Меню

Электрический ток в жидкостях электролитах производит



Электрический ток в жидкостях

Вещества, обладающие ионной проводимостью, называют электролитами. Электрический ток в жидкостях – это упорядоченное движение ионов. Электролитами являются растворы солей, кислот, щелочей. Ионная проводимость обусловлена электролитической диссоциацией-распадом молекул на ионы под действием молекул растворителя. Образующиеся при распаде молекул ионы имеют одинаковые по модулю и противоположные по знаку заряды. Электрическое поле приводит их в упорядоченное движение.

Электролиз – выделение растворенного вещества на электродах, опущенных в электролит. Количественное описание процесса электролиза было экспериментально получено Майклом Фарадеем[6].

Рис. 9.4. Движение ионов в электролите между цинковым и медным электродами.

Первый закон Фарадея утверждает, что масса вещества, выделенная на электроде, пропорциональна заряду Q, перенесенному через электролит:

где k – электрохимический эквивалент вещества, который измеряется в системе СИ в единицах 1 кг/Кл.

В качестве примера на рис.9.4 медный и цинковый электроды помещены в серную кислоту. Под действием ионов серной кислоты в нее попадают положительно заряженные ионы цинка. При этом свободные электроны остаются на стержне. Когда цепь замкнута по внешнему проводу возникает движение свободных электронов, то есть возникает ток. Ионы цинка осаждаются на медном электроде.

Второй закон Фарадея устанавливает связь между электрохимическим эквивалентом вещества и его химическим эквивалентом. Химическим эквивалентом χ называют отношение атомной массы вещества А к его валентности n :

Второй закон Фарадея формулируется так: электрохимические эквиваленты вещества пропорциональны их химическим эквивалентам:

Из уравнения (9.2.3) следует, что отношение химического эквивалента вещества к электрохимическому эквиваленту оказывается постоянной величиной для всех веществ. Это отношение получило название постоянной Фарадея:

Далее экспериментальные исследования показали, что два открытых закона являются частными случаями более общего закона — объединенного закона Фарадея.

Объединенный закон Фарадея имеет следующий вид:

На принципе электролиза в электролитах работают широко используемые в повседневной жизни батарейки. Электролиз применяется в промышленности для получения водорода, гидроксидов натрия, хлора и других химических соединений, извлечения металлов из руд, а также при очистке сточных вод.

Пример. 9.2. Законы Фарадея широко используются в медицине. Организм человека состоит из биологических жидкостей, в которых много свободных электронов и ионов. Под действием электрического поля они движутся в противоположных направлениях и с разными скоростями. Электрический ток используется в физиотерапии. Постоянное напряжение

60 вольт прикладывается к свинцовым электродам. Законы электролиза используются и для введения лекарственных веществ через кожу. Этот способ лечения получил название электрофорез. На ткань наносится лекарство. Ткань укладывается на тело человека, например, как показано на рис. 9.5, на спину.

9.5. К объяснению электрофореза.

Под нее ставится электрод. Второй электрод располагается на другой части тела, например, опять же на спине. К ним подводится слабый постоянный ток, порядка десятков — сотен микроампер. Под действием тока происходит диссоциация молекул раствора, образовавшиеся ионы направляются из раствора к поверхности тела, постепенно осаживаясь на коже и проникая в нее.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Реферат: Электрический ток в жидкостях (электролитах)

Элементарный электрический заряд

Ученицы 8 го класса « Б »

Л огиновой М арии А ндреевны

С электропроводностью растворов солей в воде (электролитов) связано очень многое в нашей жизни. С первого удара сердца («живое» электричество в теле человека, на 80% состоящем из воды) до автомобилей на улице, плееров и мобильных телефонов (неотъемлимой частью этих устройств являются «батарейки» – электрохимические элменты питания и различные аккумуляторы – от свинцово-кислотных в автомобилях до литий-полимерных в самых дорогих мобильных телефонах). В огромных, дымящихся ядовитыми парами чанах из расплавленного при огромной температуре боксита электролизом получают алюминий – «крылатый» металл для самолётов и банок для «Фанты». Все вокруг – от хромированной решетки радиатора иномарки до посеребрённой серёжки в ухе когда-либо сталкивалось с раствором или расплавом солей, а следовательно и с электротоком в жидкостях. Не зря это явление изучает целая наука – электрохимия. Но нас сейчас больше интересуют физические основы этого явления.

Электроток в растворе. Электролиты

Из уроков физики в 8 классе нам известно, что заряд в проводниках (металлах) переносят отрицательно заряженные электроны.

Упорядоченное движение заряженных частиц называется электрическим током.

Но если мы соберем прибор (с электродами из графита):

то убедимся, что стрелка амперметра отклоняется – через раствор идет ток! Какие же заряженные частицы есть в растворе?

Ещё в 1877 году шведский ученый Сванте Аррениус, изучая электропроводность растворов различных веществ, пришел к выводу, что её причиной являются ионы, которые образуются при растворении соли в воде. При растворении в воде молекула CuSO4 распадается (диссоциирует) на два разнозаряженных иона – Cu 2+ и SO4 2- . Упрощенно происходящие процессы можно отразить следующей формулой:

— Проводят электрический ток растворы солей, щелочей, кислот.

— Вещества, растворы которых проводят электрический ток, называются электролитами.

— Растворы сахара, спирта, глюкозы и некоторых других веществ не проводят электрический ток.

— Вещества, растворы которых не проводят электрический ток, называются неэлектролитами.

Электролитическая диссоциация

Процесс распада электролита на ионы называется электролитической диссоциацией.

С. Аррениус, который придерживался физической теории растворов, не учитывал взаимодействия электролита с водой и считал, что в растворах находятся свободные ионы. В отличие от него русские химики И. А. Каблуков и В. А. Кистяковский применили к объяснению электролитической диссоциации химическую теорию Д. И. Менделеева и доказали, что при растворении электролита происходит химическое взаимодействие растворённого вещества с водой, которое приводит к образованию гидратов, а затем они диссоциируют на ионы. Они считали, что в растворах находятся не свободные, не «голые» ионы, а гидратированные, то есть «одетые в шубку» из молекул воды. Следовательно, диссоциация молекул электролитов происходит в следующей последовательности:

а) ориентация молекул воды вокруг полюсов молекулы электролита

б) гидратация молекулы электролита

г) распад её на гидратированные ионы

По отношению к степени электролитической диссоциации электролиты делятся на сильные и слабые.

Читайте также:  Как зарядить акб постоянным током

Сильные электролиты – такие, которые при растворении практически полностью диссоциируют.

У них значение степени диссоциации стремится к единице.

Слабые электролиты – такие, которые при растворении почти не диссоциируют. Их степень диссоциации стремится к нулю.

Из этого делаем вывод, что переносчиками электрического заряда (носителями электрического тока) в растворах электролитов являются не электроны, а положительно и отрицательно заряженные гидратированные ионы .

Температурная зависимость сопротивления электролита

При повышении температуры облегчается процесс диссоциации, повышается подвижность ионов и сопротивление электролита падает .

Катод и анод. Катионы и анионы

А что же происходит с ионами под воздействием электрического тока?

Вернёмся к нашему прибору:

В растворе CuSO4 диссоциировал на ионы – Cu 2+ и SO4 2- . Положительно заряженный ион Cu 2+ (катион) притягивается к отрицательно заряженному электроду – катоду , где получает недостающие электроны и восстанавливается до металлической меди – простого вещества. Если извлечь катод из прибора после прохождения через раствор тока, то нетрудно заметить красно-рыжий налет – это металлическая медь.

Первый закон Фарадея

А можем ли мы узнать сколько меди выделилось? Взвешивая катод до и после опыта, можно точно определить массу осадившегося металла. Измерения показывают, что масса вещества, выделевшегося на электродах, зависит от силы тока и времени электролиза:

где K – коэффиент пропорциональности, называемый также электрохимическим эквивалентом .

Следовательно, масса выделевшегося вещества прямо пропорциональна силе тока и времени электролиза. Но ток за время (согласно формуле):

Итак, масса вещества, выделевшегося на электроде, пропорциональна заряду, или количеству электричества, прошедшему через электролит.

Этот закон был эксперементально открыт в 1843 году английским ученым Майклом Фарадеем и называется первый закон Фарадея .

Второй закон Фарадея

А что такое и от чего зависит электрохимический эквивалент? На этот вопрос тоже дал ответ Майкл Фарадей.

На основании многочисленных опытов он пришёл к выводу, что эта величина является характерной для каждого вещества. Так, например при электролизе раствора ляписа (азотнокислого серебра AgNO3 ) 1 кулон выделяет 1,1180 мг серебра; точно такое же количество серебра выделяется при электролизе зарядом в 1 кулон любой серебряной соли. При электролизе соли другого металла 1 кулон выделяет другое количество данного металла. Таким образом, электрохимическим эквивалентом какого-либо вещества называется масса этого вещества, выделяемая при электролизе 1кулоном протекшего через раствор электричества . Приведем его значения для некоторых веществ:

Из таблицы мы видим, что электрохимические эквиваленты различных веществ существенно отличны один от другого. От каких же свойств вещества зависит величина его электрохимического эквивалента? Ответ на этот вопрос даёт второй закон Фарадея :

Электрохимические эквиваленты различных веществ пропорциональны их атомным весам и обратно пропорциональны числам, выражающим их химическую валентность.

– называют химическим эквивалентом данного вещества

– коэффициент пропорциональности, который является уже универсальной постоянной, то есть имеет одинаковое значение для всех веществ. Если измерить электрохимический эквивалент в г/к то найдем, что он равен 1,037´10 -5 г/к .

Обьединяя первый и второй законы Фарадея получаем:

Эта формула имеет простой физический смысл: F численно равно заряду, котоый надо пропустить через любой электролит, чтобы выделить на электродах вещество в количестве, равном одному химическому эквиваленту. F называют числом Фарадея и оно равно 96400 к/г.

Моль и количество молекул в нем. Число Авогадро

Из курса химии за 8й класс мы знаем, что для измерения количеств веществ, участвующих в химических реакциях, была выбрана особая еденица – моль. Чтобы отмерять один моль вещества, нужно взять столько граммов его, какова относительная молекулярная масса его.

Например, 1моль воды (H2 O) равен 18 граммам (1+1+16=18), моль кислорода (O2 ) – 32 грамма, а моль железа (Fe) – 56 грамм.Но что особенно для нас важно, установлено, что 1 моль любого вещества всегда содержит одинаковое число молекул .

Моль – это такое количество вещества, в котором содержится 6 ´ 10 23 молекул этого вещества.

В честь итальянского ученого А. Авогадро это число (N ) называется постоянной Авогадро или числом Авогадро .

Из формулы следует, что если q=F , то . Это значит что при прхождении через электролит заряда равного 96400 кулонам, выделится граммов любого вещества. Иначе говоря, для выделения одного моля одновалентного вещества через электролит должен протечь заряд q=F кулонов. Но мы знаем, что в любом моле вещества содержится одно и то же число его молекул – N=6×10 23 . Это позволяет нам вычислить заряд одного иона одновалентного вещества – элементарный электрический заряд – заряд одного (!) электрона:

Применение электролиза

Электролитический метод получения чистых металлов (рафинирование, аффинаж). Электролиз, сопровождающийся растворением анода

Хорошим примером является электролитическое очищение (рафинирование) меди. Полученная непосредственно из руды медь отливается в виде пластин и помещается в качестве анода в раствор CuSO4 . Подбирая напряжение на электродах ванны (0,20-0,25в), можно добиться, чтобы на катоде выделялась только металлическая медь. При этом посторонние примеси либо переходят в раствор (без выделения на катоде), либо выпадают на дно ванны в виде осадка («анодный шлам»). Катионы вещества анода соединяются с анионом SO4 2- , а на катоде при этом напряжении выделяется только металлическая медь. Анод как бы «растворяется». Такая очистка позволяет добится чистоты 99,99% («четыре девятки»). Аналогично (аффинаж) очищают и драгоценные металлы (золото Au, серебро Ag).

В настоящее время весь алюминий (Al) добывается электролитически (из расплава бокситов).

Гальванотехника – область прикладной электрохимии, занимающаяся процессами нанесения металлических покрытий на поверхность как металлических, так и неметаллических изделий при прохождении постоянного электрического тока через растворы их солей. Гальванотехника пожразделяется на гальваностегию и гальванопластику .

Посредством электролиза можно покрыть металлические предметы слоем другого металла. Этот процесс называется гальваностегией . Особое техническое значение имеют покрытия трудноокисляемыми металлами, в частности никелирование и хромирование, а также серебрение и золочение, часто применяемые для защиты металлов от коррозии. Для получения нужных покрытий предмет тщательно очищяют, хорошо обезжиривают и помещают как катод в электролитическую ванну, содержащую соль того металла, которым желают покрыть предмет. Для более равномерного покрытия полезно применять две пластины в качестве анода, помещая предмет между ними.

Читайте также:  Что можно вычислить с помощью определенного интеграла электрический заряд или силу тока

Также посредством электролиза можно не только покрыть предметы слоем того или иного металла, но и изготовить их рельефные металлические копии (например, монет, медалей). Этот процесс был изобретен русским физиком и электротехником, членом Российской Академии наук Борисом Семеновичем Якоби (1801-1874) в сороковых годах XIX века и называется гальванопластикой . Для изготовления рельефной копии предмета сначала делают слепок из какого-либо пластичного материала, например из воска. Этот слепок натирают графитом и погружают в электролитическую ванну в качестве катода, где на нём и осаждается слой металла. Это применяется в полиграфии при изготовлении печатных форм.

Кроме указанных выше, электролиз нашел применение и в других областях:

— получение оксидных защитных пленок на металлах (анодирование);

— электрохимическая обработка поверхности металлического изделия (полировка);

— электрохимическое окрашивание металлов (например, меди, латуни, цинка, хрома и др.);

— очистка воды – удаление из нее растворимых примесей. В результате получается так называемая мягкая вода (по своим свойствам приближающаяся к дистиллированной);

— электрохимическая заточка режущих инструментов (например, хирургических ножей, бритв и т.д.).

Список использованной литературы:

1. Гуревич А. Е. «Физика. Электромагнитные явления. 8 класс» Москва, Издательский дом «Дрофа». 1999 год.

2. Габриэлян О. С. «Химия. 8 класс» Москва, Издательский дом «Дрофа». 1997 год.

3. «Элементарный учебник физики под редакцией академика Г. С. Ландсберга — Том II – электричество и магнетизм». Москва, «Наука» 1972 год.

4. Eric M. Rogers. «Physics for the Inquiring Mind (the methods, nature and phylosophy of physical science)». «Prinseton University press» 1966. Том III – электричество и магнетизм. Перевод Москва, «Мир» 1971 год.

5. А. Н. Ремизов «Курс физики, электроники и кибернетики для медицинских институтов». Москва, «Высшая школа» 1982 год.

Источник

Электрический ток в жидкостях — теория, электролиз

То, что жидкости могут отлично проводить электрическую энергию, знают абсолютно все. И также общеизвестным фактом является то, что все проводники по своему типу делятся на несколько подгрупп. Предлагаем рассмотреть в нашей статье, как электрический ток в жидкостях, металлах и прочих полупроводниках проводится, а также законы электролиза и его виды.

Теория электролиза

Чтобы было легче понять, о чем идет речь, предлагаем начать с теории, электричество, если мы рассматриваем электрический заряд, как своего рода жидкость, стало известным уже более 200 лет. Заряды состоят из отдельных электронов, но те, настолько малы, что любой большой заряд ведет себя как непрерывного течения, жидкость.

Как и тела твердого типа, жидкие проводники могут быть трех типов:

  • полупроводниками (селен, сульфиды и прочие);
  • диэлектиками (щелочные растворы, соли и кислоты);
  • проводниками (скажем, в плазме).

Процесс, при котором происходит растворение электролитов и распадение ионов под воздействием электрического молярного поля, называется диссоциация. В свою очередь, доля молекул, которые распались на ионы, либо распавшихся ионов в растворенном веществе, полностью зависит от физических свойств и температуры в различных проводниках и расплавах. Обязательно нужно помнить, что ионы могут рекомбинироваться или вновь объединиться. Если условия не будут меняться, то количество распавшихся ионов и объединившихся будет равно пропорциональным.

В электролитах проводят энергию ионы, т.к. они могут являться и положительно заряженными частицами, и отрицательно. Во время подключения жидкости (или точнее, сосуда с жидкостью к сети питания), начнется движение частиц к противоположным зарядам (положительные ионы начнут притягиваться к катодам, а отрицательные – к анодам). В этом случае, энергию транспортируют непосредственно, ионы, поэтому проводимость такого типа называется – ионной.

Во время этого типа проводимости, ток переносят ионы, и на электродах выделяются вещества, которые являются составляющими электролитов. Если рассуждать с точки зрения химии, то происходит окисление и восстановление. Таким образом, электрический ток в газах и жидкостях транспортируется при помощи электролиза.

Законы физики и ток в жидкостях

Электричество в наших домах и технике, как правило, не передается в металлических проволоках,. В металле электроны могут переходить от атома к атому, и, таким образом нести отрицательный заряд.

Как жидкости, они приводятся в виде электрического напряжения, известного как напряжение, изменяемом в единицах – вольт, в честь итальянского ученого Алессандро Вольта.

Видео: Электрический ток в жидкостях: полная теория

Также, электрический ток течет от высокого напряжения в низкое напряжение и измеряется в единицах, известных как ампер, названных по имени Андре-Мари Ампера. И согласно теории и формулы, если увеличить напряжение тока, то его сила также увеличится пропорционально. Это соотношение известно как закон Ома. Как пример, виртуальная ампермерная характеристика ниже.

Рисунок: зависимость тока от напряжения

Закон Ома (с дополнительными подробностями относительно длины и толщины проволоки), как правило, является одним из первых вещей, преподаваемых в классах, изучающих физику, многие студенты и преподаватели поэтому рассматривают электрический ток в газах и жидкостях как основной закон в физике.

Для того чтобы увидеть своими глазами движение зарядов, нужно приготовить колбу с соленой водой, плоские прямоугольные электроды и источники питания, также понадобится ампермерная установка, при помощи которой будет проводиться энергия от сети питания к электродам.

ток и сольРисунок: Ток и соль

Пластины, которые выступают проводниками необходимо опустить в жидкость, и включить напряжение. После этого начнется хаотичное перемещение частиц, но как после возникновения магнитного поля между проводниками, этот процесс упорядочится.

Как только ионы начнут меняться зарядами и объединяться, аноды станут катодами, а катоды – анодами. Но здесь нужно учитывать и электрическое сопротивление. Конечно, не последнюю роль играет теоретическая кривая, но основное влияние – это температура и уровень диссоциации (зависит от того, какие носители будут выбраны), а также выбран переменный ток или постоянный. Завершая это опытное исследование, Вы можете обратить внимание, что на твердых телах (металлических пластинах), образовался тончайший слой соли.

Читайте также:  Реферат по электротехнике электрический ток

Электролиз и вакуум

Электрический ток в вакууме и жидкостях – это достаточно сложный вопрос. Дело в том, что в таких средах полностью отсутствуют заряды в телах, а значит, это диэлектрик. Иными словами, наша цель – это создание условий, для того, чтобы атом электрона мог начать свое движение.

Для того нужно использовать модульное устройство, проводники и металлические пластины, а далее действовать, как и в методе выше.

Проводники и вакуум Характеристика тока в вакууме

Применение электролиза

Этот процесс применяется практически во всех сферах жизни. Даже самые элементарные работы подчас требуют вмешательства электрического тока в жидкостях, скажем,

При помощи этого простого процесса происходит покрытие твердых тел тончайшим слоем какого-либо металла, например, никелирование иди хромирование Т.е. это один из возможных способов борьбы с коррозийными процессами. Подобные технологии используются в изготовлении трансформаторов, счетчиков и прочих электрических приборов.

Надеемся, наше обоснование ответило на все вопросы, которые возникают, изучая явление электрический ток в жидкостях. Если нужны более качественные ответы, то советуем посетить форум электриков, там Вас с радостью проконсультируют бесплатно.

Источник

Физика. 10 класс

Электролиз

Электрический ток в жидкостях

Необходимо запомнить

Жидкости по степени электропроводности делятся на:

— диэлектрики (дистиллированная вода);

— полупроводники (расплавленный селен).

Электролит – это проводящая электрический ток жидкость (растворы кислот, щелочей, солей и расплавленные соли).

Электролитическая диссоциация – распад молекул электролита на ионы при растворении в воде или расплавлении.

Степень диссоциации – отношение числа молекул, распавшихся на ионы, к общему числу молекул, растворённого вещества. Степень диссоциации измеряется в долях или процентах.

Электропроводимость электролитов – ионная. Прохождение электрического тока связано с переносом вещества.

Явление электролиза – это выделение на электродах веществ, входящих в электролиты, в процессе окислительно-восстановительных реакций, которое возникает при прохождении через электролиты электрического тока.

Закон электролиза:

$m = m_0 \cdot N = \frac \cdot \frac = \frac = k \cdot I \cdot t$

$m = k \cdot I \cdot t$

Закон электролиза определяет массу вещества, выделяемого на электроде при электролизе за время прохождения электрического тока.

k – электрохимический эквивалент вещества, численно равный массе вещества, выделившегося на электроде при прохождении через электролит заряда в 1 Кл.

m – масса выделившегося вещества,

NA – число Авогадро,

M – молярная масса,

I – сила тока,

e – заряд электрона,

n – число ионов.

Применение электролиза:

— получение чистых металлов (очистка от примесей);

— гальваностегия (никелирование, хромирование и т. д.);

— гальванопластика, т. е. получение отслаиваемых покрытий (рельефных копий).

Лабораторная работа «Определение элементарного заряда методом электролиза»

Техническое применения электролиза

Гальваностегия – покрытие металлических изделий тонким слоем другого металла (никелирование, хромирование, серебрение, золочение и т. д.) с целью предохранения от окисления и придания изделию привлекательного внешнего вида. Предмет, подлежащий покрытию, тщательно очищают, хорошо обезжиривают и помещают в качестве катода в электролитическую ванну, содержащую раствор соли того металла, которым должен быть покрыт данный предмет. Анодом служит пластинка из того же металла. Для более равномерного покрытия обычно применяют две пластинки в качестве анода, помещая предмет между ними.

Гальванопластика – электролитическое изготовление копий с рельефных предметов (медалей, гравюр, барельефов и т. д.). С рельефного предмета делают восковый или иной слепок. Затем поверхность слепка покрывают тонким слоем графита, чтобы она стала проводящей. В таком виде слепок используется в качестве катода, который опускают в электролитическую ванну с раствором медного купороса. Анодом служит медная пластинка. Когда на слепке нарастет достаточно толстый слой меди, электролиз прекращают и воск осторожно удаляют. Остается точная медная копия оригинала.

В полиграфической промышленности такие копии (стереотипы) получают с оттиска набора на пластичном материале (матрица), осаждая на матрицах толстый слой железа или другого материала. Это позволяет воспроизвести набор в нужном количестве экземпляров. Если раньше тираж книги ограничивался числом оттисков, которые можно получить с одного набора (при печатании набор стирается), то использование стереотипов позволяет значительно увеличить тираж.

Правда, в настоящее время с помощью электролиза получают стереотипы только для книг высококачественной печати и с большим числом иллюстраций.

Осаждая металл на длинный цилиндр, получают трубы без шва.

Процесс получения отслаиваемых покрытий был разработан русским учёным Якоби Б.С., который в 1836 г. применил этот способ для изготовления полых фигур для Исаакиевского собора (в Санкт-Петербурге).

Рафинирование меди

Медь является лучшим материалом для изготовления проводников, но для этого она должна быть лишена каких бы то ни было примесей. Очищение меди от примесей называется рафинированием (очисткой) меди. Массивные куски (толстые листы) неочищенной меди, полученной при выплавке из руды, являются анодом, а тонкие пластинки из чистой меди – катодом. Процесс происходит в больших ваннах с водным раствором медного купороса. При электролизе медь анода растворяется; примеси, содержащие ценные и редкие металлы, выпадают на дно в виде осадка (шлама), а на катоде оседает чистая медь. Таким же образом производят рафинирование некоторых других металлов.

Получение алюминия

При помощи электролиза получают алюминий. Для этого подвергают электролизу не растворы солей этого металла, а его расплавленные оксиды.

В угольные тигли насыпают глинозём (оксид алюминия Аl2O3), полученный путем переработки бокситов – руд, содержащих алюминий. Тигель служит катодом. Анодом являются угольные стержни, вставленные в тигель. Сначала угольные стержни опускают до соединения с тиглем и пропускают сильный ток. Глинозём при прохождении тока нагревается и расплавляется. После этого угли поднимают, ток проходит через жидкость и производит электролиз. Расплавленный алюминий, выделяющийся при электролизе, опускается на дно тигля (катод), откуда его через особое отверстие выпускают в формы для отливки.

Описанный способ получения алюминия сделал его дешевым и наряду с железом самым распространенным в технике и быту металлом.

Путем электролиза расплавленных солей в настоящее время получают также натрий, калий, магний, кальций и другие металлы.

Электролиз используется для гальваностегии, гальванопластики, рафинирования меди, получения алюминия и других целей.

Источник