Меню

Электрический ток в вакууме жидкости газе



Билет 10. Электрический ток в различных средах: металлах, растворах и расплавах электролитов, газах, вакууме, полупроводниках

Вакуум Электрический ток

Билет 10. Электрический ток в различных средах: металлах, растворах и расплавах электролитов, газах, вакууме, полупроводниках.

Электрический ток в металлах

Металлы в твердом состоянии, как известно, имеют кристалличе­ское строение. Частицы в кристаллах расположены в определенном порядке, образуя пространственную (кристал­лическую) структуру.

В узлах кристаллической решетки металла расположены положительные ионы, а в про­странстве между ними движутся свободные электроны. Свободные электроны не связаны с ядрами своих атомов.

Отрицательный заряд всех свобод­ных электронов по абсолютному значе­нию равен положительному заряду всех ионов решетки. Поэтому в обычных условиях металл электрически нейтрален. Свободные электроны в нем дви­жутся беспорядочно. Но если в металле создать электрическое поле, то свободные электроны начнут двигаться направленно под действи­ем электрических сил. Возникнет электрический ток. Беспорядочное движение электронов при этом сохраняется, подобно тому как сохра­няется беспорядочное движение в стайке мошкары, когда под дейст­вием ветра она перемещается в одном направлении.

http://im5-tub-ru.yandex.net/i?id=72&n=21

Итак, электрический ток в металлах представляет со­бой упорядоченное движение свободных электронов.

Доказательством того, что ток в металлах обусловлен электронами, явились опыты Ман­дельштама и Папалекси.

Описание опыта по рисунку: Если в металле есть свободные заряды, обладающие массой, то они должны подчиняться закону инерции.. Катушка приводилась в быстрое вращение и затем внезапно тормозилась. Опыт обнаружил, что при этом в гальванометре возникал электрический ток. Направление этого тока показало, что по инерции движутся отрицательные заряды.

Скорость движения самих электронов в проводнике под действием электрического поля невелика — несколько миллиметров в секунду, а иногда и еще меньше. Но как только в проводнике возникает элект­рическое поле, оно с огромной скоростью, близкой к скорости света в вакууме (300 000 км/с), распространяется по всей длине проводника.

Одновременно с распространением электрического поля все электроны начинают двигаться в одном направлении по всей длине проводника. Когда говорят о скорости распространения электрического тока в проводнике, то имеют в виду скорость распространения по провод­нику электрического поля.

Электрический ток в растворах и расплавах электролитов.

http:///68_0.h6.gif

Электролиты: соли, щелочи, кислоты являются диэлектриками, но становятся проводниками при растворении их в воде.

Явление распада молекул солей, щелочей и кислот в воде на ионы противоположных знаков называют электролитической диссоциацией. Полученные вследствие распада ионы служат носителями заряда в жидкости, а сама жидкость становятся проводником.

Вне электрического поля ионы движутся хаотически. Под действием внешнего электрического поля ионы, продолжая хаотичные движения, вместе с тем смещаются в направлении действия сил электрического поля: катионы к катоду, анионы — к аноду.

Следовательно, электрический ток в растворах (расплавах) электролитов — это направленное перемещение ионов обоих знаков в противоположных направлениях.

Прохождение электрического тока через раствор электролита всегда сопровождается выделением на электродах веществ, входящих в его состав. Это явление называют электролизом.

Применение электролиза: получение чистых металлов, гальванопластика, гальваностегия.

Электрический ток в газах.

При нормальных условиях газы состоят из нейтральных молекул, а поэтому являются диэлектриками. Для получения электрического тока необходимо молекулы газа следует ионизировать (оторвать электроны от молекул). Ионизировать молекулы можно при нагревании газа, при облучении его различного рода лучами. Благодаря дополнительной энергии возрастает скорость движения молекул, нарастает интенсивность их теплового движения и при соударении отдельные молекулы теряют электроны, превращаясь в положительно заряженные ионы.

http:///68_0.h3.gifhttp:///68_0.h4.gif

Явление термоэлектронной эмиссии лежит в основе принципа действия электронных ламп: вакуумного диода, вакуумного триода.

Электрический ток в полупроводниках.

Полупроводники – среднее между проводниками и диэлектриками. Типичными представителями полупроводников являются кристаллы Германия и кремния. В них атомы соединены между собой ковалентной связью. При нагревании ковалентная связь нарушается, атомы ионизируются. Это обуславливает возникновение свободных электронов и «дырок»- вакантных положительных мест с недостающим электроном.

Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей

При этом электроны соседних атомов могут занимать вакантные места, образуя «дырку» в соседнем атоме. Таким образом, не только электроны, но и «дырки» могут перемещаться по кристаллу. При помещении такого кристалла в электрическое поле электроны и дырки придут в упорядоченное движение — возникнет электрический ток.

Собственная проводимость. В чистом кристалле электрический ток создается равным количеством электронов и «дырок». При повышении температуры собственная проводимость полупроводника увеличивается, т. к. увеличивается число свободных электронов и «дырок».

Примесная проводимость. Проводимость проводников зависит от наличия примесей. Примеси бывают донорные и акцепторные.

Донорная примесь — примесь с большей валентностью. Например, для четырехвалентного кремния донорной примесью является пятивалентный мышьяк. Четыре валентных электрона атома мышьяка участвуют в создании ковалентной связи, а пятый станет электроном проводимости. При нагревании нарушается ковалентная связь, возникают дополнительные электроны проводимости и «дырки». Поэтому в кристалле количество свободных электронов преобладает над количеством «дырок». Проводимость такого проводника является электронной. Электроны являются основными носителями заряда, «дырки» — неосновными.

Акцепторная примесь — примесь с меньшей валентностью. Например, для четырехвалентного кремния акцепторной примесью является трехвалентный индий. Три валентных электрона атома индия участвуют в создании ковалентной связи с тремя атомами кремния, а на месте четвертой незавершенной ковалентной связи образуется «дырка». При нагревании нарушается ковалентная связь, возникают дополнительные электроны проводимости и «дырки». Поэтому в кристалле количество «дырок» преобладает над количеством свободных электронов. Проводимость такого проводника является дырочной. «Дырки» являются основными носителями заряда, электроны — неосновными.

Источник

Билет 10. Электрический ток в различных средах: металлах, растворах и расплавах электролитов, газах, вакууме, полупроводниках

Электрический ток в жидкостях

Как известно, химически чистая (дистиллированная) вода является плохим проводником. Однако при растворении в воде различных веществ (кислот, щелочей, солей и др.) раствор становится проводником, из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией

, а сам раствор
электролитом
, способным проводить ток.

В отличие от металлов и газов прохождение тока через электролит сопровождается химическими реакциями на электродах, что приводит к выделению на них химических элементов, входящих в состав электролита.

Первый закон Фарадея: масса вещества, выделяющегося на каком-либо из электродов, прямо пропорциональна заряду, прошедшему через электролит

Электрохимический эквивалент вещества — табличная величина.

Второй закон Фарадея:

Протекание тока в жидкостях сопровождается выделением теплоты. При этом выполняется закон Джоуля-Ленца.

Опыты Фарадея и электролиз

Течение электрического тока в жидкостях – это продукт процесса перемещения заряженных ионов. Проблемы, связанные с возникновение и распространением электротока в жидкостях, стали причиной изучения знаменитого ученого Майкла Фарадея. Он при помощи многочисленных практических исследований смог найти доказательства, что масса вещества, выделяемая в процессе электролиза, зависит от количества времени и электричества. При этом имеет значение время, в течение которого проводились эксперименты.

Читайте также:  Производство завод трансформаторов тока

Задай вопрос специалистам и получи ответ уже через 15 минут!

Также ученый смог выяснить, что в процессе электролиза при выделении определенного количества вещества необходимо одинаковое количество электрических зарядов. Это количество удалось точно установить и зафиксировать в постоянной величине, которая получила название числа Фарадея.

В жидкостях электрический ток имеет иные условия распространения. Он взаимодействует с молекулами воды. Они в значительной степени затрудняют все передвижения ионов, что не наблюдалось в опытах с использование обычного металлического проводника. Из этого следует, что образование тока при электролитических реакциях будет не столь большим. Однако при увеличении температуры раствора проводимость постепенно увеличивается. Это означает, что напряжение электрического тока растет. Также в процессе электролиза было замечено, что вероятность распада определенной молекулы на отрицательные или положительные заряды ионов увеличивается из-за большого числа молекул используемого вещества или растворителя. При насыщении раствора ионами сверх определенной нормы, происходит обратный процесс. Проводимость раствора вновь начинает снижаться.

В настоящее время процесс электролиза нашел свое применения во многих областях и сферах науки и на производстве. Промышленные предприятия его используют при получении или обработке металла. Электрохимические реакции участвуют в:

  • электролизе солей;
  • гальванике;
  • полировке поверхностей;
  • иных окислительно-восстановительных процессах.

Электрический ток в металлах

При прохождении тока металлы нагреваются. В результате чего ионы кристаллической решетки начинают колебаться с большей амплитудой вблизи положений равновесия. В результате этого поток электронов чаще соударяется с кристаллической решеткой, а следовательно возрастает сопротивление их движению. При увеличении температуры растет сопротивление проводника.

Каждое вещество характеризуется собственным температурным коэффициентом сопротивления — табличная величина. Существуют специальные сплавы, сопротивление которых практически не изменяется при нагревании, например манганин и константан.

Явление сверхпроводимости.

При температурах близких к абсолютному нулю (-2730C) удельное сопротивление проводника скачком падает до нуля. Сверхпроводимость — микроскопический квантовый эффект.

Электрический ток в газах

Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. Проводником может стать ионизированный газ, содержащий электроны, положительные и отрицательные ионы.

Ионизация может возникать под действием высоких температур, различных излучений (ультрафиолетового, рентгеновского, радиоактивного), космических лучей, столкновения частиц между собой.

Ионизированное состояние газа получило название плазмы

. В масштабах Вселенной плазма — наиболее распространенное агрегатное состояние вещества. Из нее состоят Солнце, звезды, верхние слои атмосферы.

Прохождение электрического тока через газ называется газовым разрядом

В «рекламной» неоновой трубке протекает тлеющий разряд

. Светящийся газ представляет собой «живую плазму».


Между электродами сварочного аппарата возникает
дуговой разряд
.


Дуговой разряд горит в ртутных лампах — очень ярких источниках света.
Искровой разряд
наблюдаем в молниях. Здесь напряженность электрического поля достигает пробивного значения. Сила тока около 10 МА!


Для
коронного разряда
характерно свечение газа, образуя «корону», окружающую электрод. Коронный разряд — основной источник потерь энергии высоковольтных линий электропередачи.

При каких условиях возникает электрический ток и что такое сила тока простыми словами

Сразу обращаю внимание: определение электрического тока не относится к статическим, замершим явлениям. Оно напрямую связано с движением,динамическим состоянием.

Его создают не нейтральные, а активные частицы положительного или отрицательного электрического заряда.

И перемещаться они должны не хаотически, как жители мегаполиса во время часа пик, а направленно. Пример: движение массы автомобилей по многорядной дороге в одном направлении большого города.

Представили картину? Внутрь сплошного потока добавляются машины со стороны, какие-то водители съезжают с трассы на другие дороги. Но на общее движение эти процессы не особо влияют: направление сохраняется односторонним.

Так же происходит перемещение электрических зарядов. Внутри металлических проводников ток создают электроны. В обычном состоянии они там движутся довольно хаотически во все стороны.

Но стоит приложить к ним внешнюю силу электрического напряжения с положительными и отрицательными потенциалами на противоположных концах проводника, как начинается направленное движение зарядов.

Оно и является электрическим током. Обращаю внимание на последнее слово. Оно характеризует течение, перемещение, движение, динамику и связанные сними процессы, но не статику.

Именно величина приложенной внешней силы определяет качество направленного потока электронов в одну сторону. Чем выше ее значение, тем большая сила тока начинает протекать через проводник.

Однако здесь требуется учитывать несколько особенностей,связанных с:

  • общепринятыми научными условностями;
  • интенсивностью движения зарядов;
  • Противодействием внутренней среды проводника.

В первом случае нам приходится преодолевать сложившиеся исторические стереотипы, когда люди смешивают общее направление электронов и электрического тока.

Все научные расчеты построены на том, что за направление тока взято движение заряженных частиц от плюса источника напряжения к его минусу.

Внутри металлов электрический ток создается за счет перемещения электронов в обратную сторону: они отталкиваются от одноименного минусового полюса и движутся к положительному.

Недопонимание этого положения может привести к ошибкам. Но их просто избежать: достаточно только запомнить эту особенность и использовать при расчетах или анализе действий электрических схем.

Интенсивность движения заряженных частиц характеризуют количеством их заряда, протекающего через заданную площадь за определённый промежуток времени.

Ее называют силой тока, обозначают латинской буквой I, вычисляют отношением ∆Q/∆t.

Здесь ∆Q — это количество зарядов, проходящих сквозь проводник с площадью S и длиной ∆L, а ∆t — калиброванный промежуток времени.

Для увеличения силы тока нам необходимо повысить число зарядов, проходящих через проводник за единицу времени, а для снижения — уменьшить.

Опять же присмотритесь к термину “сила тока”, вернее к его первому слову. Я специально на самой верхней картинке показал для сравнения мощный бицепс и тлеющую лампочку.

Силовой запас источника энергии может колебаться от излишнего до недостаточного для потребителя. А нам всегда требуется питать нагрузку оптимально. Для этого и введено понятие силы тока.

Чтобы ее оценивать используется единица системы измерения: ампер, обозначаемая латинской буквой A.

Теоретически, чтобы оценить 1 ампер необходимо:

  • взять два очень тонких, бесконечно длинных и совершенно ровных проводника;
  • разместить их на плоскости строго параллельно друг другу на расстоянии 1 метр;
  • пропускать по ним одинаковый ток, постепенно повышая его величину;
  • замерять силу притяжения проводов и зафиксировать момент, когда она достигнет значения 2×10-7 Ньютона.

Вот тогда и станет протекать в проводах 1 ампер.

На практике никто так не поступает. Для измерения созданы специальные приборы: амперметры. Их конструкции работают в размерах дольности и кратности: мили-, микро- и кило-.

Еще одно определение ампера связано с единицей количества электричества: кулоном (Кл), который проходит сквозь поперечное сечение провода за 1 секунду.

Сила тока в любом месте замкнутой электрической цепи, где он протекает, всегда одинакова, а при ее разрыве, где бы ни было, исчезает.

Это явление позволяет выполнять замеры в самых удобных местах любой электрической схемы.

Когда создается сложная разветвленная цепь для протекания нескольких токов, то последние тоже на всех отдельных участках остаются постоянными.

Третий случай противодействия среды тоже важен. Электроны в процессе движения сталкиваются с препятствиями в виде положительно и отрицательно заряженных частиц.

Такие столкновения связаны с затратами энергии, расходуемой на выделение тепла. Их обобщили термином электрического сопротивления и описали физическими законами в математической форме.

Внутренняя структура каждого металла оказывает различное противодействие протеканию тока. Наука давно изучила эти свойства и свела в таблицы, графики и формулы удельного электрического сопротивления.

Читайте также:  Расчет выходного тока усилителя

При проведении расчетов нам остается только воспользоваться уже проверенными и подготовленными сведениями. Их можно выполнять на основе формул, представленных известной шпаргалкой электрика.

Но намного проще использовать онлайн калькулятор Закона Ома. Он позволит избежать совершения типичных математических ошибок.

Для любителей смотреть видео я рекомендую ролик Павла Виктор по основам теории электропроводности металлов.

Самые важные выводы из формул силы тока для домашнего мастера

Практическую пользу представляет только полное понимание процессов протекания тока по проводникам. В быту мы должны:

  1. Заранее предусмотреть токовые нагрузки на проводку. Эти сведения помогут грамотно спроектировать ее для прокладки внутри своей квартире. А если она уже проложена, то потребуется учитывать и не превышать подключаемые мощности.
  • Исключить типовые ошибки монтажа проводов и оборудования, на которых происходит бесполезная потеря энергии электричества,создается излишний нагрев, возникают повреждения.
  • Правильно эксплуатировать проводку.
  • Предусмотреть систему защит, которые автоматически предохранят бытовую сеть от возникновения случайных повреждений как внутри схемы, так и приходящих со стороны питания.

Сейчас я не стану более подробно расшифровывать каждый из этих четырех пунктов. У меня в планах расписать их для вас более подробно сериями статей, опубликовать в рубриках сайта. Следите за информацией или подписывайтесь на рассылку, дабы быть в курсе.

Электрический ток в вакууме

А возможно ли распространение электрического тока в вакууме (от лат. vacuum — пустота)? Поскольку в вакууме нет свободных носителей зарядов, то он является идеальным диэлектриком. Появление ионов привело бы к исчезновению вакуума и получению ионизированного газа. Но вот появление свободных электронов обеспечит протекание тока через вакуум. Как получить в вакууме свободные электроны? С помощью явления термоэлектронной эмиссии

— испускания веществом электронов при нагревании.

Вакуумный диод, триод, электронно-лучевая трубка (в старых телевизорах) — приборы, работа которых основана на явлении термоэлектронной эмиссии. Основной принцип действия: наличие тугоплавкого материала, через который протекает ток — катод

, холодный электрод, собирающий термоэлектроны —
анод
.

Источник

Электрический ток в различных средах

Электрический ток в различных средах

Одним из параметров, характеризующих электрический ток, является его проводимость, которая меняется в зависимости от внешних условий. В каждом конкретном случае степень проводимости может меняться, поэтому, для изучения и более глубокого понимания протекающих процессов используется таблица электрического тока в средах. С ее помощью можно более наглядно узнать и представить себе, какими качествами обладает электрический ток в тех или иных случаях.

электрический ток в средах таблица

Фактически, электрический ток может протекать в пяти разных видах среды:

  1. Металлы.
  2. Вакуум.
  3. Полупроводники.
  4. Жидкости.
  5. Газы.

Электрический ток в металлах

Электрический ток в металлах представляет собой упорядоченное движение электронов, которые перемещаются в указанном направлении под воздействием электрического поля. Многочисленные проведенные опыты показали, что в процессе перетекания токов ионы самого металла остаются на месте и участия в перемещении заряда не принимают. Все металлы, находящиеся в твердом состоянии, обычно имеют кристаллическое строение. Положительные ионы закреплены в узлах кристаллической решетки, а все остальное пространство заполнено свободными электронами.

Электроны никак не связаны с ядрами. При этом ситуация внутри металла уравновешена, так как суммарный отрицательный заряд свободных электронов в нормальном состоянии по своему абсолютному значению равен положительному заряду всех ионов, составляющих структуру решетки. Таким образом металлы в обычном своем состоянии электрически нейтральны, и все свободные электроны внутри структуры осуществляют хаотичное движение.

Как только в металле формируется электрическое поле, свободные электроны начинают, поз воздействием внешних электрических сил, совершать направленное движение. Так появляется электрический ток. Примечательно, что направленное движение этих электронов продолжается в хаотичном порядке.

электрический ток в разных средах

Как только в проводнике возникнет электрическое поле, оно распространяется по всей длине проводника с огромной скоростью (скорость перемещения электрического тока близка к скорости света, а это 300 тысяч км. в секунду)!

Электрический ток в вакуумной среде

Отличительная особенность вакуума – отсутствие заряженных частиц. Фактически – это диэлектрик. Свободные электроны в огромных количествах присутствуют в металлах. Если температура окружающей среды близка к комнатной, электроны (в соответствии с законами кулоновского притяжения) не могут покинуть металл, оставаясь в его структуре. Но как только начинается процесс нагрева металла, из него в больших количествах начинают вылетать электроны. Этот процесс получил название термоэлектронная эмиссия. Чтобы инициировать ее в вакуум в качестве одного из электродов помещают тончайшую проволочную нить, изготовленную из особо тугоплавкого типа металла (это, так называемая, нить накала). При подключении к источнику питания из этой нити начинают вылетать раскаленные электроны, которые попадают в электрическое поле, расположенное между двумя электродами. Начинается упорядоченное движение, создается электрический ток.

тема электрический ток в различных средах

Данное явление послужило основой для работы электронных ламп, диодов, триодов, работающих в вакууме.

Электрический ток в средах-полупроводниках

Полупроводники – это вещества, находящиеся в некоем среднем состоянии между проводниками и диэлектриками. (Типичный пример – кристаллы кремния или германия). Здесь при соединении атомов друг с другом существует ковалентная связь. Эта связь нарушается в момент нагревания материала, а атомы ионизируются. В результате появляется все больше свободных электронов, а также свободных мест («дырок») положительного заряда.

электрический ток в различных средах

Подобным образом «дырки» появляются и в соседних атомах. Более того, эти дырки, наряду со свободными электронами начинают свободно перемещаться по кристаллу. В результате, после помещения кристалла в электрическое поле, начинается упорядоченное движение вышеперечисленных частиц, возникает электрический ток.

Электрический ток в различных средах: жидкости

Жидкими проводниками второго типа считаются растворы солей, оснований и кислот. Отметим, что в данном перечне отсутствует вода. Дело в том, что в чистом виде молекулы в воде имеют полярность, что присуще диэлектрикам. Таким образом для создания условий существования электрического тока в жидкости необходимо привнести извне вещество, которое и предоставит свободные носители для перемещения заряда.

электрический ток в различных средах таблица

Электрический ток в различных средах: газы

В нормальных стандартных условиях гады представляют собой нейтральные молекулы, которые по сути являются диэлектриками. Чтобы получить ток, необходимо оторвать молекулы от атома, «ионизировать» среду. Это достигается как методом нагрева, так и различными способами облучения. В результате, формируется три типа носителей зарядов

  • положительные ионы;
  • отрицательные ионы;
  • электроны.

Упорядоченное движение этих частиц также начинается под воздействием внешнего электрического поля. Но здесь наблюдается разнонаправленное движение, одни движутся к катоду, другие – к аноду.

электрический ток в средах

Общие выводы

Таким образом, рассматривая тему как распространяется электрический ток в разных средах, можно отметить: в газах упорядоченное движение начинается под воздействием электрического поля.

Электрический ток в различных средах – растворы и расплавы электролитов. Многие электролиты в обычном своем состоянии являются диэлектриками. Но после растворения их в воде, эти вещества становятся проводниками. Данный процесс получил название электролитической диссоциации. Электрический ток в разных средах раствором протекает под воздействием внешнего электрополя. При этом одни ионы движутся к катоду, а другие – к аноду.

Подведем итог

Наиболее наглядно помогает увидеть, как протекает электрический ток в различных средах таблица. Очевидно, что условия протекания зависят от структуры материала, но процесс всегда начинается под воздействием внешним.

Источник

Электрический ток в вакууме и газах

Урок 77. Физика 10 класс

Доступ к видеоуроку ограничен

Конспект урока «Электрический ток в вакууме и газах»

Совсем недавно мы говорили о полупроводниках и изготовленных на основе их свойств приборах — транзисторах. Транзисторы полностью заменили электронные лампы, которые были более громоздкими и менее безопасными. Из этих ламп выкачивался воздух, делая концентрацию воздуха внутри сосуда все меньше и меньше. В конце концов, концентрация оказывалась настолько мала, что молекулы газа пролетали от одной стенки сосуда до другой, не соударяясь друг с другом. Такое состояние газа называют вакуумом. То есть вакуум — это такое состояние вещества, при котором его молекулы могут пролететь от одной стенки сосуда до другой, ни разу не испытав соударения. Возникает вопрос: если в вакууме так мало вещества, то как же тогда провести ток через вакуум? Ведь для этого нужны носители заряда.

Читайте также:  Частота переменного тока равна 50 гц чему равен период колебаний

Впервые это удалось Томасу Эдисону (известному всем как изобретатель промышленной лампы накаливания). Рассмотрим эксперимент Эдисона. Томас Эдисон поместил две металлические пластины в вакуумный баллон. К пластинам он подсоединил электрометр, чтобы регистрировать появление электрического тока и начал нагревать одну из пластин.

Когда пластина достаточно нагрелась, электрометр показал, что на второй пластине есть заряд. Это можно было объяснить только тем, что в вакууме протекает электрический ток.

Дело здесь вот в чем: вокруг разогретого металла образуется электронное облако. С повышением средней кинетической многие электроны становятся свободными, вылетая с поверхности металла подобно молекулам, вылетающим с поверхности воды при испарении. Часть таких электронов и попало на вторую пластину, тем создав на ней ненулевой заряд. Такой процесс получил называние термоэлектронной эмиссии. То есть, термоэлектронная эмиссия — это процесс испускания электронов разогретым металлом. Необходимо отметить, что речь не идет о настолько высокой температуре, которая разрушила бы сам металл.

На основе этого свойства был изобретен такой прибор как вакуумный диод. В вакуумный баллон помещены два электрода: холодный и горячий. Как и было сказано ранее, горячий электрод испускает значительно большее число электронов, чем холодный.

В результате, один из электродов оказывается отрицательно заряженным, а другой — положительно заряженным. Горячий электрод называется катодом, а холодный электрод называется анодом. Теперь давайте рассмотрим, что произойдет, если мы подключим анод к положительному полюсу источника тока, а катод — к отрицательному. В этом случае, вектор напряженности электрического поля будет направлен от анода к катоду. Поскольку направление вектора напряженности указывает направление движения положительных зарядов, электроны будут двигаться в обратном направлении (то есть от катода к аноду). В результате этого, между электродами возникнет электрический ток, то есть, цепь замкнется, и по всей цепи будет протекать электрический ток. Если же теперь мы сменим полярность, то поменяется и направление вектора напряженности электрического поля. В этом случае, поле будет отталкивать электроны обратно к катоду, и цепь окажется разомкнутой. Таким образом, вакуумный диод обладает односторонней проводимостью и тоже может быть использован для преобразования переменного тока в постоянный. Если мы рассмотрим вольтамперную характеристику вакуумного диода, то увидим, что ток возникает только в одном направлении и достаточно быстро растет с увеличением напряжения.

На сегодняшний день вакуумные диоды почти полностью заменили полупроводниковыми диодами, но общая идея у этих приборов имеется.

Рассмотрим теперь возникновение электрического тока в газах. Как вы знаете, в обычном состоянии газы являются диэлектриками, из-за того, что в них очень мало свободных зарядов. Если мы возьмем заряженный конденсатор и подсоединим к нему электрометр, то убедимся, что стрелка электрометра практически не двигается.

Это говорит нам о том, что конденсатор разряжается очень медленно. Если теперь мы подогреем воздух между пластинами конденсатора, то стрелка электрометра достаточно быстро начнет приближаться к нулю.

Это говорит о том, что конденсатор разряжается, то есть воздух при более высокой температуре становится проводящим. Электрический ток, проходящий через газ, называется газовым разрядом.

Надо сказать, что создать электрический ток в газе можно двумя способами: разделить нейтральные молекулы на ионы и электроны или привнести в газ уже готовые свободные заряды. Чаще всего используется первый способ, который называется ионизацией. Ионизация — это процесс разделения нейтральных молекул на ионы и электроны.

Как мы только что убедились, ионизация газов происходит при нагревании. Это объясняется тем, что при более высоких температурах молекулы газа начинают двигаться все быстрее и быстрее, соответственно соударяясь все с большей и большей силой. При таких столкновениях, некоторые молекулы распадаются на положительно заряженные ионы и электроны. Надо сказать, что в газе могут образоваться и отрицательно заряженные ионы: если свободный электрон присоединится к нейтральному атому.

Необходимо отметить, что ионизацию газа можно вызвать не только нагреванием, но и подвергнув этот газ некоторым видам излучения.

Существует два вида газовых разрядов: несамостоятельный и самостоятельный разряды. Несамостоятельный разряд — это протекание электрического тока в газе только под действием внешнего ионизатора. То есть, если разряд несамостоятельный, то при прекращении действия ионизатора, в газе перестанет протекать электрический ток.

Самостоятельный разряд — это протекание электрического тока в газе даже после отключения внешнего ионизатора. То есть, если разряд самостоятельный, то ток не перестанет существовать в газе, при выключении ионизатора.

Проведем опыт, который поможет нам установить вольт-амперную характеристику газов. Для этого соберем следующую цепь: в первую очередь нам понадобится ионизатор.

Этот ионизатор включает в себя два электрода: положительный (анод) и отрицательный (катод). Конечно, нам также понадобится стеклянный баллон, в который мы и поместим исследуемый газ. Разумеется, в нашей цепи должен присутствовать источник тока, с помощью которого мы создадим электрическое поле. Для измерения напряжения нам понадобится вольтметр, а для измерения силы тока нам понадобится амперметр. Чтобы мы могли регулировать силу тока, нам понадобится реостат. Итак, наша цепь готова. Для удобства мы можем изобразить ее схематически, а также, построить график, отображающий вольт-амперную характеристику данного газа.

Как видно, график делится на три участка: до точки А, между точками А и В, и после точки В. Итак первая часть графика представляет собой практически линейную зависимость силы тока от напряжения. То есть, на первом участке, протекание электрического тока подчиняется хорошо известному нам закону Ома. Если теперь мы рассмотрим второй участок, то убедимся, что ток практически не увеличивается, несмотря на увеличение напряжения. Дело здесь в следующем: в какой-то момент наступает такое состояние, что в единицу времени образуется столько же зарядов, сколько зарядов достигает электродов за это же время. То есть, попросту неоткуда взяться дополнительным носителям заряда, за счет которых увеличилась бы сила тока. В таких случаях говорят, что ток достиг насыщения. Но, как видно из графика, этим дело еще не кончается. Если продолжать увеличивать напряжение, то ток, в какой-то момент снова начинает быстро увеличиваться. Этому соответствует третий участок графика — участок после точки В.

Чем больше напряжение, тем сильнее электрическое поле действует на заряженные частицы. В результате, электроны начинают обладать довольно большой энергией и при столкновении с нейтральными атомами выбивают из них дополнительные заряды. Когда газ достиг такого состояния, внешний ионизатор уже не нужен для поддержания тока, поэтому, здесь речь идет уже о самостоятельном разряде. Кинетическая энергия электрона пропорциональна напряженности поля и длине свободного пробега (то есть расстоянию, пройденному без столкновений). Итак, если эта энергия электрона превосходит работу, которую необходимо совершить для ионизации нейтрального атома, то такой электрон самостоятельно ионизирует нейтральный атом. Такой процесс называется ионизацией электронным ударом. Более того, положительные ионы, двигающиеся к катоду, тоже обладают достаточно большой энергией, чтобы выбить из него электроны. Кроме этого, столь большое количество ударов по катоду приводит к его нагреванию. А нагревание, как мы знаем, приводит к термоэлектронной эмиссии. В этом случае, число заряженных частиц становится столь велико, что ионизатор уже не нужен, и такой разряд, безусловно, является самостоятельным.

Источник