Меню

Электрический ток обусловлен движением положительных ионов



Электрический ток

Электрический ток — направленное движение заряженных частиц в электрическом поле.

Заряженными частицами могут являться электроны или ионы (заряженные атомы).

Атом, потерявший один или несколько электронов, приобретает положительный заряд. — Анион (положительный ион).
Атом, присоединивший один или несколько электронов, приобретает отрицательный заряд. — Катион (отрицательный ион).
Ионы в качестве подвижных заряженных частиц рассматриваются в жидкостях и газах.

В металлах носителями заряда являются свободные электроны, как отрицательно заряженные частицы.

В полупроводниках рассматривают движение (перемещение) отрицательно заряженных электронов от одного атома к другому и, как результат, перемещение между атомами образовавшихся положительно заряженных вакантных мест — дырок.

За направление электрического тока условно принято направление движения положительных зарядов. Это правило было установлено задолго до изучения электрона и сохраняется до сих пор. Так же и напряжённость электрического поля определена для положительного пробного заряда.

На любой единичный заряд q в электрическом поле напряженностью E действует сила F = qE, которая перемещает заряд в направлении вектора этой силы.

Заряды в электрическом поле

На рисунке показано, что вектор силы F = -qE, действующей на отрицательный заряд -q, направлен в сторону противоположную вектору напряжённости поля, как произведение вектора E на отрицательную величину. Следовательно, отрицательно заряженные электроны, которые являются носителями зарядов в металлических проводниках, в реальности имеют направление движения, противоположное вектору напряжённости поля и общепринятому направлению электрического тока.

Электрический ток

Количество заряда Q = 1 Кулон, перемещённое через поперечное сечение проводника за время t = 1 секунда, определится величиной тока I = 1 Ампер из соотношения:

Отношение величины тока I = 1 Aмпер в проводнике к площади его поперечного сечения S = 1 m 2 определит плотность тока j = 1 A/m 2 :

Работа A = 1 Джоуль, затраченная на транспортировку заряда Q = 1 Кулон из точки 1 в точку 2 определит значение электрического напряжения U = 1 Вольт, как разность потенциалов φ1 и φ2 между этими точками из расчёта:

U = A/Q = φ1φ2

Электрический ток может быть постоянным или переменным.

Постоянный ток — электрический ток, направление и величина которого не меняются во времени.

Переменный ток — электрический ток, величина и направление которого меняются с течением времени.

Ещё в 1826 году немецкий физик Георг Ом открыл важный закон электричества, определяющий количественную зависимость между электрическим током и свойствами проводника, характеризующими их способность противостоять электрическому току.
Эти свойства впоследствии стали называть электрическим сопротивлением, обозначать буквой R и измерять в Омах в честь первооткрывателя.
Закон Ома в современной интерпретации классическим соотношением U/R определяет величину электрического тока в проводнике исходя из напряжения U на концах этого проводника и его сопротивления R:

Электрический ток в проводниках

В проводниках имеются свободные носители зарядов, которые под действием силы электрического поля приходят в движение и создают электрический ток.

В металлических проводниках носителями зарядов являются свободные электроны.
С повышением температуры хаотичное тепловое движение атомов препятствует направленному движению электронов и сопротивление проводника увеличивается.
При охлаждении и стремлении температуры к абсолютному нулю, когда прекращается тепловое движение, сопротивление металла стремится к нулю.

Электрический ток в жидкостях (электролитах) существует как направленное движение заряженных атомов (ионов), которые образуются в процессе электролитической диссоциации.
Ионы перемещаются в сторону электродов, противоположных им по знаку и нейтрализуются, оседая на них. — Электролиз.
Анионы — положительные ионы. Перемещаются к отрицательному электроду — катоду.
Катионы — отрицательные ионы. Перемещаются к положительному электроду — аноду.
Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.
При нагревании сопротивление электролита уменьшается из-за увеличения числа молекул, разложившихся на ионы.

Электрический ток в газах — плазма. Электрический заряд переносится положительными или отрицательными ионами и свободными электронами, которые образуются под действием излучения.

Существует электрический ток в вакууме, как поток электронов от катода к аноду. Используется в электронно-лучевых приборах — лампах.

Электрический ток в полупроводниках

Полупроводники занимают промежуточное положение между проводниками и диэлектриками по своему удельному сопротивлению.
Знаковым отличием полупроводников от металлов можно считать зависимость их удельного сопротивления от температуры.
С понижением температуры сопротивление металлов уменьшается, а у полупроводников, наоборот, возрастает.
При стремлении температуры к абсолютному нулю металлы стремятся стать сверхпроводниками, а полупроводники — изоляторами.
Дело в том, что при абсолютном нуле электроны в полупроводниках будут заняты созданием ковалентной связи между атомами кристаллической решётки и, в идеале, свободные электроны будут отсутствовать.
При повышении температуры, часть валентных электронов может получать энергию, достаточную для разрыва ковалентных связей и в кристалле появятся свободные электроны, а в местах разрыва образуются вакансии, которые получили название дырок.
Вакантное место может быть занято валентным электроном из соседней пары и дырка переместится на новое место в кристалле.
При встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами полупроводника и происходит обратный процесс – рекомбинация.
Электронно-дырочные пары могут появляться и рекомбинировать при освещении полупроводника за счет энергии электромагнитного излучения.
В отсутствие электрического поля электроны и дырки участвуют в хаотическом тепловом движении.
В электрическое поле в упорядоченном движении участвуют не только образовавшиеся свободные электроны, но и дырки, которые рассматриваются как положительно заряженные частицы. Ток I в полупроводнике складывается из электронного In и дырочного Ip токов.

К числу полупроводников относятся такие химические элементы, как германий, кремний, селен, теллур, мышьяк и др. Самым распространенным в природе полупроводником является кремний.

Замечания и предложения принимаются и приветствуются!

Источник

Электрический ток в жидкостях

Вещества, обладающие ионной проводимостью, называют электролитами. Электрический ток в жидкостях – это упорядоченное движение ионов. Электролитами являются растворы солей, кислот, щелочей. Ионная проводимость обусловлена электролитической диссоциацией-распадом молекул на ионы под действием молекул растворителя. Образующиеся при распаде молекул ионы имеют одинаковые по модулю и противоположные по знаку заряды. Электрическое поле приводит их в упорядоченное движение.

Читайте также:  Можно ли измерить постоянный ток клещами для переменного тока

Электролиз – выделение растворенного вещества на электродах, опущенных в электролит. Количественное описание процесса электролиза было экспериментально получено Майклом Фарадеем[6].

Рис. 9.4. Движение ионов в электролите между цинковым и медным электродами.

Первый закон Фарадея утверждает, что масса вещества, выделенная на электроде, пропорциональна заряду Q, перенесенному через электролит:

где k – электрохимический эквивалент вещества, который измеряется в системе СИ в единицах 1 кг/Кл.

В качестве примера на рис.9.4 медный и цинковый электроды помещены в серную кислоту. Под действием ионов серной кислоты в нее попадают положительно заряженные ионы цинка. При этом свободные электроны остаются на стержне. Когда цепь замкнута по внешнему проводу возникает движение свободных электронов, то есть возникает ток. Ионы цинка осаждаются на медном электроде.

Второй закон Фарадея устанавливает связь между электрохимическим эквивалентом вещества и его химическим эквивалентом. Химическим эквивалентом χ называют отношение атомной массы вещества А к его валентности n :

Второй закон Фарадея формулируется так: электрохимические эквиваленты вещества пропорциональны их химическим эквивалентам:

Из уравнения (9.2.3) следует, что отношение химического эквивалента вещества к электрохимическому эквиваленту оказывается постоянной величиной для всех веществ. Это отношение получило название постоянной Фарадея:

Далее экспериментальные исследования показали, что два открытых закона являются частными случаями более общего закона — объединенного закона Фарадея.

Объединенный закон Фарадея имеет следующий вид:

На принципе электролиза в электролитах работают широко используемые в повседневной жизни батарейки. Электролиз применяется в промышленности для получения водорода, гидроксидов натрия, хлора и других химических соединений, извлечения металлов из руд, а также при очистке сточных вод.

Пример. 9.2. Законы Фарадея широко используются в медицине. Организм человека состоит из биологических жидкостей, в которых много свободных электронов и ионов. Под действием электрического поля они движутся в противоположных направлениях и с разными скоростями. Электрический ток используется в физиотерапии. Постоянное напряжение

60 вольт прикладывается к свинцовым электродам. Законы электролиза используются и для введения лекарственных веществ через кожу. Этот способ лечения получил название электрофорез. На ткань наносится лекарство. Ткань укладывается на тело человека, например, как показано на рис. 9.5, на спину.

9.5. К объяснению электрофореза.

Под нее ставится электрод. Второй электрод располагается на другой части тела, например, опять же на спине. К ним подводится слабый постоянный ток, порядка десятков — сотен микроампер. Под действием тока происходит диссоциация молекул раствора, образовавшиеся ионы направляются из раствора к поверхности тела, постепенно осаживаясь на коже и проникая в нее.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Электрический ток в электролитах

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.

Прохождение электрического тока через электролит сопровождается выделением веществ на электродах. Это явление получило название электролиза.

Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией. Например, хлорид меди CuCl2 диссоциирует в водном растворе на ионы меди и хлора:

При подключении электродов к источнику тока ионы под действием электрического поля начинают упорядоченное движение: положительные ионы меди движутся к катоду, а отрицательно заряженные ионы хлора – к аноду (рис 1.15.1).

Достигнув катода, ионы меди нейтрализуются избыточными электронами катода и превращаются в нейтральные атомы, оседающие на катоде. Ионы хлора, достигнув анода, отдают по одному электрону. После этого нейтральные атомы хлора соединяются попарно и образуют молекулы хлора Cl2. Хлор выделяется на аноде в виде пузырьков.

Во многих случаях электролиз сопровождается вторичными реакциями продуктов разложения, выделяющихся на электродах, с материалом электродов или растворителей. Примером может служить электролиз водного раствора сульфата меди CuSO4 (медный купорос) в том случае, когда электроды, опущенные в электролит, изготовлены из меди.

Диссоциация молекул сульфата меди происходит по схеме

Нейтральные атомы меди отлагаются в виде твердого осадка на катоде. Таким путем можно получить химически чистую медь. Ион отдает аноду два электрона и превращается в нейтральный радикал SO4 вступает во вторичную реакцию с медным анодом:

Образовавшаяся молекула сульфата меди переходит в раствор.

Таким образом, при прохождении электрического тока через водный раствор сульфата меди происходит растворение медного анода и отложение меди на катоде. Концентрация раствора сульфата меди при этом не изменяется.

Электролиз водного раствора хлорида меди

Закон электролиза был экспериментально установлен английским физиком Майклом Фарадеем в 1833 году. Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе:

Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:

Величину k называют электрохимическим эквивалентом.

Масса выделившегося на электроде вещества равна массе всех ионов, пришедших к электроду:

Здесь m и q – масса и заряд одного иона, – число ионов, пришедших к электроду при прохождении через электролит заряда Q. Таким образом, электрохимический эквивалент k равен отношению массы m иона данного вещества к его заряду q.

Так как заряд иона равен произведению валентности вещества n на элементарный заряд e (q = ne), то выражение для электрохимического эквивалента k можно записать в виде

Читайте также:  Действующее значение напряжения в сети переменного тока равно 220в

Постоянная Фарадея численно равна заряду, который необходимо пропустить через электролит для выделения на электроде одного моля одновалентного вещества.

Закон Фарадея для электролиза приобретает вид:

Явление электролиза широко применяется в современном промышленном производстве.

Источник

Разработка урока по физике. Тема: «Электрический ток в жидкости». 11-й класс

Класс: 11

Презентация к уроку

Назад Вперёд

Загрузить презентацию (201,2 кБ)

— раскрыть понятие физической природы электрического тока в жидкостях, опытное подтверждение электронной теории;

— продолжить формирование естественно-научных представлений по изучаемой теме;

— создать условия для формирования познавательного интереса, активности учащихся;

— формирование адаптивной системы обучения;

— формирование креативного мышления;

— формирование коммуникативного мышления.

Оборудование: интерактивный комплекс SMART Board Notebook, локальная сеть компьютеров, Интернет.

Метод ведения урока: комбинированный.

Жизнь ставит цели науке; наука освещает путь жизни.
Н.К. Михайловский

II. Работа в группах.

III. Обсуждение итогов, монтаж презентации.

V. Домашнее задание (Г.Я. Мякишев “Электродинамика” 10-11 класс, 3.4-3.6).

— Добрый день! Садитесь.

Сегодня наша работа будет происходить по группам.

Задания группам:

  • Природа электрического тока в растворах и расплавах электролитов
  • Электролиты. Электролитическая диссоциация
  • Опыт Фарадея по электролизу
  • Закон Фарадея
  • Вольт – амперная характеристика тока в жидкостях. ЭДС поляризации
  • Применение электролиза
  • Содержание задания групп:

    Электрический ток в электролитах. Законы Фарадея для электролиза

    Электрический ток в электролитах обусловлен движением положительных и отрицательных ионов. В растворах солей, щелочей, кислот происходит распад молекул на ионы – электролитическая диссоциация. Из-за взаимодействия с полярными молекулами воды молекулы растворяемых веществ распадаются на разноименные заряженные “осколки” — ионы. Положительно заряженными оказываются ионы металлов и водорода, а отрицательно заряженными – кислотные остатки и гидроксильная группа (ОН).

    Рассмотрим этот процесс на примере бромида калия KBr.

    Взаимодействие атомов брома и калия в молекуле бромида калия упрощенно можно представить как взаимодействие двух ионов: положительного заряженного иона К + и отрицательно заряженного Br — . Объясняется это тем, что единственный валентный электрон у калия слабо связан с атомом. При образовании молекулы KBr можно схематически изобразить в виде диполя. (рис 1). При растворении соли бромида калия в воде молекулы KBr попадают в окружение молекул воды, которые тоже являются диполями. В электрическом поле, создаваемой молекулой KBr, молекулы вды ориентируются, как показано на рисунке 2. при этом они растягивают молекулу KBr настолько, что незначительная встряска при столкновении с другими молекулами, участвующими в тепловом движении, разрушает ее. Часть молекул KBr распадаются – диссоциирует на ионы K + и Br — .

    Степень диссоциации, т.е. доля молекул растворенного вещества, которые распадаются на ионы, зависит от температуры, концентрации раствора и диэлектрической проницаемости растворителя. С увеличением температуры степень диссоциации возрастает и, следовательно, увеличивается концентрация положительно и отрицательно заряженных ионов.

    Наряду с процессом диссоциации в растворах электролитов происходит и обратный процесс. Ионы разных знаков при встрече могут снова объединиться в нейтральные молекулы – рекомбинировать. При неизменных условиях в растворе устанавливается динамическое равновесие, при котором число молекул, распадающихся за секунду на ионы, равно числу пар ионов, которые за то же время вновь воссоединяются в нейтральные молекулы. При наступлении динамического равновесия концентрация ионов (при неизменной температуре).

    Ионная проводимость растворов и расплавов электролитов

    При отсутствии внешнего электрического поля ионы вместе с нераспавшимися молекулами находятся в хаотическом тепловом движении.

    Если сосуд с раствором электролита включить в электрическую цепь, то между электродами образуется электрическое поле, и ионы в растворе придут в упорядоченное движение (рис.3). положительно заряженные ионы станут двигаться по направлению напряженности поля, т.е. к катоду, а отрицательно заряженные ионы – в противоположном направлении, т.е. к аноду.

    Отрицательные ионы, пришедшие к аноду и называемые, поэтому анионами, отдают свои лишние электроны аноду, а посредством его и соединительных проводников – положительному полюсу источника, возмещая на нем недостаток электронов. Положительные ионы, пришедшие к катоду и потому называемые катионами, получают недостающие им электроны из избытка их на катоде. Так устанавливается во внешней цепи перемещение электронов от отрицательного полюса источника тока к положительному. При этом через раствор электролита заряд переносится вместе с частицами вещества – ионами. Такую проводимость называют ионной. В расплавах электролитов проводимость так же ионная, так как при плавлении твердых электролитов их молекулы распадаются на положительные и отрицательные ионы. Жидкие же металлы обладают электронной проводимостью.

    Электролиз

    При прохождении электрического тока через раствор электролита анионы отдают свои лишние электроны на аноде, а катионы на катоде получают недостающие электроны. Таким образом, на электродах при прохождении через раствор электрического тока происходит выделение веществ, входящих в состав электролитов.

    Процесс выделения на электролитах вещества, связанный с окислительно-восстановительными реакциями, называют электролизом.

    В ряде случаев нейтрализуемые на электродах ионы вступают в химические реакции с растворителем, растворенными веществами или с веществами электродов. Эти реакции называют вторичными.

    Так, например, при электролизе раствора медного купороса (CuSO4) на катоде выделяется медь, а на аноде – кислотный остаток SO4., который вступает в реакцию с веществом анода – медью : Cu + SO4 = CuSO4

    Благодаря этой реакции концентрация раствора медного купороса остается неизменной. Происходит лишь перенос меди с анода на катод, пока анод полностью не израсходуется.

    В случае платинового анода при электролизе раствора медного купороса происходит реакция с растворителем: 2SO4 + 2Н2О —> 2Н2SO4 + О2.

    Молекулы серной кислоты попадают в раствор, а молекулярный кислород выделяется в виде пузырьков.

    Закон Ома

    Для растворов электролитов справедлив закон Ома. При постоянной температуре графиком, выражающим зависимость силы тока от напряжения (вольт-амперная характеристика) для растворов электролитов, является прямая линия. Эта прямая не проходит через начало координат, а “сдвинута” вправо. Это объясняется тем, что при электролизе происходит поляризация электродов, погруженных в раствор электролита, причем ЭДС поляризации имеет знак, противоположный знаку напряжения на электродах.

    Читайте также:  Физика получение токи высокой частоты

    Закон электролиза

    Масса выделившегося вещества равна произведению массы одного иона на число ионов, осевших на электроде за время t:

    m=m0i·Ni (1)- масса выделенного вещества, где m0i — масса иона, Ni — число ионов.

    Масса иона равна m0i=M/NA (2)- масса иона, где M — молярная (атомная) масса, NA — постоянная Авогадро.

    Число ионов, осевших на электроде, Ni= q/q0i (3)- число ионов, где q=I· t — заряд, протекающий через электролиз за t,

    q0i=n·e (e — элементарный заряд).

    При диссоциации молекул, состоящих из одновалентных атомов, возникают однозарядные ионы.

    Подставляем в (1) формулу выражения (2) и (3), учитывая, что q=I· t, q0i=ne:

    Закон Фарадея

    Закон электролиза был экспериментально установлен английским физиком М. Фарадеем в 1833 году. Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе: Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:

    Величину k называют электрохимическим эквивалентом. Масса выделившегося на электроде вещества равна массе всех ионов, пришедших к электроду:

    Здесь m0 и q0 – масса и заряд одного иона – число ионов, пришедших к электроду при прохождении через электролит заряда Q. Таким образом, электрохимический эквивалент k равен отношению массы m0 иона данного вещества к его заряду q0. Так как заряд иона равен произведению валентности вещества n на элементарный заряд e (q0 = ne), то выражение для электрохимического эквивалента k можно записать в виде

    Здесь NA – постоянная Авогадро, M = m0NA – молярная масса вещества, F = eNA –постоянная Фарадея.

    F = eNA = 96485 Кл / моль.

    Постоянная Фарадея численно равна заряду, который необходимо пропустить через электролит для выделения на электроде одного моля одновалентного вещества. Закон Фарадея для электролиза приобретает вид:

    Технические применения электролиза

    Гальваностегия — покрытие металлических изделий тонким слоем другого металла (никелирование, хромирование, серебрение, золочение и т.д.) с целью предохранения от окисления и придания изделию привлекательного внешнего вида. Предмет, подлежащий покрытию, тщательно очищают, хорошо обезжиривают и помещают в качестве катода в электролитическую ванну, содержащую раствор соли того металла, которым должен быть покрыт данный предмет (рис. 3.8). Анодом служит пластинка из того же металла. Для более равномерного покрытия обычно применяют две пластинки в качестве анода, помещая предмет между ними.

    Гальванопластика — электролитическое изготовление копий с рельефных предметов (медалей, гравюр, барельефов и т.д.). С рельефного предмета делают восковый или иной слепок. Затем поверхность слепка покрывают тонким слоем графита, чтобы она стала проводящей. В таком виде слепок используется в качестве катода, который опускают в электролитическую ванну с раствором медного купороса. Анодом служит медная пластинка. Когда на слепке нарастет достаточно толстый слой меди, электролиз прекращают и воск осторожно удаляют. Остается точная медная копия оригинала.

    В полиграфической промышленности такие копии (стереотипы) получают с оттиска набора на пластичном материале (матрица), осаждая на матрицах толстый слой железа или другого материала. Это позволяет воспроизвести набор в нужном количестве экземпляров. Если раньше тираж книги ограничивался числом оттисков, которые можно получить с одного набора (при печатании набор стирается), то использование стереотипов позволяет значительно увеличить тираж.

    Правда, в настоящее время с помощью электролиза получают стереотипы только для книг высококачественной печати и с большим числом иллюстраций.

    Осаждая металл на длинный цилиндр, получают трубы без шва.

    Процесс получения отслаиваемых покрытий был разработан русским ученым Б. С. Якоби, который в 1836 г. применил этот способ для изготовления полых фигур для Исаакиевского собора (в Санкт-Петербурге).

    Медь является лучшим материалом для изготовления проводников, но для этого она должна быть лишена каких бы то ни было примесей. Очищение меди от примесей называется рафинированием (очисткой) меди. Массивные куски (толстые листы) неочищенной меди, полученной при выплавке из руды, являются анодом, а тонкие пластинки из чистой меди — катодом. Процесс происходит в больших ваннах с водным раствором медного купороса. При электролизе медь анода растворяется; примеси, содержащие ценные и редкие металлы, выпадают на дно в виде осадка (шлама), а на катоде оседает чистая медь. Таким же образом производят рафинирование некоторых других металлов.

    При помощи электролиза получают алюминий. Для этого подвергают электролизу не растворы солей этого металла, а его расплавленные оксиды.

    В угольные тигли (рис. 3.9) насыпают глинозем (оксид алюминия Аl2O3), полученный путем переработки бокситов — руд, содержащих алюминий. Тигель служит катодом. Анодом являются угольные стержни, вставленные в тигель. Сначала угольные стержни опускают до соединения с тиглем и пропускают сильный ток. Глинозем при прохождении тока нагревается и расплавляется. После этого угли поднимают, ток проходит через жидкость и производит электролиз. Расплавленный алюминий, выделяющийся при электролизе, опускается на дно тигля (катод), откуда его через особое отверстие выпускают в формы для отливки.

    Описанный способ получения алюминия сделал его дешевым и наряду с железом самым распространенным в технике и быту металлом.

    Путем электролиза расплавленных солей в настоящее время получают также натрий, калий, магний, кальций и другие металлы.

    Электролиз используется для гальваностегии, гальванопластики, рафинирования меди, получения алюминия и др.

    — Молодцы, ребята! Вы отлично справились с заданиями. У нас получилась хорошая презентация. Спасибо за урок.

    Источник