Меню

Двоичный счетчик считающий до



Счётчики

Счётчики используются для построения схем таймеров или для выборки инструкций из ПЗУ в микропроцессорах. Они могут использоваться как делители частоты в управляемых генераторах частоты (синтезаторах). При использовании в цепи ФАП счётчики могут быть использованы для умножения частоты как в синтезаторах, так и в микропроцессорах.

Вниманию любителей баннерорезок. Данная статья полностью искажается любыми антирекламными программами. Они очень не любят слово «счетчик», поэтому почти все рисунки вырезаются, насколько искажается текст не вчитывался 🙂

Двоичные асинхронные счётчики

Простейший вид счётчика — двоичный может быть построен на основе T-триггера. T-триггер изменяет своё состояние на прямо противоположное при поступлении на его вход синхронизации импульсов. Для реализации T-триггера воспользуемся универсальным D-триггером с обратной связью, как это показано на рисунке 1.


Рисунок 1. Реализация счетного T-триггера на универсальном D-триггере

Так как схема T-триггера при поступлении на вход импульсов меняет свое состояние на противоположное, то её можно рассматривать как счётчик, считающий до двух. Временные диаграммы сигналов на входе и выходах T-триггера приведены на рисунке 2.


Рисунок 2 Временные диаграммы сигналов на входе и выходах T-триггера

Обычно требуется посчитать большее количество импульсов. В этом случае можно использовать выходной сигнал первого счетного триггера как входной сигнал для следующего триггера, то есть соединить триггеры последовательно. Так можно построить любой счётчик, считающий до максимального числа, кратного степени два. Такой счетчик называется двоичным счетчиком, а тот факт, что состояние триггеров меняется на противоположное в различные моменты времени по мере распространения цифрового сигнала, отображается термином: асинхронный двоичный счетчик.

Схема счётчика, позволяющего посчитать любое количество импульсов, меньшее шестнадцати, приведена на рисунке 3. Количество поступивших на вход импульсов можно узнать, подключившись к выходам счётчика . Это число будет представлено в двоичном коде.


Рисунок 3. Схема четырёхразрядного счётчика, построенного на универсальных D-триггерах

Для того чтобы разобраться, как работает схема двоичного счётчика, воспользуемся временными диаграммами сигналов на входе и выходах этой схемы, приведёнными на рисунке 4.


Рисунок 4 Временная диаграмма четырёхразрядного счётчика

Пусть первоначальное состояние всех триггеров счётчика будет нулевым. Это состояние мы видим на временных диаграммах. Запишем его в таблицу 1. После поступления на вход счётчика тактового импульса (который воспринимается по заднему фронту) первый триггер изменяет своё состояние на противоположное, то есть единицу.

Запишем новое состояние выходов счётчика в ту же самую таблицу. Так как по приходу первого импульса изменилось состояние первого триггера, то этот триггер содержит младший разряд двоичного числа (единицы). В таблице поместим его значение на самом правом месте, как это принято при записи любых многоразрядных чисел. Здесь мы впервые сталкиваемся с противоречием правил записи чисел и правил распространения сигналов на принципиальных схемах.

Подадим на вход счётчика ещё один тактовый импульс. Значение первого триггера снова изменится на прямо противоположное. На этот раз на выходе первого триггера, а значит и на входе второго триггера сформируется задний фронт. Это означает, что второй триггер тоже изменит своё состояние на противоположное. Это отчётливо видно на временных диаграммах, приведённых на рисунке 4. Запишем новое состояние выходов счётчика в таблицу 1. В этой строке таблицы образовалось двоичное число 2. Оно совпадает с номером входного импульса.

Продолжая анализировать временную диаграмму, можно определить, что на выходах приведённой схемы счётчика последовательно появляются цифры от 0 до 15. Эти цифры записаны в двоичном виде. При поступлении на счётный вход счётчика очередного импульса, содержимое его триггеров увеличивается на 1. Поэтому такие счётчики получили название суммирующих двоичных счётчиков.

Таблица 1. Изменение уровней на выходе суммирующего счётчика при поступлении на его вход импульсов.

номер входного импульса Q3 Q2 Q1 Q0
1 1
2 1 0
3 1 1
4 1 0
5 1 1
6 1 1 0
7 1 1 1
8 1 0
9 1 1
10 1 1 0
11 1 1 1
12 1 1 0
13 1 1 1
14 1 1 1 0
15 1 1 1 1

Условно-графическое обозначение суммирующего двоичного счетчика на принципиальных схемах приведено на рисунке 5. В двоичных счётчиках обычно предусматривают вход обнуления микросхемы R, который позволяет записать во все триггеры счётчика нулевое значение. Это состояние иногда называют исходным состоянием счётчика.


Рисунок 5. Четырёхразрядный двоичный счётчик

Существуют готовые микросхемы асинхронных двоичных счётчиков. Классическим примером такого счётчика является микросхема 555ИЕ5. Подобные схемы существуют и внутри САПР программируемых логических интегральных схем.

Двоичные вычитающие асинхронные счётчики

Счётчики могут не только увеличивать своё значение на единицу при поступлении на счётный вход импульсов, но и уменьшать его. Такие счётчики получили название вычитающих счётчиков. Для реализации вычитающего счётчика достаточно чтобы T-триггер изменял своё состояние по переднему фронту входного сигнала.

Изменить рабочий фронт входного сигнала можно инвертированием этого сигнала. В схеме, приведенной на рисунке 6, для реализации вычитающего счётчика сигнал на входы последующих триггеров подаются с инверсных выходов предыдущих триггеров.


Рисунок 6 Схема четырёхразрядного двоичного вычитающего счётчика, построенного на универсальных D-триггерах

Временная диаграмма этого счётчика приведена на рисунке 7. По этой диаграмме видно, что при поступлении на вход счётчика первого же импульса на выходах появляется максимально возможное для четырёхразрядного счётчика число 1510. При поступлении следующих импульсов содержимое счётчика уменьшается на единицу.


Рисунок 7. Временная диаграмма четырёхразрядного вычитающего счётчика

Это вызвано тем, что при поступлении переднего фронта тактового импульса первый триггер переходит в единичное состояние. В результате на его выходе тоже формируется передний фронт. Он поступает на вход второго триггера, что приводит к записи единицы и в этот триггер. Точно такая же ситуация складывается со всеми триггерами счётчика, то есть все триггеры перейдут в единичное состояние. Для четырёхразрядного счётчика это и будет число 1510. Запишем новое состояние вычитающего счётчика в таблицу 2.

Следующий тактовый импульс приведёт к изменению состояния только первого триггера, так как при этом на его выходе сформируется задний фронт сигнала. Запишем и это состояние в таблицу 2. Обратите внимание, что при поступлении каждого последующего импульса содержимое счётчика, построенного по анализируемой схеме, уменьшается на единицу. Этот процесс продолжается до тех пор, пока состояние счётчика не станет вновь равно 0. При поступлении новых тактовых импульсов процесс повторяется снова.

Все возможные состояния логических сигналов на выходах вычитающего счётчика, при поступлении на счётный вход схемы тактовых импульсов приведены в таблице 2. Таблица 2 фактически повторяет временные диаграммы, приведённые на рисунке 7, однако она более наглядно представляет физику работы счётчика. Просто мы при работе с числами привыкли иметь дело с цифрами, а не с напряжениями, тем более в зависимости от времени.

Таблица 2. Изменение уровней на выходе вычитающего счётчика при поступлении на его вход импульсов.

номер входного импульса Q3 Q2 Q1 Q0
1 1 1 1 1
2 1 1 1 0
3 1 1 1
4 1 1 0
5 1 1 1
6 1 1 0
7 1 1
8 1 0
9 1 1 1
10 1 1 0
11 1 1
12 1 0
13 1 1
14 1 0
15 1

Для тех, кто привык работать с реально выпускаемыми микросхемами средней интеграции, следует обратить внимание, что для примера были использованы D-триггеры, работающие по заднему фронту. Микросхемы, выпускаемые промышленностью, например, 1533ТМ2 (два D-триггера в одном корпусе) или SN74LVC1G79 (микросхемы малой логики) срабатывают по переднему фронту, поэтому схемы для суммирующего и вычитающего счётчика поменяются местами.

Следует отметить, что при применении для реализации двоичных счетчиков современных схем большой интеграции, таких как программируемые пользователем вентильные матрицы FPGA, мы можем применять D-триггеры срабатывающие как по переднему (нарастающему), так и по заднему (спадающему фронту).

Источник

Учебное пособие: Исследование двоичных счетчиков

Министерство общего и профессионального образования Российской Федерации

Уральский государственный технический университет

ИССЛЕДОВАНИЕ ДВОИЧНЫХ СЧЕТЧИКОВ

Исследование двоичных счетчиков

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Счетчики

Счетчиком называют устройство, сигналы, на входе которого в определенном коде отображают число импульсов, поступивших на счетный вход. Триггер Т-типа может служить примером простейшего счетчика. Такой счетчик считает до двух. Счетчик, образованный цепочкой из m-триггеров, сможет посчитать в двоичном коде 2 m импульсов. Каждый из триггеров цепочки называют разрядом счетчика. Число m определяет количество разрядов двоичного числа, которое может быть записано в счетчик. Число Ксч =2 m называют коэффициентом (модулем) счета.

Информация снимается с прямых и (или) инверсных выходов всех триггеров. В паузах между входными импульсами триггеры сохраняют свое состояние, т. е. Счетчик запоминает число сосчитанных импульсов.

Нулевое состояние всех триггеров принимается за нулевое состояние счетчика в целом.

После каждого цикла счета на выходах последнего триггера возникают перепады напряжения. Это свойство определяет второе назначение счетчиков: Деление числа входных импульсов. Если входные сигналы периодичны и следуют с частотой fвх , то частота выходных импульсов будет fвых =fвхсч

У счетчиков в режиме деления используется выходной сигнал только последнего триггера, промежуточные состояния остальных триггеров не учитываются. Всякий счетчик может быть использован как делитель частоты. Поэтому подобное устройство часто называют счетчиком-делителем. Такие делители имеют целочисленный коэффициент деления. Элементная база современной микроэлектроники позволяет строить делители и с дробным коэффициентом деления.

Символом счетчиком на схемах служат буквы СТ (от англ. counter – счетчик). Если требуется, после символа проставляют число, характеризующее модуль счета, например СТ2 .

Основные эксплуатационные показатели: емкость и быстродействие.. Емкость счетчика, численно равная коэффициенту счета, характеризует число импульсов, доступное счету за один цикл.

Быстродействие счетчика определяется разрешающей способностью tразр.сч и временем установки кода счетчика. Под разрешающей способностью подразумевают минимальное время между двумя входными сигналами, в течение которого еще не возникают сбои в работе счетчика.

Обратная величина fmax =1/tразр. сч называется максимальной частотой счета. Время установки кода tуст равно времени между моментом поступления входного сигнала и переходом счетчика в новое устойчивое состояние. Временные свойства зависят от временных характеристик триггеров и способа их соединения между собой.

Цифровые счетчики классифицируются следующим образом:

По коэффициенту счета: двоичные(бинарные); двоично-десятичные (декадные) или с другим основанием счета; с произвольным постоянным модулем; с переменным модулем.

По направлению счета: суммирующие; вычитающие; реверсивные.

По способу организации внутренних связей: с последовательным переносом; с параллельным переносом; с комбинированным переносом; кольцевые.

Для двоичного счетчика с Ксч =2 m , зная номера триггеров и состояния выходов Q, можно определить записанное в счетчик двоичное число

где m-номер триггера, 2 m-1 – вес m-ного разряда.

Введением дополнительных логических связей – обратных и прямых – двоичные счетчики могут быть обращены в недвоичные, для которых Ксч ¹2 m . Наибольшее распространение получили десятичные (декадные) счетчики, работающие с привычным Ксч =10. Десятичный счет осуществляется в двоично-десятичном коде (двоичный по коду счета, десятичный – по числу состояний).

Десятичные счетчики организуются из четырехразрядных двоичных счетчиков. Избыточные шесть состояний исключаются введением дополнительных связей.

Возможны 2 варианта построения схем: а) счет циклически идет от 0000 до 1001 и б) исходным состоянием служит 01102 =610 и счет происходит до 11112 =1510 . Первый вариант применяют чаще.

В суммирующем счетчике каждый входной импульс увеличивает число, записанное в счетчик, на 1. Как следует из таблицы, перенос информации из одного разряда в другой, более высокий, имеет место, когда происходит смена состояния с 1 на 0.

Вычитающий счетчик действует обратным образом: двоичное число, хранящееся в счетчике, с каждым поступающим импульсом уменьшается на 1. Переполнение вычитающего счетчика происходит после достижения им нулевого состояния. Перенос из младшего разряда в старший здесь имеет место при смене состояния младшего разряда с 0 на 1.

Состояние суммирующего счетчика

Состояние вычитающего счетчика

Реверсивный счетчик может работать в качестве суммирующего и вычитающего. Эти счетчики имеют дополнительные входы для задания направления счета. Режим работы определяется управляющими сигналами на этих входах. Имеются счетчики и с отдельными входами для суммирования и вычитания.

Когда счетчик используется в качестве делителя, направление счета не играет роли.

Счетчики с последовательным переносом – цепочка триггеров, в которой импульсы, подлежащие счету, поступают на вход 1 триггера, а сигнал переноса передается последовательно от одного разряда к другому. В этих счетчиках используются асинхронные Т-триггеры с прямым либо с инверсным управлением, а также JK- и D-триггеры в счетном режиме. Главное достоинство счетчиков с последовательным переносом – простота схемы. Увеличение разрядности (наращивание) осуществляется подключением нужного числа триггеров к выходу последнего триггера. Поскольку входные сигналы поступают на вход только первого триггера, такой счетчик мало нагружает предшествующий каскад.

Основной недостаток счетчиков с последовательным переносом – сравнительно низкое быстродействие, поскольку триггеры здесь срабатывают последовательно, один за другим. Другой недостаток, обусловленный этой же причиной, состоит в том, что из-за накопления временных сдвигов в разрядах на выходах дешифраторов таких счетчиков могут появляться кратковременные ложные импульсы, особенно заметные на высоких частотах.

Счетчики с параллельным переносом состоят из синхронных триггеров. Счетные импульсы подаются одновременно на все тактовые входы, а каждый из триггеров цепочки служит по отношению к последующим только источником информационных сигналов. Срабатывание триггеров параллельного счетчика происходит синхронно, и задержка переключения всего счетчика равна задержке переключения для одного триггера. Счетчики с параллельным переносом широко применяются в быстродействующих устройствах.

Счетчики – делители, оформленные как самостоятельные изделия, имеются в составе многих серий микросхем. Номенклатуру счетчиков отличает большое разнообразие. Многие из них обладают универсальными свойствами и позволяют управлять коэффициентом и направлением счета, вводить до начала цикла исходное число, прекращать счет по команде, наращивать число разрядов и т. п.

Счетчики с коэффициентом счета Ксч =2 m представляют собой последовательную цепочку из m триггеров.

С помощью дополнительного логического элемента можно изменять Ксч (деления) в пределах 2 m-1 m , для чего входы ЛЭ подключаются к выходам определенных триггеров, а его выход – ко входам R принудительной установки триггеров в нулевое состояние, а иногда и ко входам S – установки в «1».

Работу такого счетчика рассмотрим на примере счетчика с Ксч =5. Для получения такого Kсч достаточно 3-х триггеров. Из таблицы состояний видно, что после 5-го импульса счетчик будет иметь состояние 101. Чтобы организовать обратную связь и исключить лишние импульсы путем сброса счетчика в исходное состояние. Подадим на 3-х входовый элемент И-НЕ три высокие уровня со всех трех триггеров.

Только в этом случае ячейка совпадения единиц И-НЕ даст «0» на выходе, который и сбросит триггер в исходное состояние.

Другой пример счетчика с Ксч =13. Первый триггер срабатывает от каждого входного импульса, т.е. 1=2 0 ; второй – от каждого 2-го импульса (2=2 1 ); третий – от четвертых импульсов (4=2 2 ); а четвертый триггер – от каждого восьмого импульса (8=2 3 ). Коэффициенту счета Ксч =13=8+4+1=1*2 3 +1* 2 2 +0*2 1 +1* 2 0 соответствуют, следовательно, состояния Q3 =Q2 =Q =1. За цикл счета ДД5 сработает только 1 раз. Выходной сигнал («0») с ДД5 подается на R-входы всех триггеров, в том числе и на 2-й триггер. Сделано это для того, чтобы исключить ложное срабатывание ДД2 после перехода ДД1 в нулевое состояние, т.к. этот перепад после 13-го импульса подобен полезному сигналу. Проектирование счетчика сводится к определению числа триггеров, виду логического элемента, организации связей между триггерами и ЛЭ.

Источник

Читайте также:  Омскэнергосбыт показания счетчика передать показания

Счетчики и показания © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector
Название: Исследование двоичных счетчиков
Раздел: Рефераты по физике
Тип: учебное пособие Добавлен 13:09:17 27 июня 2009 Похожие работы
Просмотров: 2028 Комментариев: 14 Оценило: 4 человек Средний балл: 4.5 Оценка: неизвестно Скачать