Меню

Электрическая цепь синусоидального тока определение



Лекция № 2 ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

1.Основные параметры, характеризующие синусоидальные токи, напряжения и ЭДС

2. Идеальные резистивный, индуктивный и емкостный элементы в цепях синусоидального тока

1. Основные параметры, характеризующие синусоидальные токи, напряжения и ЭДС

Токи, напряжения и ЭДС, значения которых периодически изменяются во времени по синусоидальному закону, называют синусоидальными (гармоническими).

По сравнению с постоянным током синусоидальный имеет ряд преимуществ:

производство, передача и использование электрической энергии наиболее экономичны при синусоидальном токе;

в цепях синусоидального тока относительно просто преобразовывать форму напряжения, а также создавать трехфазные системы напряжения.

В зависимости от типа решаемой задачи синусоидальные величины представляют:

— в виде аналитических выражений;
— графически, посредством временной или векторной диаграмм;

Аналитическое представление синусоидальных величин

Синусоидальные ЭДС, напряжение и ток можно задать с помощью вещественных функций времени (в виде аналитических выражений):

где е, u, i — соответственно мгновенные значения ЭДС, напряжения, тока;
— аргументы (фазы) синусоидальных

Для расчета электрических цепей аналитические выражения синусоидальных величин неудобны, т. к. алгебраические действия (сложение, вычитание, умножение и т. д.) с тригонометрическими функциями приводят к громоздким вычислениям.

Временная диаграмма

Графическое представление синусоидальных величин в виде временной диаграммы достаточно наглядно,

I2

но из-за сложности построения синусоид и операций с ними применяется сравнительно редко.

При построении временной диаграммы за аргумент синусоидальной функции, например, напряжения u(t) принимают время t или угол ωt .

Однако для большей наглядности угол φu часто выражают в градусах. Тогда аргумент ωt также переводят в градусы (напомним, что 1 рад » 57,3°). В этом случае период составляет 360°.

Основные параметры синусоидальных величин

Для характеристики синусоидальных функций времени используют следующие параметры:

— Мгновенное значение;
— Амплитуда;
— Период;
— Частота;
— Фаза;
— Начальная фаза;
— Угловая частота;
— Сдвиг фаз;
— Среднее значение гармонической функции;
— Действующее значение гармонической функции.

Цепь с активным сопротивлением

Элементы, обладающие активным сопротивлением R, нагреваются при прохождении через них тока.

Если к активному сопротивлению приложено синусоидальное напряжение

то и ток изменяется по синусоидальному закону

где

или в действующих значениях

Ток в цепи с активным сопротивлением совпадает по фазе с напряжением, т.к. их начальные фазы равны

Временная и векторная диаграммы

Активная мощность

Из временной диаграммы следует, что мощность в цепи с активным сопротивлением изменяется по величине, но не изменяется по направлению.

Эта мощность (энергия) необратима.

От источника она поступает к потребителю и полностью преобразуется в другие виды мощности (энергии), т.е. потребляется.

Такая потребляемая мощность называется активной.

Поэтому и сопротивление R, на котором происходит подобное преобразование, называется активным.

Количественно мощность в цепи с активным сопротивлением определяется

Мгновенная мощность в цепи синусоидального тока с активным сопротивлением представляет собой сумму двух величин – постоянной мощности и переменной мощности , изменяющейся с двойной частотой

Среднее за период значение переменной составляющей

Таким образом, величина активной мощности в цепи синусоидального тока с активным сопротивлением с учётом закона Ома

Единица активной мощности

Цепь с идеальной индуктивностью

Идеальной называют индуктивность такой катушки, активным сопротивлением и ёмкостью которой можно пренебречь

Если в цепи идеальной катушки проходит синусоидальный ток

то он создаёт в катушке синусоидальный магнитный поток

Этот поток индуцирует в катушке ЭДС самоиндукции

Эта ЭДС достигает амплитудного значения при

Тогда

ЭДС самоиндукции в цепи с идеальной индуктивностью, как и ток, вызвавший эту ЭДС, изменяется по синусоидальному закону, но отстаёт от тока по фазе на угол π/2.

Согласно второго закона Кирхгофа для мгновенных значений

Тогда напряжение, приложенное к цепи с идеальной индуктивностью

Для существования тока в цепи с идеальной индуктивностью необходимо приложить к цепи напряжение, которое в любой момент времени равно по величине, но находится в противофазе с ЭДС, вызванной этим током

Читайте также:  Машина стала биться током в чем причина

Напряжение достигает своего амплитудного значения при

Следовательно,

Напряжение, приложенное к цепи с идеальной индуктивностью, как и ток в этой цепи, изменяется по синусоидальному закону, но опережает ток по фазе на угол π/2.

Математическое выражение закона Ома для цепи синусоидального тока с идеальной индуктивностью

Знаменатель уравнения – индуктивное сопротивление

Тогда закон Ома будет иметь вид

Индуктивное сопротивление – это противодействие, которое ЭДС самоиндукции оказывает изменению тока.

Реактивная мощность в цепи с индуктивностью

Мгновенная мощность для цепи с идеальной катушкой индуктивности определяется

Следовательно,

Мощность в цепи синусоидального тока с идеальной катушкой индуктивности изменяется по синусоидальному закону с двойной частотой

Среднее значение этой мощности за период, т.е. активная потребляемая мощность, равно нулю.

В 1-ю и 3-ю четверти периода мощность источника накапливается в магнитном поле индуктивности, а во 2-ю и 4-ю – возвращается к источнику.

В цепи переменного тока с идеальной катушкой мощность не потребляется, а колеблется между источником и катушкой индуктивности, загружая источник и провода

Такая колеблющаяся мощность, в отличие от активной, называется реактивной.

Цепь с ёмкостью

Если к конденсатору ёмкостью С приложено синусоидальное напряжение

то в цепи конденсатора проходит ток

Амплитудное значении тока , следовательно

Ток в цепи конденсатора, как и напряжение, приложенное к его обкладкам, изменяется по синусоидальному закону, однако опережает это напряжение по фазе на угол π/2.

Математическое выражение закона Ома для цепи переменного тока с ёмкостью

Знаменатель этого выражения является ёмкостным сопротивлением

Тогда выражение для закона Ома будет иметь вид

Ёмкостное сопротивление — это противодействие, которое оказывает напряжение заряженного конденсатора напряжению, приложенному к нему.

Реактивная мощность в цепи с идеальным конденсатором

Если в цепи с идеальным конденсатором проходит ток , то

напряжение, приложенное к этому конденсатору будет

Мгновенная мощность в цепи с конденсатором

Мощность в цепи с конденсатором, подключённым к источнику с синусоидальным напряжением, изменяется по синусоидальному закону с двойной частотой.

Во 2-ю и 4-ю четверти периода мощность источника накапливается в электрическом поле конденсатора. В 1-ю и 3-ю четверти эта мощность из электрического поля конденсатора возвращается к источнику.

В цепи переменного тока с конденсатором происходит колебание мощности между источником и конденсатором.

Величина реактивной мощности в цепи с конденсатором

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Источник

Переменный (синусоидальный) ток и основные характеризующие его величины.

ads

Переменный ток (англ. alternating current — AC) — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.

В быту для электроснабжения переменяется переменный, синусоидальный ток.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (Рисунок 1):

Синусоидальный ток

Рисунок 1

Формула переменного синусоидального тока

Максимальное значение функции называют амплитудой. Её обозначают с помощью заглавной (большой) буквы и строчной буквы m — максимальное значение. К примеру:

  • амплитуду тока обозначают lm;
  • амплитуду напряжения Um.

Период Т— это время, за которое совершается одно полное колебание.

Частота f равна числу колебаний в 1 секунду (единица частоты f — герц (Гц) или с -1 )

f = 1/T

Угловая частота ω (омега) (единица угловой частоты — рад/с или с -1 )

ω = 2πf = 2π/T

Аргумент синуса, т. е. (ωt + Ψ), называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой (ω) и начальной фазой Ψ (пси)

В странах СНГ и Западной Европе наибольшее распространение получили установки синусоидального тока частотой 50 Гц, принятой в энергетике за стандартную. В США стандартной является частота 60 Гц. Диапазон частот практически применяемых синусоидальных токов очень широк: от долей герца, например в геологоразведке, до миллиардов герц в радиотехнике.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью ламповых или полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j (или e(t) и j(t)).

Читайте также:  Схема выпрямления тока в генераторе

Обратите внимание! При обозначении величин на схемах или в расчетах важен регистр букв, то есть заглавные буквы (E,I,U…) или строчные (e, i ,u…). Так как строчными буквами принято обозначать мгновенное значение, а заглавными могут обозначаться действующее значение величины (подробнее о действующем значении в следующей статье).

Источник

Электрическая цепь синусоидального тока определение

Широкое применение в электрических цепях электро-, радио- и других установок находят периодические ЭДС, напряжения и токи. Периодические величины изменяются во времени ( i=i(t); u=u(t) ) по значению и направлению, причем эти изменения повторяются через некоторые равные промежутки времени Т, называемые периодом (рис.13).

Наибольшее распространение получили токи, изменяющиеся по синусоидальному (гармоническому) закону.

Синусоидальный ток характеризуется следующими параметрами:

— угловая частота , где Т — период (с),

в) — начальная фаза.

В европейских странах в качестве стандартной промышленной частоты принята f = 50 Гц, в США и Японии f = 60 Гц.

Разность начальных фаз двух синусоидальных величин одинаковой частоты ( ) называется сдвигом фаз между ними:

Синусоидальный ток имеет ряд преимуществ перед постоянным током, в связи с чем он получил очень широкое распространение:

а) его легко трансформировать из одного напряжения в другие,

б) при передаче на большие расстояния (сотни и тысячи километров) от источника до потребителя при многократной трансформации напряжение остается неизмененным, т.е. синусоидальным,

в) с его помощью может быть достаточно просто получено вращающееся магнитное поле, используемое в синхронных и асинхронных машинах.

Для количественной оценки синусоидальных функций времени вводятся понятия действующего и среднего значений. Действующим значением синусоидального тока называется величина такого постоянного тока, который оказывает эквивалентное тепловое действие. Действующие значения обозначаются I,U,E,P

Аналогично для напряжения и ЭДС

Подавляющее большинство приборов, измеряющих синусоидальные токи и напряжения проградуированы в действующих значениях.

Средним значением синусоидального тока или напряжения и ЭДС называется средняя за полупериод времени:

Мгновенное значение — значение периодически изменяющейся величины в рассматриваемый момент времени, обозначаются

Амплитудные значения синусоидальных величин обозначаются: Im,Um,Em,Pm

Источник

Часть III. Цепи синусоидального тока

Тема 3. Цепи синусоидального тока

  1. Общие сведения и определения
  2. Комплексная амплитуда
  3. Действующие значения синусоидальной функции
  4. Изображение синусоидальных функций векторами. Векторная диаграмма
  5. Изображение синусоидальной функции комплексными числами
  6. Закон Ома в комплексной форме
  7. Уравнения элементов в комплексной форме
  • § 3.1. Общие сведения и определения:

Переменный ток имеет большее распространение, чем постоянный.

  • конструкция электродвигателей и генераторов переменного тока гораздо проще;
  • генераторы переменного тока могут быть выполнены для более высокого напряжения;
  • переменный ток легко преобразовывается с помощью трансформатора, что необходимо при распределении электроэнергии и т.д.

Переменный ток – ток, периодически меняющий свое значение и направление. Наибольшее значение переменного тока – его амплитуда.

Переменный ток характеризуется:

  • амплитудой;
  • периодом;
  • частотой;
  • фазой.

Амплитуда – наибольшие (положительные или отрицательные) величины.

Период – время, в течение которого происходит полное колебание тока в проводнике.

Частота – обратно периоду.

Фаза – характеризует состояние переменного тока в любой момент времени.

Читайте также:  Почему моя девушка бьет меня током

Основным видом переменного тока является синусоидальный (гармонический) ток. Закон изменения такого тока описывается синусоидальной функцией.

В линейных электрических цепях, в которых действуют синусоидальные источники, все электрические параметры изменяются по синусоидальному закону.

e(t), u(t), i(t) – мгновенные значения;

ω = 2π – угловая частота, [рад/с];

ƒ = 1 Т – циклическая частота, [Гц];

Любую синусоидальную функцию можно изобразить в виде графика, который называется графиком временных значений или временной диаграммой.

120

  • § 3.2. Комплексная амплитуда:

Расчет цепей синусоидального тока с использованием мгновенных значений требует громоздкой вычислительной работы и применим для простейших электрических цепей.

Для расчета цепей синусоидального тока синусоидальную функцию заменяют эквивалентной величиной.

где j = √ — 1 – мнимая единица.

– сопряженная комплексная амплитуда.

Последняя запись означает, что синусоидальное напряжение можно представить на комплексной плоскости в виде двух векторов, длина которых равна Um и которые равномерно вращаются со скоростями, равными ω в противоположные стороны.

  • § 3.3. Действующие значения синусоидальной функции:

Действующее значение синусоидальной функции – ее количественная оценка.

Действующие значения – среднеквадратичные за период значения синусоидальной функции, то есть, если:

то действующее значение:

Аналогично и для тока I и ЭДС ε .

Часто используются выражения, связывающие между собой амплитуду и действующее значение:

Действующее значение – это постоянная величина, которую обычно обозначают той же буквой, что и амплитуду, только без индекса m.

Действующее значение тока оказывает такое же тепловое действие на проводник с сопротивлением R , что и переменный ток, в течение времени, равном периоду. Поэтому большинство электроизмерительных приборов фиксируют и реагируют на действующие значения.

  • § 3.4. Изображение синусоидальных функций векторами. Векторная диаграмма:

где a – проекция вектора на ось y в момент времени t.

133

рис. а рис. б

Любому равномерно вращающемуся радиус-вектору соответствует некоторая синусоидальная функция, и наоборот.

Посмотрим, как условный графический образ синусоидальной функции – радиус-вектор – может быть применим при расчетах цепей переменного тока. Определим ток:

Как известно, сумма двух синусоид одинаковой частоты ω представляет собой также синусоиду частотой ω , то есть i = Imsin (ωt + ψ ) и, следовательно, задача сводится к нахождению амплитуды Im и начальной фазы Ψ суммарного тока i. Искомые параметры Im и Ψ можно найти, воспользовавшись известными тригонометрическими преобразованиями.

Проведем решение задачи с помощью радиус-векторов I1m и I2m , вращающихся с частотой ω, положение которых для момента времени t = 0 показаны на рисунке ниже и осуществим геометрическое суммирование этих радиус-векторов по правилу параллелограмма. Результирующий радиус-вектор Im будет вращаться с частотой ω и является изображением некоторой синусоидальной функцией времени.

Следовательно, i = i1 + i2 – геометрическое изображение искомого тока.

138

Измерив дугу суммарного радиус-вектора и, зная выбранный масштаб, можно определить амплитуду Im тока. Непосредственно по чертежу определяется и начальная фаза Ψ.

Рассмотренная совокупность радиус-векторов, изображающих синусоидальные функции времени, называется векторной диаграммой.

  • § 3.5. Изображение синусоидальной функции комплексными числами:

140Для введения комплексного изображения перенесем радиус-вектор, изображающий синусоидальную функцию времени в декартовой плоскости на плоскость комплексных чисел. Для чего совместим ось x с осью действительных чисел Re, а ось y – с Im.

Любому вектору A, расположенному на комплексной плоскости, однозначно соответствует комплексное число, которое может быть записано в трех формах:

  • алгебраической:
  • тригонометрической:
  • показательной: ( e – основание натурального логарифма).

Все три формы записи в соответствии с формулой Эйлера равнозначны:

Переход от одной формы записи к другой:

где a1 – действительная часть;

Запишем в трех формах выражение для единичных действительных и мнимых комплексных чисел ( A = 1 ):

где C = AB .

Отношение комплексной амплитуды напряжения к комплексной амплитуде тока называется комплексным сопротивлением:

Модуль комплексного сопротивления, называемый полным сопротивлением, равен отношению амплитуды напряжения к амплитуде тока, а аргумент Ψ комплексного сопротивления – разности начальных фаз напряжения и тока:

Закон Ома в комплексной форме соответственно для амплитудных и действительных значений:

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Источник

Электрическая цепь синусоидального тока определение



Переменный (синусоидальный) ток и основные характеризующие его величины.

ads

Переменный ток (англ. alternating current — AC) — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.

В быту для электроснабжения переменяется переменный, синусоидальный ток.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (Рисунок 1):

Синусоидальный ток

Рисунок 1

Формула переменного синусоидального тока

Максимальное значение функции называют амплитудой. Её обозначают с помощью заглавной (большой) буквы и строчной буквы m — максимальное значение. К примеру:

  • амплитуду тока обозначают lm;
  • амплитуду напряжения Um.

Период Т— это время, за которое совершается одно полное колебание.

Частота f равна числу колебаний в 1 секунду (единица частоты f — герц (Гц) или с -1 )

f = 1/T

Угловая частота ω (омега) (единица угловой частоты — рад/с или с -1 )

ω = 2πf = 2π/T

Аргумент синуса, т. е. (ωt + Ψ), называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой (ω) и начальной фазой Ψ (пси)

В странах СНГ и Западной Европе наибольшее распространение получили установки синусоидального тока частотой 50 Гц, принятой в энергетике за стандартную. В США стандартной является частота 60 Гц. Диапазон частот практически применяемых синусоидальных токов очень широк: от долей герца, например в геологоразведке, до миллиардов герц в радиотехнике.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью ламповых или полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j (или e(t) и j(t)).

Читайте также:  Токовые клещи минимальный ток измерения

Обратите внимание! При обозначении величин на схемах или в расчетах важен регистр букв, то есть заглавные буквы (E,I,U…) или строчные (e, i ,u…). Так как строчными буквами принято обозначать мгновенное значение, а заглавными могут обозначаться действующее значение величины (подробнее о действующем значении в следующей статье).

Источник

Основные понятия и определения. Синусоидального тока

date image2014-02-18
views image3505

facebook icon vkontakte icon twitter icon odnoklasniki icon

Синусоидального тока

Однофазные электрические цепи

В электрических цепях электро-, радио- и других установках широко применяются периодические ЭДС, напряжения и токи.Периодические величины изменяются во времени по значению и направлению. Эти изменения повторяются через равные промежутки времени Т, называемые периодом.

Переменные периодические ЭДС е различной формы: а – прямоугольной; б – трапецеидальной; в – треугольной; г – произвольной; д – синусоидальной

На практике все источники энергии переменного тока (генераторы электростанций) создают ЭДС, изменяющуюся по синусоидальному закону (рис. д).

Основное преимущество такого закона изменения ЭДС и напряжения заключается в том, что в процессе передачи электроэнергии на большие расстояния (сотни и даже тысячи километров) от источника до потребителя при многократной трансформации напряжения временная зависимость напряжения остается неизменной, т. е. синусоидальной.

Электрические цепи, в которых действуют синусоидальные ЭДС и токи, называются электрическими цепями синусоидального тока.К ним относятся понятия схемы цепи, контура, ветви и узла, которые были даны для цепей постоянного тока.

В линейных электрических цепях синусоидального тока ЭДС, напряжения и токи изменяются во времени по синусоидальному закону , например,

где e, u, i — мгновенные значения синусоидальных величинв рассматриваемый момент времени t; Emах, Umах, Imах — максимальные значения синусоидальных величин, так называемые амплитуды;

Фаза (фазовый угол) — аргумент синусоидальной величины, определяет мгновенное значение синусоидальной величины при заданной амплитуде с течением времени:

Читайте также:  Методы измерения электрической мощности в цепях постоянного тока

где w угловаячастота синусоидального тока, показывающая число радианов, на которое увеличивается текущая фаза за 1 секунду. За время одного периода Т фаза синусоидальноготока изменится на2π=wТ, т. е.

w =/T =ƒ,

где ƒ частота величина обратная периоду 1/Т,т. е. число полных изменений синусоидальной величины за 1 с, Гц.

где сдвиг фаз — разность начальных фаз синусоид напряжения и тока; Y начальная фазав момент времени t = 0; ψu -начальная фаза напряжения, ψi — начальная фаза тока.

Наглядное представление об изменениях синусоидальных e, u, i дают временные диаграммы e = f(ωt), u = f(ωt), i = f(ωt).

На временных диаграммахначальная фаза – это угол между началом координат и началом положительной полуволны.Положительная начальная фаза откладывается влево от начала координат, а отрицательная — вправо. Знак начальной фазы определяется знаком мгновенного значения при t = 0.

Синусоидальные напряжения и ток, сдвинутые по фазе на φ

Во всех энергосистемах в качестве стандартной промышленной частоты принята частота f = 50 Гц, а в Японии и США f = 60 Гц. Это обеспечивает получение оптимальных частот вращения электродвигателей переменного тока и отсутствие заметного для глаза мигания источников света.

Однако находят применение и другие частоты: 175–200 Гц для работы электродвигателей привода средств автоматики и электроинструмента; для горячей штамповки и ковки применяют частоту от 500 до 10 000 Гц, в установках поверхностного нагрева металла от 2000 до 10 6 Гц; в радиотехнических устройствах от 10 5 до 3 ·10 10 Гц; в металлургической промышленности от 5 до 10 Гц.

Синусоидальный ток используется так же, как постоянный ток – для совершения работы, в процессе которой электрическая энергия преобразуется в другие виды энергии.

Читайте также:  Почему моя девушка бьет меня током

Для количественной оценки синусоидального тока используют значение эквивалентного ему постоянного тока — эквивалентное значению синусоидального тока по совершаемой работе. Такое значение называется действующим.

Источник

Adblock
detector