Меню

Электрический ток в растворах электролитов представляет собой перемещение



Электрический ток в электролитах

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.

Прохождение электрического тока через электролит сопровождается выделением веществ на электродах. Это явление получило название электролиза.

Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией. Например, хлорид меди CuCl2 диссоциирует в водном растворе на ионы меди и хлора:

При подключении электродов к источнику тока ионы под действием электрического поля начинают упорядоченное движение: положительные ионы меди движутся к катоду, а отрицательно заряженные ионы хлора – к аноду (рис 1.15.1).

Достигнув катода, ионы меди нейтрализуются избыточными электронами катода и превращаются в нейтральные атомы, оседающие на катоде. Ионы хлора, достигнув анода, отдают по одному электрону. После этого нейтральные атомы хлора соединяются попарно и образуют молекулы хлора Cl2. Хлор выделяется на аноде в виде пузырьков.

Во многих случаях электролиз сопровождается вторичными реакциями продуктов разложения, выделяющихся на электродах, с материалом электродов или растворителей. Примером может служить электролиз водного раствора сульфата меди CuSO4 (медный купорос) в том случае, когда электроды, опущенные в электролит, изготовлены из меди.

Диссоциация молекул сульфата меди происходит по схеме

Нейтральные атомы меди отлагаются в виде твердого осадка на катоде. Таким путем можно получить химически чистую медь. Ион отдает аноду два электрона и превращается в нейтральный радикал SO4 вступает во вторичную реакцию с медным анодом:

Образовавшаяся молекула сульфата меди переходит в раствор.

Таким образом, при прохождении электрического тока через водный раствор сульфата меди происходит растворение медного анода и отложение меди на катоде. Концентрация раствора сульфата меди при этом не изменяется.

Электролиз водного раствора хлорида меди

Закон электролиза был экспериментально установлен английским физиком Майклом Фарадеем в 1833 году. Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе:

Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:

Величину k называют электрохимическим эквивалентом.

Масса выделившегося на электроде вещества равна массе всех ионов, пришедших к электроду:

Здесь m и q – масса и заряд одного иона, – число ионов, пришедших к электроду при прохождении через электролит заряда Q. Таким образом, электрохимический эквивалент k равен отношению массы m иона данного вещества к его заряду q.

Так как заряд иона равен произведению валентности вещества n на элементарный заряд e (q = ne), то выражение для электрохимического эквивалента k можно записать в виде

Постоянная Фарадея численно равна заряду, который необходимо пропустить через электролит для выделения на электроде одного моля одновалентного вещества.

Закон Фарадея для электролиза приобретает вид:

Явление электролиза широко применяется в современном промышленном производстве.

Источник

Электрический ток в растворах электролитов представляет собой перемещение

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы.

Основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований. Прохождение электрического тока через электролит сопровождается выделением веществ на электродах. Это явление получило название электролиза (рис.9.10).

Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией.

Закон электролиза был экспериментально установлен английским физиком М. Фарадеем в 1833 году.

Первый закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе: масса m вещества, выделившегося на электроде, прямо пропорциональна заряду q, прошедшему через электролит:

m = kq = kIt,

где kэлектрохимический эквивалент вещества:

F = eNA = 96485 Кл / моль. – постоянная Фарадея.

Второй закон Фарадея электрохимические эквиваленты различных веществ относятся их химические эквиваленты :

Объединенный закон Фарадея для электролиза:

Электролитические процессы классифицируются следующим образом:

получение неорганических веществ (водорода, кислорода, хлора, щелочей и т.д.);

получение металлов (литий, натрий, калий, бериллий, магний, цинк, алюминий, медь и т.д.);

очистка металлов (медь, серебро,…);

получение металлических сплавов;

получение гальванических покрытий;

обработка поверхностей металлов (азотирование, борирование, электрополировка, очистка);

получение органических веществ;

электродиализ и обессоливание воды;

нанесение пленок при помощи электрофореза.

Читайте также:  Головная боль при ударе током

Практическое применение электролиза

Электрохимические процессы широко применяются в различных областях современной техники, в аналитической химии, биохимии и т. д. В химической промышленности электролизом получают хлор и фтор, щелочи, хлораты и перхлораты, надсерную кислоту и персульфаты, химически чистые водород и кислород и т. д. При этом одни вещества получают путем восстановления на катоде (альдегиды, парааминофенол и др.), другие электроокислением на аноде (хлораты, перхлораты, перманганат калия и др.).

Электролиз в гидрометаллургии является одной из стадий переработки металлсодержащего сырья, обеспечивающей получение товарных металлов. Электролиз может осуществляться с растворимыми анодами – процесс электрорафинирования или с нерастворимыми – процесс электроэкстракции. Главной задачей при электрорафинировании металлов является обеспечения необходимой чистоты катодного металла при приемлемых энергетических расходах. В цветной металлургии электролиз используется для извлечения металлов из руд и их очистки.

Электролизом расплавленных сред получают алюминий, магний, титан, цирконий, уран, бериллий и др. Для рафинирования (очистки) металла электролизом из него отливают пластины и помещают их в качестве анодов 1 в электролизер 3 (рис.9.11). При пропускании тока металл, подлежащий очистке 1, подвергается анодному растворению, т. е. переходит в раствор в виде катионов. Затем эти катионы металла разряжаются на катоде 2, благодаря чему образуется компактный осадок уже чистого металла. Примеси, находящиеся в аноде, либо остаются нерастворимыми 4, либо переходят в электролит и удаляются.

На рисунке 9.11 приведена схема электролитического рафинирования меди.

Гальванотехника – область прикладной электрохимии, занимающаяся процессами нанесения металлических покрытий на поверхность как металлических, так и неметаллических изделий при прохождении постоянного электрического тока через растворы их солей. Гальванотехника подразделяется на гальваностегиюи гальванопластику.

Гальваностегия (от греч. покрывать) – это электроосаждение на поверхность металла другого металла, который прочно связывается (сцепляется) с покрываемым металлом (предметом), служащим катодом электролизера (рис. 9.12).

Способом гальваностегии можно покрыть деталь тонким слоем золота или серебра, хрома или никеля. С помощью электролиза можно наносить тончайшие металлические покрытия на различных металлических поверхностях. При таком способе нанесения покрытий, деталь используют в качестве катода, помещенного в раствор соли того металла, покрытие из которого необходимо получить. В качестве анода используется пластинка из того же металла.

Рис. 9.12 Рис. 9.13

Рекомендуем просмотреть демонстрацию «Гальванопластика».

Гальванопластика – получение путем электролиза точных, легко отделяемых металлических копий значительной толщины с различных как неметаллических, так и металлических предметов, называемых матрицами (рис. 9.13).

С помощью гальванопластики изготовляют бюсты, статуи и т. д. Гальванопластика используется для нанесения сравнительно толстых металлических покрытий на другие металлы (например, образование «накладного» слоя никеля, серебра, золота и т. д.).

Источник

Электрический Ток в Растворах и Расплавах Электролитов

Электрический Ток в Растворах и Расплавах Электролитов

Растворы солей, кислот и оснований называются электролитами . Химически чистая вода почти не проводит электрического тока, но если растворить в воде какую-нибудь соль, например медный купорос, то ток через нее пойдет. При протекании электрического тока через раствор электролитов вместе с зарядом всегда переносится вещество (это явление называется электролизом). Отсюда следует, что носителями тока в этих проводниках являются ионы.

Электрической диссоциацией называется расщепление в воде солей, кислот и щелочей на положительные и отрицательные ионы. Растворы электролитов всегда содержат некоторое число ионов: катионов (положительных ионов) и анионов (отрицательных ионов). Пока электрическое поле отсутствует, ионы совершают только беспорядочное тепловое движение. Но в электрическом поле ионы, подобно электронам в металлах, начинают дрейфовать в направлении действующей на них силы: катионы — к катоду, анионы — к аноду.

Электрический ток в растворах (или расплавах) электролитов представляет собой перемещение ионов обоих знаков в противоположных направлениях. Опыт показывает, что сила тока при постоянном сопротивлении электролитов линейно зависит от напряжения, т. е. для растворов электролитов справедлив закон Ома.

Электронная теория позволяет рассчитать массу вещества, выделившегося на электродах при электролизе. Она равна массе одного иона m 0 , умноженной на число ионов N, которые осели на электродах. Масса одного

elektricheskiiy_tok_v_rastvorah_i_rasplavah_elektrolitov_renamed_19111.jpg

Величины N A и е являются универсальными постоянными, а М и z постоянны для данного вещества. Поэтому выражение

elektricheskiiy_tok_v_rastvorah_i_rasplavah_elektrolitov_renamed_32492.jpg— величина, постоянная для данного вещества.

Масса вещества, выделившегося на электроде, пропорциональна заряду, прошедшему через раствор (или пропорциональна силе тока и времени). Эта зависимость носит название закона Фарадея.

elektricheskiiy_tok_v_rastvorah_i_rasplavah_elektrolitov_renamed_21060.jpg

Коэффициент k называется электрохимическим эквивалентом данного вещества. Он выражается в килограммах на кулон (кг/Кл).

Закон Фарадея позволяет определить заряд одновалентного иона:

elektricheskiiy_tok_v_rastvorah_i_rasplavah_elektrolitov.jpg

Электролиз получил широкое применение в технике:

  • получение щелочных и щелочноземельных металлов (алюминия, магния, бериллия и др.);
  • покрытие трудно окисляемыми металлами деталей для предохранения их от коррозии;
  • гальванопластика — изготовление рельефных металлических копий предметов и др.

Источник

Электрический ток в электролитах — механизм возникновения, законы и применение

Процесс электролитической диссоциации Электрический ток в электролитах Электрический ток в электролитах - механизм возникновения, законы и применение

Передача электричества

Электрический ток – это упорядоченное движение заряженных частиц. Носителями заряда электрического тока в электролитах являются ионы. Они образуются в результате распада (электролитической диссоциации) молекул вещества под действием молекул воды в растворе или при нагревании и образовании расплава.

Читайте также:  Переменный ток при диатермии

Расщепление молекул происходит за счёт разрыва полярных ковалентных или ионных связей. Интенсивность диссоциации зависит от температуры и концентрации раствора. Также на степень диссоциации влияет природа электролита. В связи с этим выделяют:

  • слабые электролиты, распадающиеся частично или не распадающиеся вообще;
  • сильные электролиты, быстро распадающиеся на ионы.

К слабым электролитам относится большинство органических веществ, слабые кислоты, плохо растворимые соли и нерастворимые основания. Сильные кислоты, щёлочи, соли относятся к сильным электролитам.

Процесс электролитической диссоциации

Рис. 1. Процесс электролитической диссоциации.

Образованные в результате диссоциации ионы делятся на два типа:

  • катионы – положительно заряженные частицы;
  • анионы – отрицательно заряженные частицы.

Проводником электрического тока в электролитах является электрод. Он может быть анодом или катодом. Анод присоединён к положительному полюсу источника тока, катод – к отрицательному. Анод окисляет вещества, находящиеся в электролите, катод – восстанавливает.

Электроды

Рис. 2. Электроды.

Если в раствор электролита поместить два электрода – катод и анод – и включить электрический ток, то ионы начнут двигаться под действием электрического поля. Катионы устремятся к катоду, анионы – к аноду. Достигнув электродов, ионы нейтрализуются, превращаются в нейтральные атомы и оседают.

Процесс разложения вещества на составные части, которые оседают на электродах, называется электролизом.

Передача электротока Электрический ток в электролитах - механизм возникновения, законы и применение

Электрическая диссоциация

Это основополагающий процесс для появления электротока в растворах, поэтому его необходимо рассмотреть более подробно. Все ионы, образующиеся при распаде молекул, можно разделить на 2 типа:

Электрический ток в электролитах - механизм возникновения, законы и применение

  • Анионы. Имеют отрицательный заряд.
  • Катионы. Обладают положительным зарядом.

Большинство свойств воды обусловлено полярностью молекул вещества. Говоря иначе, с точки зрения электротехники они являются диполями. Здесь следует вспомнить определение диполи — это система двух частиц, расположенных близко друг к другу. При этом их заряды противоположны по знаку, но одинаковы по модулю. Свойство полярности H2O объясняется геометрическим строением молекул вещества:

  • угол между центральными линиями атомов равен примерно 104,5 градуса;
  • электронны смещены в направлении кислорода.
  • Являясь диполями, молекулы воды способны создавать вокруг себя электрополе, которое воздействует не только на них, но и на частицы растворенного вещества.

    Электрический ток в электролитах - механизм возникновения, законы и применение

    Чтобы установить, какова природа процесса распада молекул на ионы, следует рассмотреть раствор поваренной соли. На внешней орбите атома натрия расположен лишь 1 электрон. Его связь с атомом слаба, поэтому он способен быстро уйти со своего места. У атома хлора на внешней орбите находится уже 7 электронов и до комплекта не хватает одной частицы. Благодаря этому при образовании кристалла NaCl внешний электрон натрия присоединяется к атому хлора. В итоге образуется диполь.

    Взаимодействие двух видов диполей и способствуют активизации процесса растворения. Если в раствор электролита поместить 2 электрода — катод (отрицательный) и анод (положительный), то свободные ионы устремятся к ним. При этом направление их движения протекает по конкретным правилам:

    • катионы направятся к катоду;
    • анионы начинают двигаться в направлении анода.

    Как только переносчики электротока достигают электродов, они теряют свой заряд, превращаясь в нейтральные, и оседают на поверхности электродов.

    Закон Фарадея

    Процесс электролиза экспериментально изучил английский физик и химик Майкл Фарадей в 1833 году. Он сформулировал закон, согласно которому масса выделившегося на электроде вещества прямо пропорциональна прошедшему через электролит заряду. Этот закон закрепился в науке как первый закон Фарадея.

    Майкл Фарадей

    Рис. 3. Майкл Фарадей.

    • m – масса вещества;
    • Q – заряд;
    • k – электрохимический эквивалент;
    • I – сила тока;
    • t – время действия тока.

    Согласно второму закону Фарадея масса выделившегося на электроды вещества прямо пропорциональна отношению молярной массы к валентности и равна электрохимическому эквиваленту.

    • m – масса выделившегося вещества;
    • k – электрохимический эквивалент;
    • M – молярная масса;
    • z – валентность вещества.

    Электролиз используется в щелочных и кислотных аккумуляторах. С помощью электролиза можно защитить изделие металлическим покрытием.

    Электролиз с переменным током. Вступление

    Как происходит электролиз? Например, представим себе раствор хлорида меди, в который опущено два графитовых (инертных) электрода. Напряжение — обычно 4-12 В, ток, разумеется, постоянный.

    На положительном электроде (анод) будут окисляться анионы хлора с выделением газообразного хлора (Cl2), на отрицательном электроде (катод) будут восстанавливаться катионы меди и выделяться металлическая медь (часто — в виде губки, чтобы получилось прочное покрытие нужно следить за плотностью тока на катоде).

    А что будет, если к электродам подключить переменный ток, например, частотой 50 Гц? Т.е., чтобы каждый электрод становился, то катодом, то анодом и так 50 раз в секунду. Большинство людей, столкнувшись с этим вопросом, отвечали, что электролиза не будет. Некоторые были настолько не согласны с возможностью протекания электролиза с переменным током, что выходили за рамки приличного поведения. — Как будто это была неслыханная ересь.

    Читайте также:  Сила тока при сварке tig

    Как впервые ответил на этот вопрос я сам? Увы, не пришлось: сначала я столкнулся с растворением родия под действием переменного тока, и только потом задался вопросом, как такое возможно?

    Родий, в отличие от золота, платины и палладия, не растворяется даже в царской водке. Перевести его в раствор — проблема. Тем не менее, растворять родий приходится, например, с целью приготовления электролита для получения родиевого покрытия.

    Решение оказалось простым. Два родиевых электрода опускают в раствор соляной или серной кислоты и подключают через ЛАТР переменный ток от сети (50 Гц), напряжение — около 10 В. Родиевые электроды постепенно растворяются, раствор окрашивается в темно-вишневый (или коричневый) цвет: мы имеем дело с электролизом с неинертным (растворимым) анодом.

    Почему родий переходит из электродов в раствор — понятно: происходит анодное растворение, но почему катионы родия не осаждаются из раствора назад на электроды (в тот момент, когда электрод играет роль катода)?

    Именно этот вопрос я задал сотруднику, который много лет занимался анодным растворением родия с помощью электрического тока. Оказывается, растворение родия с электродов и обратное его осаждение на электроды из раствора происходит с разной скоростью (растворение идет быстрее): благодаря этому в растворе и накапливается родий.

    В разбавленной соляной кислоте родий растворяется быстрее, чем в разбавленной серной кислоте (анодное растворение переменным током), но для приготовления электролита родирования нужен именно сульфат. Если вы получите хлорид родия, его придется переводить в сульфат через промежуточное осаждение гидроксида. Лично я занимался анодным растворением родия в бромистоводородной кислоте — в ней родий растворялся еще медленнее, чем в серной, но для синтезов был нужен именно гидратированный бромид родия.

    В сказанном выше нет ничего оригинального: упомянутая методика приготовления электролита для родирования изложена в ОСТ-107 460092 001 — 96 [1] (издание официальное). Проблема была в том, что оно было под грифом «ДСП» [2] т.е. секретно. Благодаря этому некоторые не совсем порядочные сотрудники держали методику в секрете, якобы как личное ноу-хау, и зарабатывали тем, что готовили электролит за деньги (хотя заказчики (Запорожье), если бы у них была методика, легко справились бы с этим сами).

    Но времена меняются: появились сканеры и появился интернет. Поэтому отсканировал ОСТ и выложил для всех.

    Выше упомянут случай электрохимического растворения родия с переменным током, который, кстати, применим и для других благородных металлов. Но в промышленности и лабораторной практике переменный и импульсный ток используется также для осаждения металлов, например, с целью получения гальванических покрытий или мелкодисперсных порошков металлов. Применяться может, как симметричный (синусоида), так и ассиметричный переменный ток.

    Протекание электролиза с переменным током зависит от частоты, напряжения, силы тока и от ряда других факторов. При частоте в десятки, сотни и тысячи герц ионы успевают дойти до электродов и там разрядиться. Если частота поднимается до миллионов герц (МГц), разрядка ионов прекращается, т.к. ионы не успевают достигнуть электродов и разрядиться.

    Большое значение имеет химическая природа системы, на которую действует электрический ток (состав электролита и материал электродов). Забегая наперед, скажу: часто все совсем не так, как с постоянным током. Кроме того, в некоторых случаях поверхность электрода может играть роль выпрямителя, превращая симметричный переменный ток в ассиметричный переменный или в импульсный ток.

    Во многих случаях переменный или импульсный ток используют для электролиза не от хорошей жизни: делается это в основном тогда, когда применение постоянного тока или методов без участия электрического тока (например, химическое растворение и химическое осаждение) дает плохие результаты.

    В некоторых случаях электролиз переменным током — нежелательное явление, которое возникает мимо нашей воли. Например, в нагревателях и парогенераторах, которые работают за счет омического тепла от прохождения переменного тока через воду, может происходить разложение воды на водород и кислород — так же, как при действии постоянного тока (такие нагреватели работают по принципу «Кипятильника из двух лезвий

    » [3]). В данном случае наиболее важной является критическая плотность тока на электродах, после превышения которой происходит активный электролиз воды. Разумеется, при этом энергия электрического тока расходуется не на нагрев (или испарение) воды, а на бесполезное ее разложение.

    Но я и не утверждаю, что электролиз с постоянным током — замечательное и уникальное явление. Достаточно констатации самого факта: электролиз с переменным током существует, в чем можно убедиться, поставив несколько простых экспериментов.

    Далее описаны опыты по электролизу с переменным током частотой в 50 Гц, напряжением 10-25 и 220 В.

    __________________________________________________ 1 ОСТ-107_460092_001-96. Покрытия металлические и неметаллические неорганические. Типовые технологические процессы. [ссылка]

    2 ДСП — для служебного пользования (т.е. ограниченного пользования).

    3 Самодельный кипятильник из двух лезвий [ссылка]

    Источник