величину символом ηe. Тогда: ηe=P1/P.

На холостом ходе ηe = 0. максимальное значение КПД – при номинальных нагрузках. Коэффициент полезного действия в мощных генераторах приближается к 90%.

Применение

До недавнего времени использование тяговых генераторов постоянного тока на ж/д транспорте было безальтернативным. Однако уже начался процесс вытеснения этих генераторов синхронными трёхфазными устройствами. Переменный ток, синхронного альтернатора выпрямляют с помощью выпрямительных полупроводниковых установок.

На некоторых российских локомотивах нового поколения уже применяют асинхронные двигатели, работающие на переменном токе.

Похожая ситуация наблюдается с автомобильными генераторами. Альтернаторы постоянного тока заменяют асинхронными генераторами, с последующим выпрямлением.

Пожалуй, только передвижные сварочные аппараты с автономным питанием неизменно остаются в паре с альтернаторами постоянного тока. Не отказались от применения мощных генераторов постоянного тока также некоторые отрасли промышленности.

Видео по теме

Источник

Электрические машины постоянного тока: устройство и принцип действия

Фото 1

Устройство машины постоянного тока при первом знакомстве кажется сложным. Но если понять происходящие внутри процессы, ситуация существенно прояснится.

Читайте также:  Магнитные пускатели для цепей постоянного тока

Машины постоянного тока: что это?

Фото 2

Применение электрического тока в основном заключается в превращении его в иные виды энергии, в частности, механическую. Также и механическая энергия может быть превращена в электрическую.

Этими преобразованиями занимаются машины постоянного и переменного тока. У первых в обмотку возбуждения подается постоянный ток.

Машины постоянного тока (МПТ), преобразующие механическую энергию в электричество, называются генераторами. Выполняющие обратное преобразование — двигателями.

Устройство

МПТ состоят из двух частей:

  1. индуктор: неподвижная часть;
  2. якорь: вращается внутри индуктора.

В машинах переменного тока индуктор и якорь принято называть, соответственно, статором и ротором. Индуктор создает первичное магнитное поле, воздействующее на якорь с целью навести в нем ЭДС (генератор) либо заставить его вращаться (двигатель).

В маломощных МПТ индуктором иногда выступает постоянный магнит, но чаще с целью добиться однородного магнитного потока применяют электромагнит, то есть систему катушек, создающих при протекании через них постоянного тока магнитное поле обмотка возбуждения (ОВ).

Фото 3

Устройство машины постоянного тока

Каждая катушка намотана на сердечник, вместе они образуют магнитный полюс. Для надлежащего распределения магнитного потока сердечник снабжен специальным наконечником. Основных полюсов может быть несколько. Помимо них применяются добавочные, обеспечивающие безыскровую работу коллектора. Последний представляет собой важный элемент МПТ, его функция будет рассмотрена ниже.

Ярмо индуктора одновременно является станиной МПТ, потому его так обычно и называют. К нему крепятся магнитные полюсы и подшипниковые щиты (вращается вал якоря). В сущности, ярмо — это лишь часть станины, по которой замыкаются магнитные потоки основных и добавочных полюсов.

Фото 4

Якорь представляет собой сердечник с пазами, содержащими уложенный в определенном порядке провод — обмотку. Сердечник закреплен на валу, вращающемся в подшипниках. Здесь же закреплен коллектор.

Коллектор обеспечивает возможность подачи питания на обмотку вращающегося якоря. Он является подвижной частью так называемого скользящего коллекторного контакта, и состоит из нескольких изолированных друг от друга сегментообразных медных пластин, закрепленных в виде цилиндра на валу якоря. Неподвижная часть контакта представлена графитовыми или медно-графитовыми щетками, закрепленными в щеткодержателях. Пружинами они придавливаются к пластинам коллектора.

Принцип действия

Особенности функционирования МПТ зависит от того, в каком режиме она работает — генератора или двигателя. Далее подробно рассматриваются оба варианта.

Генератор

Принцип работы генератора постоянного тока основан на явлении электромагнитной индукции. Состоит оно в том, что при изменении магнитного потока, пересекающего проводник, в последнем наводится ЭДС.

Фото 5

Принцип действия генератора постоянного тока

Чтобы добиться изменения магнитного потока, меняют параметры поля либо двигают в постоянном поле проводник. По второму варианту и работает генератор постоянного тока: обмотка якоря приводится во вращение внешней механической силой.

Очевидно, что после поворота витков обмотки на 180 градусов ЭДС окажется направленной противоположно. Сохранить ток в подключенной к генератору цепи постоянным, то есть однонаправленным, помогает коллектор: в нужный момент он переподключает концы обмотки якоря к противоположным контактам цепи (щеткам). То есть в этой машине коллектор играет роль механического выпрямителя.

Двигатель

Работа МПТ в режиме двигателя обусловлена возникновением так называемой амперовой силы. Она действует на помещенный в магнитное поле проводник при протекании по нему тока. Направление амперовой силы определяется по правилу левой руки.

Сила Ампера появляется благодаря следующему механизму:

  1. при протекании тока вокруг проводника возникает магнитное поле с силовыми линиями, концентрически окружающими проводник (круговое поле);
  2. вектор его индукции по одну сторону от проводника сонаправлен с вектором индукции первичного магнитного поля, в которое проводник помещен. С этой стороны первичное поле усиливается;
  3. по другую сторону вектор наведенного электротоком поля направлен противоположно вектору индукции первичного поля, соответственно, здесь оно гасится;
  4. разница в индукции поля по обе стороны проводника активирует к возникновению данной силы. Определяется она по формуле: F = B * I * L, где: B — магнитная индукция первичного поля, I — сила тока в проводнике, L — длина проводника.

Как и в случае с генератором, после поворота витка обмотки якоря в определенное положение, требуется переключение контактов для изменения в ней направления тока либо полярности индуктора. Поэтому в режиме двигателя коллектор также необходим.

У коллекторных двигателей есть преимущества:

  • простота и широкий диапазон регулировки;
  • жесткая механическая характеристика (вращающий момент остается стабильным).

Недостаток — низкая надежность коллектора и его сложность, негативно отражающаяся на стоимости двигателя.

Вот какими нежелательными явлениями сопровождается работа узла:

Фото 6

  • искрение;
  • засорение токопроводящей графитовой пылью (щетки выполнены из этого материала);
  • появление помех в сети;
  • при значительной нагрузке — кольцевое искрение («круговой огонь»), приводящее к выгоранию коллекторных пластин.

В целях борьбы с недостатками в некоторых современных двигателях постоянного тока (ДПТ) применены следующие решения:

  1. обмотки якоря и индуктора меняются местами: первую размещают на неподвижной части (статоре), вторую — на вращающейся (роторе). Скользящий контакт при этом остается, но из-за низкой нагрузки в обмотке возбуждения, он намного проще и надежнее коллекторно-щеточного;
  2. переключение между обмотками якоря, теперь расположенного в неподвижной части, осуществляется при помощи полупроводниковых ключей, срабатывающих по сигналу датчика положения ротора. То есть механический переключатель (коллектор) заменен электронным.

Такие двигатели называют бесколлекторными, за рубежом — BLDC-двигателями.

Классификация МПТ по способу питания обмоток индуктора и якоря

По данному признаку МПТ делятся на 4 вида.

С независимым возбуждением

Обмотки индуктора и якоря не имеют электрического соединения. У генераторов этого типа обмотку возбуждения питает сеть постоянного тока, аккумулятор или специально предназначенный для этого генератор — возбудитель. Мощность последнего — несколько сотых мощности основного генератора.

Фото 7

Область применения генераторов с независимым возбуждением:

  1. системы значительной мощности, где напряжение на обмотке возбуждения существенно отличается от генерируемого;
  2. системы регулирования скорости вращения двигателей, запитанных от генераторов.

У двигателей с независимым возбуждением запитана и якорная обмотка. В основном это также агрегаты большой мощности.

Независимость обмотки индуктора позволяет удобнее и экономичнее регулировать ток возбуждения. Еще одна особенность таких моторов — постоянство магнитного потока возбуждения при любой нагрузке на валу.

С параллельным возбуждением

Обмотки индуктора и якоря соединены в одну цепь параллельно друг другу. Генераторы этого типа обычно применяются для средних мощностей. При параллельном соединении генерируемое устройством напряжение подается на обмотку возбуждения. При соединении в одну цепь обмоток индуктора и якоря говорят о генераторе с самовозбуждением.

По своим характеристикам они идентичны моторам с независимым возбуждением и обладают следующими особенностями:

  • при изменении нагрузки частота вращения практически не трансформируется: замедление составляет не более 8% при переводе от холостого хода к номинальной нагрузке;
  • можно с минимальными потерями регулировать частоту вращения, причем в широких пределах — 2-кратно, а у специально сконструированных моторов и 6-кратно.

Индуктор вращающегося двигателя с параллельным возбуждением нельзя отсоединять от цепи якоря, даже если он уже отключен. Это приведет к наведению значительной ЭДС в обмотке возбуждения с последующим выходом мотора из строя. Находящийся рядом персонал может получить травму.

С последовательным возбуждением

Обмотки соединены в цепь последовательно друг другу. Через обмотку возбуждения течет ток якоря. Генераторы этого типа почти не применяются, поскольку процесс самовозбуждения происходит достаточно бурно и устройство не способно обеспечить необходимое большинству потребителей постоянство напряжения. Их используют только в специальных установках.

Фото 8

Схема последовательного возбуждения

Двигатели этого типа широко применяют в качестве тяговых (электровозы, троллейбусы, краны и пр.): по сравнению с аналогами параллельного возбуждения, при нагрузке они дают более высокий момент с одновременным уменьшением скорости вращения. Пусковой момент также высок.

С параллельно-последовательным (смешанным) возбуждением

Существует два вида схемы:

  1. основная обмотка индуктора включена параллельно с якорной, вспомогательная — последовательно;
  2. основная обмотка индуктора включена последовательно с якорной, вспомогательная — параллельно.

Фото 9

Схемы систем возбуждения МПТ

Подключение параллельной обмотки до последовательной называют «коротким шунтом», за последовательной — «длинным шунтом». Генераторы этого типа применяются крайне редко.

Двигатели сочетают в себе достоинства аналогов с параллельным и последовательным возбуждением: способны работать на холостом ходу и при этом развивают значительное тяговое усилие. Но и они сегодня почти не применяются.

Видео по теме

Об устройстве и принципе работы двигателя постоянного тока в видео:

Несмотря на преобладание тока переменного, машины постоянного тока остаются востребованными. Это объясняется их экономичностью, простотой регулировки и рядом прочих достоинств. Коллекторные двигатели, в сущности, универсальны, поскольку могут работать и на переменном токе (направление тока в обмотках все время совпадает).

Источник

Принцип действия генератора и двигателя постоянного тока

Машина постоянного тока

Устройство коллекторной машины постоянного тока

В настоящее время электромашиностроительные заводы изго­товляют электрические машины постоянного тока, предназначен­ные для работы в самых различных отраслях промышленности, поэтому отдельные узлы этих машин могут иметь разную конст­рукцию, но общая конструктивная схема машин одинакова. Не­подвижная часть машины постоянного тока называется статором, вращающаяся часть — якорем (рис. 1).

Рис. 1. Устройство машины постоянного тока

Статор. Состоит из станины 6 и главных полюсов 4. Ста­нина 6 служит для крепления полюсов и подшипниковых щитов и является частью магнитопровода, так как через нее замыкается магнитный поток машины. Станину изготовляют из стали — ма­териала, обладающего достаточной механической прочностью и большой магнитной проницаемостью. В нижней части станины имеются лапы 11 для крепления машины к фундаментной плите, а по окружности станины расположены отверстия для крепления сердечников главных полюсов 4. Обычно станину делают цельной из стальной трубы, либо сварной из листовой стали, за исключе­нием машин с весьма большим наружным диаметром, у которых станину делают разъемной, что облегчает транспортировку и мон­таж машины.

Главные полюсы предназначены для создания в машине магнитного поля возбуждения. Главный полюс состоит из сердеч­ника 6 и полюсной катушки 5. Со стороны, обращенной к якорю, сердечник полюса имеет полюсный наконечник, который обеспе­чивает необходимое распределение магнитной индукции в зазоре машины. Сердечники главных полюсов делают шихтованными из листовой конструкционной стали толщиной 1 — 2 мм или из тон­колистовой электротехнической анизотропной холоднокатаной стали, например марки 3411. Штампованные пластины главных полюсов специально не изолируют, так как тонкая пленка окисла на их поверхности достаточна для значительного ослабления вих­ревых токов, наведенных в полюсных наконечниках пульсациями магнитного потока, вызванного зубчатостью сердечника якоря. Анизотропная сталь обладает повышенной магнитной проницае­мостью вдоль проката, что должно учитываться при штамповке пластин и их сборке в пакет. Пониженная магнитная проницае­мость поперек проката способствует ослаблению реакции якоря и уменьшению потока рассеяния главных и добавоч­ных полюсов.

Читайте также:  Величина тока утечки при испытании кабеля

В машинах постоянного тока небольшой мощности полюсные катушки делают бескаркасными — намоткой медного обмоточно­го провода непосредственно на сердечник полюса, предварительно наложив на него изоляционную прокладку (рис. 2, а). В боль­шинстве машин (мощностью 1 кВт и более) полюсную катушку делают каркасной: обмоточный провод наматывают на каркас (обычно пластмассовый), а затем надевают на сердечник полюса (рис. 2, б). В некоторых конструкциях машин полюсную ка­тушку для более интенсивного охлаждения разделяют по высоте на части, между которыми оставляют вентиляционные каналы.

Якорь. Якорь машины постоянного тока (рис. 1) состоит из вала 10, сердечника 3 с обмоткой и коллектора 1. Сердечник якоря имеет шихтованную конструкцию и набирается из штам­пованных пластин тонколистовой электротехнической стали. Лис­ты покрывают изоляционным лаком, собирают в пакет и запекают. Готовый сердечник напрессовывают на вал якоря. Такая конст­рукция сердечника якоря позволяет значительно ослабить в нем вихревые токи, возникающие в результате его перемагничивания в процессе вращения в магнитном поле. На поверхности сердечника якоря имеются продольные пазы, в которые укладывают обмотку якоря.

Обмотку выполняют медным проводом круглого или пря­моугольного сечения. Пазы якоря после заполнения их проводами обмотки обычно закрывают клиньями (текстолитовыми или гетинаксовыми). В некоторых машинах пазы не закрывают клиньями, а накладывают на поверхность якоря бандаж. Бандаж делают из проволоки или стеклоленты с предварительным натягом. Лобовые части 9 обмотки якоря крепят к обмоткодержателям бандажом.

Коллектор 1 является одним из сложных узлов машины постоянного тока. Основными элементами коллектора являются пластины трапецеидального сечения из твердотянутой меди, соб­ранные таким образом, что коллектор приобретает цилиндриче­скую форму. В зависимости от способа закрепления коллекторных пластин различают два основных типа коллекторов: со стальными конусными шайбами и на пластмассе. На рис. 3, а показано устройство коллектора со стальными конусными шайбами. Ниж­няя часть коллекторных пластин 6 имеет форму «ласточкина хво­ста». После сборки коллектора эти части пластин оказываются за­жатыми между стальными шайбами 1 и 5, изолированными от медных пластин миканитовыми манжетами 4. Конусные шайбы стянуты винтами 2. Между медными пластинами расположены миканитовые изоляционные прокладки. В процессе работы машины рабочая поверхность коллектора постепенно истирается щет­ками. Чтобы при этом миканитовые прокладки не выступали над рабочей поверхностью коллектора, что вызвало бы вибрацию щеток и нарушение работы машины, между коллекторными пласти­нами фрезеруют пазы (дорожки) на глубину до 1,5 мм (рис. 3, б). Верхняя часть 5 коллекторных пластин (см. рис. 3, а), называе­мая петушком, имеет узкий продольный паз, в который заклады­вают проводники обмотки якоря и тщательно припаивают.

Рис. 2. Главные полюсы с бескаркасной (а) и каркасной (б) по­люсными катушками: 1 — станина, 2 — сердечник полюса, 3 — полюсная катушка

В машинах постоянного тока малой мощности часто приме­няют коллекторы на пластмассе, отличающиеся простотой в из­готовлении. Набор медных и миканитовых пластин в таком кол­лекторе удерживается пластмассой, запрессованной в пространст­во между набором пластин и стальной втулкой 4 и образующей корпус коллектора. Иногда с целью увеличения прочности коллек­тора эту пластмассу 2 армируют стальными кольцами 3 (рис. 4). В этом случае миканитовые прокладки должны иметь размеры большие, чем у медных пластин 1, что исключит замыкание пла­стин стальными (армирующими) кольцами 3.

Электрический контакт с коллектором осуществляется по­средством щеток, располагаемых в щеткодержателях 4 (см. рис. 1).

Рис. 3. Устройство коллек­тора с конусными шайбами

Рис. 4. Устройство коллектора на пластмассе Рис. 5. Щеткодержатель (сдво­енный) машины постоянного тока

Щеткодержатель (рис. 5) состоит из обоймы 4, в которую помещают щетку 3, курка 1, представляющего собой откидную деталь, передающую давление пружины 2 на щетку. Щеткодержа­тель крепят на пальце зажимом 5. Щетка снабжается гибким тро­сиком 6 для включения ее в электрическую цепь машины. Все щеткодержатели одной полярности соединены между собой сбор­ными шинами, подключенными к выводам машины. Одно из ос­новных условий бесперебойной работы машины — плотный и на­дежный контакт между щеткой и коллектором. Давление на щетку должно быть отрегулировано, так как чрезмерный нажим может вызвать преждевременный износ щетки и перегрев коллектора, а недостаточный нажим — искрение на коллекторе.

Помимо указанных частей машина постоянного тока имеет два подшипниковых щита: передний 12 (со стороны коллектора) и задний 7 (см. рис. 1). В центральной части щита имеется рас­точка под подшипник. На переднем подшипниковом щите име­ется смотровое окно (люк) с крышкой, через которое можно осмотреть коллектор и щетки не разбирая машины. Концы обмоток выведены на зажимы коробки выводов. Вентилятор 8 служит для самовентиляции машины: воздух поступает в машину обычно со стороны коллектора, омывает нагретые части (коллектор, обмотки и сердечники) и выбрасывается с противоположной стороны через решетку.

Из рассмотрения принципа действия и устройства коллектор­ной машины постоянного тока следует, что непременным элемен­том этой машины, включенным между обмоткой якоря и внешней сетью, является щеточно-коллекторный узел — механический преобразователь рода тока. Таким образом, коллекторные машины сложнее бесколлекторных машин переменного тока (асинхронной и синхронной) и, следовательно, уступают им (особенно асин­хронной машине) в надежности и имеют более высокую стои­мость.

Принцип действия генератора и двигателя постоянного тока

Рассмотрим принцип действия коллекторного генератора постоянного тока. На рис. 6 изобра­жена упрощенная модель такого генератора: между полюсами N и S постоянного магнита находится вращающаяся часть генератора — якорь, вал кото­рого посредством шкива и ременной передачи меха­нически связан с приводным двигателем (на рисунке не показан) — источником механической энергии. В двух продольных пазах на сердечнике якоря распо­ложена обмотка в виде одного витка abсd, концы которого присоединены к двум медным изолирован­ным друг от друга полукольцам, образующим про­стейший коллектор. На поверхность коллектора на­ложены щетки А и В, осуществляющие скользящий контакт с коллектором и связывающие генератор с внешней цепью, куда включена нагрузка сопротив­лением R.

Предположим, что приводной двигатель враща­ет якорь генератора против часовой стрелки, тогда в витке на якоре, вращающемся в магнитном поле по­стоянного магнита, наводится ЭДС, мгновенное зна­чение которой е = 2Blv, а направление для положе­ния якоря, изображенного на рисунке, указано стрелками.

Рис. 6 Упрощенная модель коллекторной машины

В процессе работы генератора якорь вращается и виток abcd занимает разное пространственное по­ложение, поэтому в обмотке якоря наводится переменная ЭДС. Если бы в машине не было коллектора, то ток во внешней цепи (в нагрузке R) был бы переменным, но посредством коллектора и щеток переменный ток обмотки якоря преобразуется в пульсирующий ток во внешней цепи генератора, т.е. ток, неизменный по направлению. При положении витка якоря, пока­занном на рис. 6, ток во внешней цепи (в нагрузке) направлен от щетки А к щетке В следовательно, щетка А является положительной, а щетка В — отрицательной. После поворота якоря на 180° (рис. 7, а) направление тока в витке якоря изменится на обратное, однако полярность щеток, а следовательно, и направле­ние тока во внешней цепи (в нагрузке) останутся неизменными (рис. 7, б). Объясняется это тем, что в тот момент, когда ток в витке якоря меняет свое направление, происходит смена коллек­торных пластин под щетками. Таким образом, под щеткой А все­гда находится пластина, соединенная с проводником, расположен­ным под северным магнитным полюсом, а под щеткой В — пластина, соединенная с проводником, расположенным под юж­ным полюсом. Благодаря этому полярность щеток генератора остается неизменной независимо от положения витка якоря. Что же касается пульсаций тока во внешней цепи, то они намного ослаб­ляются при увеличении числа витков в обмотке якоря при их рав­номерном распределении по поверхности якоря и соответствующем увеличении числа пластин в коллекторе.

В соответствии с принципом обратимости электрических ма­шин упрощенная модель машины постоянного тока может быть использована в качестве двигателя постоянного тока. Для этого необходимо отключить нагрузку генератора R и подвести к щет­кам машины напряжение от источника постоянного тока. Напри­мер, если к щетке А подключить зажим «плюс» а к щетке В — «минус», то в обмотке якоря появится ток I, направление которого показано на рис. 8. В результате взаимодействия этого тока с магнитным полем постоянного магнита (полем возбуждения) поя­вятся электромагнитные силы FЭМ создающие на якоре электро­магнитный момент М и вращающие его против часовой стрелки. После поворота якоря на 180° электромагнитные силы не изменят своего направления, так как одновременно с переходом каждого проводника обмотки якоря из зоны одного магнитного полюса в зону другого полюса в этих проводниках меняется направление тока.

Рис. 7 К принципу действия генератора постоянного тока:

_____ ЭДС и ток в обмотке якоря;_ _ _ _ _ЭДС и ток во внешней цепи генератора

Таким образом, назначение коллектора и щеток в двигателе постоянного тока — изменять направ­ление тока в проводниках обмотки яко­ря при их переходе из зоны магнитного полюса одной полярности в зону полю­са другой полярности.

Рассмотренная упрошенная модель машины постоянного тока не обеспечи­вает двигателю устойчивой работы, так как при прохождении проводниками обмотки якоря геометрической нейтра­ли nn / (рис. 8) электромагнитные силы FЭМ = 0 (магнитная индукция в середине межполюсного пространства равна нулю). Однако с увеличением числа проводников в обмотке якоря (при равномерном их распределении на поверхности якоря) и числа пластин коллектора вращение якоря двигателя становится устойчивым и равномерным.

Рис. 8. Принцип действия двигателя постоянного тока

Источник