Меню

Электрический ток в вакууме решение задач



Электрический ток в вакууме решение задач

Сила тока в лампочке карманного фонаря 0,32 А. Сколько электронов проходит через поперечное сечение нити накала за 0,1 с
РЕШЕНИЕ

Найти скорость упорядоченного движения электронов в проводе площадью поперечного сечения 5 мм2 при силе тока 10 А, если концентрация электронов проводимости 5 • 1028 м3
РЕШЕНИЕ

Через два медных проводника, соединенных последовательно, проходит ток. Сравнить скорость упорядоченного движения электронов, если диаметр второго проводника в 2 раза меньше, чем первого
РЕШЕНИЕ

Найти скорость упорядоченного движения электронов v в стальном проводнике, концентрация электронов проводимости в котором n = 1028 м3, при напряженности поля Е = 96 мВ/м
РЕШЕНИЕ

Найти скорость упорядоченного движения электронов в медном проводе площадью поперечного сечения 25 мм2 при силе тока 50 А, считая, что на каждый атом приходится один электрон проводимости
РЕШЕНИЕ

При какой температуре сопротивление серебряного проводника станет в 2 раза больше, чем при 0 °С
РЕШЕНИЕ

Для определения температурного коэффициента сопротивления меди на катушку медной проволоки подавали одно и то же напряжение. При погружении этой катушки в тающий лед сила тока была 14 мА, а при опускании в кипяток сила тока стала 10 мА. Найти по этим данным температурный коэффициент сопротивления меди
РЕШЕНИЕ

Почему электрические лампы накаливания чаще всего перегорают в момент включения
РЕШЕНИЕ

Почему в момент включения в сеть мощного приемника (например, электрокамина) лампочки в квартире могут на мгновение чуть-чуть пригаснуть
РЕШЕНИЕ

На сколько процентов изменится мощность, потребляемая электромагнитом, обмотка которого выполнена из медной проволоки, при изменении температуры от 0 до 30 °с
РЕШЕНИЕ

На баллоне электрической лампы написано 220 В, 100 Вт. Для измерения сопротивления нити накала в холодном состоянии на лампу подали напряжение 2 В, при этом сила тока была 54 мА. Найти приблизительно температуру накала вольфрамовой нити
РЕШЕНИЕ

Найти удельное сопротивление стали при 50 °С. Учтите, что в таблице 9 приложений приведены удельные сопротивления при 20 °С
РЕШЕНИЕ

Концентрация электронов проводимости в германии при комнатной температуре n = 3*1019 м3. Какую часть составляет число электронов проводимости от общего числа атомов
РЕШЕНИЕ

Доказать рассуждением, что соединение InAs (арсенид индия), в котором количества (в молях) индия и мышьяка одинаковы, обладает проводимостью типа собственной проводимости элементов четвертой группы (Ge, Si). Какого типа будет проводимость при увеличении концентрации индия? мышьяка
РЕШЕНИЕ

Для получения примесной проводимости нужного типа в полупроводниковой технике часто применяют фосфор, галлий, мышьяк, индий, сурьму. Какие из этих элементов можно ввести в качестве примеси в германий, чтобы получить электронную проводимость
РЕШЕНИЕ

К концам цепи, состоящей из последовательно включенных термистора и резистора сопротивлением 1 кОм, подано напряжение 20 В. При комнатной температуре сила тока в цепи была 5 мА. Когда термистор опустили в горячую воду, сила тока в цепи стала 10 мА. Во сколько раз изменилось в результате нагрева сопротивление термистора
РЕШЕНИЕ

На рисунке 98 приведены графики зависимости силы тока, идущего через фоторезистор, от приложенного напряжения. Какой график относится к освещенному фоторезистору и какой к находящемуся в темноте? Применим ли закон Ома к данному фоторезистору и при каких условиях? Во сколько раз сопротивление освещенного фоторезистора меньше затемненного
РЕШЕНИЕ

Фоторезистор, который в темноте имеет сопротивление 25 кОм, включили последовательно с резистором сопротивлением 5 кОм. Когда фоторезистор осветили, сила тока в цепи (при том же направлении) увеличилась в 4 раза. Каким стало сопротивление фоторезистора
РЕШЕНИЕ

Найти сопротивление полупроводникового диода в прямом и обратном направлениях тока, если при напряжении на диоде 0,5 В сила тока 5 мА, а при напряжении 10 В сила тока 0,1 мА
РЕШЕНИЕ

Читайте также:  Простреливает в голове как током справа

В усилителе, собранном на транзисторе по схеме с общей базой, сила тока в цепи эмиттера равна 12 мА, в цепи базы 600 мкА. Найти силу тока в цепи коллектора
РЕШЕНИЕ

При какой наименьшей скорости электрон может вылететь из серебра
РЕШЕНИЕ

Скорость электрона при выходе с поверхности катода, покрытого оксидом бария, уменьшилась в 2 раза. Найти скорость электрона до и после выхода из катода
РЕШЕНИЕ

В вакуумном диоде электрон подходит к аноду со скоростью 8 Мм/с. Найти анодное напряжение
РЕШЕНИЕ

В телевизионном кинескопе ускоряющее анодное напряжение равно 16 кВ, а расстояние от анода до экрана составляет 30 см. За какое время электроны проходят это расстояние
РЕШЕНИЕ

Расстояние между катодом и анодом вакуумного диода равно 1 см. Сколько времени движется электрон от катода к аноду при анодном напряжении 440 В? Движение считать равноускоренным
РЕШЕНИЕ

В электронно-лучевой трубке поток электронов с кинетической энергией Wk = 8 кэВ движется между пластинами плоского конденсатора длиной x = 4 см. Расстояние между пластинами d = 2 см. Какое напряжение надо подать на пластины конденсатора, чтобы смещение электронного пучка на выходе из конденсатора оказалось равным y = 0,8 см
РЕШЕНИЕ

В электронно-лучевой трубке поток электронов ускоряется полем с разностью потенциалов U = 5 кВ и попадает в пространство между вертикально отклоняющими пластинами длиной x = 5 см, напряженность поля между которыми Е = 40 кВ/м. Найти вертикальное смещение y луча на выходе из пространства между пластинами
РЕШЕНИЕ

Источник

Электрический ток в вакууме решение задач

«Физика — 10 класс»

Наиболее просты количественные закономерности для электрического тока в металлах и электролитах.

Задачи на закон Ома, который выполняется для этих проводников, были приведены в главе 15. В данной главе преимущественно рассматриваются задачи на применение закона электролиза. Кроме того, при решении некоторых задач надо использовать формулу (16.1) для зависимости сопротивления металлических проводников от температуры.

Задача 1.

Проводящая сфера радиусом R = 5 см помещена в электролитическую ванну, наполненную раствором медного купороса. Насколько увеличится масса сферы, если отложение меди длится t — 30 мин, а электрический заряд, поступающий на каждый квадратный сантиметр поверхности сферы за 1 с, q = 0,01 Кл? Молярная масса меди М = 0,0635 кг/моль.

Площадь поверхности сферы S = 4πR 2 = 314 см 2 . Следовательно, заряд, перенесённый ионами за t = 30 мин = 1800 с, равен Δq = qSt = 0,01 Кл/(см 2 • с) • 314 см 2 • 1800 с = 5652 Кл. Масса выделившейся меди равна:

Задача 2.

При электролизе, длившемся в течение одного часа, сила тока была равна 5 А. Чему равна температура выделившегося атомарного водорода, если при давлении, равном 10 5 Па, его объём равен 1,5 л? Электрохимическии эквивалент водорода

По закону Фарадея масса m выделившегося водорода:

Из уравнения Менделеева—Клапейрона где R — универсальная газовая постоянная, М — молярная масса атомарного водорода, определим массу водорода, полученного при электролизе:

Из выражений (1) и (2) определим температуру:

Задача 3.

При никелировании изделия в течение 1 ч отложился слой никеля толщиной l = 0,01 мм. Определите плотность тока, если молярная масса никеля М = 0,0587 кг/моль, валентность n = 2, плотность никеля

Согласно закону электролиза Фарадея масса выделившегося на катоде никеля

где m = ρV = ρlS, а I = jS, где S — площадь покрытия никелем; F — постоянная Фарадея, Подставив выражения для массы никеля и силы тока I в формулу (1), получим откуда

Задача 4.

Определите электрическую энергию, затраченную на получение серебра массой 200 г, если КПД установки 80%, а электролиз проводят при напряжении 20 В. Электрохимический эквивалент серебра равен

Читайте также:  Расчет термически допустимых токов короткого замыкания с учетом неадиабатического нагрева

Энергия, идущая только на электролиз, равна:

Согласно закону Фарадея m = kq, откуда

Подставив выражение для q в формулу (1), получим

Полная затраченная энергия Wэ связана с W’э выражением следовательно,

Задача 5.

Объясните, почему при дуговом разряде при увеличении силы тока напряжение уменьшается.

При увеличении силы тока возрастает термоэлектронная эмиссия с катода, носителей заряда становится больше, а следовательно, сопротивление промежутка между электродами уменьшается. При этом уменьшение сопротивления происходит быстрее, чем увеличение силы тока (в газах нарушается линейный закон Ома U = IR), поэтому напряжение уменьшается.

Задача 6.

Покажите, что при упругом столкновении электрона с молекулой электрон передаёт ей меньшую энергию, чем при абсолютно неупругом ударе.

При прямом абсолютно упругом столкновении электрона с молекулой выполняются законы сохранения энергии и импульса:

где me и m — массы электрона и молекулы; υ1 и υ2 — их скорости после столкновения. Решая эту систему относительно υ1 и υ2, получаем

Энергия, передаваемая молекуле, Так как me 2 ≈ m 2 . Тогда

Из полученного выражения следует, что молекуле передаётся очень маленькая часть первоначальной энергии электрона, так как me

Так как me По следам «английских ученых»

Источник

Физика. 10 класс

Конспект урока

Физика, 10 класс

Урок 35. Электрический ток в вакууме и газах

Перечень вопросов, рассматриваемых на уроке:

1) особенности протекания электрического тока в вакууме и газах;

2) газовый разряд;

3) рекомбинация, ионизация;

4) самостоятельный разряд и несамостоятельный разряды;

6) зависимость силы тока от напряжения;

7) зависимость силы тока от внешних условий.

Глоссарий по теме:

Термоэлектронная эмиссия – явление испускания электронов нагретыми металлами.

Катодные лучи – это испускаемые катодом потоки электронов, движущиеся в вакууме.

Электрический ток газах или газовый разряд – это процесс прохождения электрического тока через газ.

Ионизация – это распад атомов и молекул на ионы.

Рекомбинация – это образование из ионов нейтральных атомов и молекул.

Самостоятельный разряд – это разряд, происходящий в газе без внешнего ионизатора.

Несамостоятельный разряд – это разряд, происходящий в газе только под влиянием внешнего ионизатора.

Плазма – это частично или полностью ионизированный газ.

Основная и дополнительная литература по теме урока:

Г.Я. Мякишев., Б.Б.Буховцев., Н.Н.Сотский. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 372-375, 380-385.

Рымкевич А.П. Сборник задач по физике. 10-11 класс М.: Дрофа,2009.

Фортов В. Е., Храпак А. Г., Якубов И. Т. Физика неидеальной плазмы. Издательство: Физматлит, 2010 г.

Теоретический материал для самостоятельного изучения

Вакуум является идеальным диэлектриком. Чтобы в вакууме мог проходить электрический ток, в нем необходимо предварительно «создать» некоторую концентрацию свободных носителей заряда, это осуществляется с помощью явления термоэлектронной эмиссии. Термоэлектронная эмиссия – явление испускания веществом электронов при нагревании. Вакуумные приборы, работа которых основана на явлении термоэлектронной эмиссии, называются электронными лампами (вакуумный диод, электронно-лучевая трубка).

Электрический ток в газах, другими словами газовый разряд, — это совокупность электрических, оптических и тепловых явлений, возникающих при протекании электрического тока через вещество, находящееся в газообразном состоянии. Когда газ находится в своем обычном состоянии, он является диэлектриком. Чтобы протекание тока стало возможным, необходимо создать подходящие для этого условия, т. е. ионизировать газ. Ионизация происходит в результате воздействия:

1) космических лучей;

2) рентгеновского излучения;

3) ультрафиолетового излучения;

4) высокой температуры;

5) электрического поля.

Все газовые разряды делятся на 2 вида:

К самостоятельным относятся: искровой, дуговой, тлеющий и коронный разряды.

Электронно-лучевые трубки находят широкое применение в осциллографах, дисплеях компьютеров, радиолокаторах, медицинской аппаратуре.

Плазма – это частично или полностью ионизированный газ. В целом плазма является электрически нейтральной системой.

Читайте также:  При каком токе лучше заряжать аккумулятор 18650

Частицы плазмы легко перемещаются под воздействием электрических и магнитных полей. Поэтому любое нарушение электрической нейтральности отдельных областей плазмы быстро ликвидируется, и нейтральность плазмы восстанавливается. Проводимость плазмы увеличивается по мере роста степени её ионизации.

При высоких температурах проводимость полностью ионизированной плазмы приближается к сверхпроводимости.

Примеры и разбор решения заданий:

  1. Выберите правильный ответ.

Электронная пушка создаёт пучок электронов в стеклянной вакуумной камере. Все электроны, покинувшие катод пушки, ударяются в экран электронно-лучевой трубки. Если увеличить ускоряющее напряжение в пушке в 2 раза, то сила тока, идущего в вакууме через трубку.

  1. 1 не изменится;
  2. возрастёт примерно в раза;
  3. возрастёт примерно в 2 раза;
  4. возрастёт примерно в 4 раза.

Правильный вариант: 1) не изменится;

Подсказка: вспомните определение тока насыщения в вакууме.

  1. Решите задачу: «Скорость электрона при выходе с поверхности катода, покрытого оксидом бария, уменьшилась в 2 раза. Работа выхода электрона из оксида бария равна 1,6·10 -19 Дж. Найдите скорость электрона до выхода из катода и после выхода из катода».

Источник

Решение задач. Электрический ток в газах, в вакууме — ЭЛЕКТРОДИНАМИКА

Нажмите, чтобы узнать подробности

Решение задач. Электрический ток в газах, в вакууме — ЭЛЕКТРОДИНАМИКА

Просмотр содержимого документа
«Решение задач. Электрический ток в газах, в вакууме — ЭЛЕКТРОДИНАМИКА»

Физика — Поурочные планы к учебникам Г. Я. Мякишева, С. В. Громова и В. Л. Касьянова 10 класс

Решение задач. Электрический ток в газах, в вакууме — ЭЛЕКТРОДИНАМИКА

Цель: научить применять на практике теоретические знания.

I. Решение задач

1. Сколько пар ионов возникает под действием ионизатора ежесекундно в 1 см 3 разрядной трубки, в которой течет ток насыщения 2 · 10 -7 мА. Площадь каждого плоского электрода 1 дм 2 и расстояние между ними 5 мм. (≈ 2,5 · 10 7 см -3 )

2. Какой скорости должны достигнуть электроны к моменту соударений с молекулами, чтобы в азоте началась ионизация ударом? Энергия ионизации молекул азота 14,5 эВ. (2,3 · 10 6 м/с)

3. Какой должна быть напряженность электрического поля, чтобы при длине свободного пробега 0,5 мкм электрон смог ионизировать атом газа с энергией ионизации 2,4 · 10 -18 Дж. (30 мВ/м)

4. Электрон, движущийся со скоростью 1,83 · 10 6 м/с, влетел в однородное электрическое поле в направлении, противоположном направлению напряженности поля. Какую разность потенциалов должен пройти электрон, чтобы ионизировать атом водорода, если энергия ионизации 2,18 · 10 -18 Дж? (4,15 В)

5. Максимальный анодный ток в ламповом диоде равен 50 мА. Сколько электронов вылетает из катода каждую секунду? (3,1 · 10 17 )

6. В диоде электроны ускоряются до энергии 100 эВ. Какова их минимальная скорость у анода лампы? (3,1 · 10 км/с)

7. Скорость движения электронов между электродами в диоде доходит до 10 4 км/с, а в металлических проводниках анодной цепи скорость направленного движения электронов не более долей миллиметра в секунду. Одинакова ли сила тока в лампе и в проводниках, составляющих анодную цепь. (Сила тока одинакова)

8. Электронный пучок проходит между пластинами конденсатора путь 50 мм и при этом отклоняется на 10 мм. Какова горизонтальная составляющая скорости электронов, если напряженность электрического поля между пластинами конденсатора 15 кВ/м? (5,7 · 10 7 м/с)

9. Электрон влетает со скоростью 6 · 10 7 м/с в плоский конденсатор параллельно его пластинам. Расстояние между пластинами 1 см, длина конденсатора 5 см, разность потенциалов на пластинах 600 В. Найти отклонения электрона сразу за пластинами конденсатора. (3,7 · 10 -3 м)

Источник

Adblock
detector