Меню

Для измерения мощности электрического тока применяют



§102. Измерение мощности и электрической энергии

Измерение мощности. В цепях постоянного тока мощность измеряют электро- или ферродинамическим ваттметром. Мощность может быть также подсчитана перемножением значений тока и напряжения, измеренных амперметром и вольтметром.

В цепях однофазного тока измерение мощности может быть осуществлено электродинамическим, ферродинамическим или индукционным ваттметром. Ваттметр 4 (рис. 336) имеет две катушки: токовую 2, которая включается в цепь последовательно, и напряжения 3, которая включается в цепь параллельно.

Ваттметр является прибором, требующим при включении соблюдения правильной полярности, поэтому его генераторные зажимы (зажимы, к которым присоединяют проводники, идущие со стороны источника 1) обозначают звездочками.

Рис. 336. Схема для измерения мощности

Рис. 336. Схема для измерения мощности

Для расширения пределов измерения ваттметров их токовые катушки включают в цепь при помощи шунтов или измерительных трансформаторов тока, а катушки напряжения — через добавочные резисторы или измерительные трансформаторы напряжения.

Измерение электрической энергии. Способ измерения . Для учета электрической энергии, получаемой потребителями или отдаваемой источниками тока, применяют счетчики электрической энергии. Счетчик электрической энергии по принципу своего действия аналогичен ваттметру. Однако в отличие от ваттметров вместо спиральной пружины, создающей противодействующий момент, в счетчиках предусматривают устройство, подобное электромагнитному демпферу, создающее тормозящее усилие, пропорциональное частоте вращения подвижной системы. Поэтому при включении прибора в электрическую цепь возникающий вращающий момент будет вызывать не отклонение подвижной системы на некоторый угол, а вращение ее с определенной частотой.

Число оборотов подвижной части прибора будет пропорционально произведению мощности электрического тока на время, в течение которого он действует, т. е. количеству электрической энергии, проходящей через прибор. Число оборотов счетчика фиксируется счетным механизмом. Передаточное число этого механизма выбирают так, чтобы по показаниям счетчика можно было отсчитывать не обороты, а непосредственно электрическую энергию в киловатт-часах.

Наибольшее распространение получили ферродинамические и индукционные счетчики; первые применяют в цепях постоянного тока, вторые — в цепях переменного тока. Счетчики электрической энергии включают в электрические цепи постоянного и переменного тока так же, как и ваттметры.

Ферродинамический счетчик (рис. 337) устанавливают на э. п. с. постоянного тока. Он имеет две катушки: неподвижную 4 и подвижную 6. Неподвижная токовая катушка 4 разделена на две части, которые охватывают ферромагнитный сердечник 5 (обычно из пермаллоя). Последний позволяет создать в приборе сильное магнитное поле и значительный вращающий момент, обеспечивающий нормальную работу счетчика в условиях тряски и вибраций. Применение пермаллоя способствует уменьшению погрешности счетного механизма 2 от гистерезиса магнитной системы (он имеет весьма узкую петлю гистерезиса).

Чтобы уменьшить влияние внешних магнитных полей на показания счетчика, магнитные потоки отдельных частей токовой катушки имеют взаимно противоположное направление (астатическая система). При этом внешнее поле, ослабляя поток одной части, соответственно усиливает поток другой части и оказывает в целом небольшое влияние на результирующий вращающий момент, создаваемый прибором. Подвижная катушка 6 счетчика (катушка напряжения) расположена на якоре, выполненном в виде диска из изоляционного материала или в виде алюминиевой чаши. Катушка состоит из отдельных секций, соединенных с пластинами коллектора 7 (эти соединения на рис. 337 не показаны), по которому скользят щетки из тонких серебряных пластин.

Ферродинамический счетчик работает принципиально как двигатель постоянного тока, обмотка якоря которого подключена параллельно, а обмотка возбуждения — последовательно с потребителем электроэнергии. Якорь вращается в воздушном зазоре между полюсами сердечника. Тормозной момент создается в результате взаимодействия потока постоянного магнита 1 с вихревыми токами, возникающими в алюминиевом диске 3 при его вращении.

Для компенсации влияния момента трения и уменьшения благодаря этому погрешности прибора в ферродинамических счетчиках устанавливают компенсационную катушку или в магнитном поле неподвижной (токовой) катушки помещают лепесток из пермаллоя, который имеет высокую магнитную проницаемость при малой напряженности поля. При небольших нагрузках этот лепесток усиливает магнитный поток токовой катушки, что приводит к увеличению вращающего момента и компенсации трения. При увеличении нагрузки индукция магнитного поля катушки увеличивается, лепесток насыщается и его компенсирующее действие перестает возрастать.

При работе счетчика на э. п. с. возможны сильные толчки и удары, при которых щетки могут отскакивать от коллекторных пластин. При этом под щетками будет возникать искрение. Для его предотвращения между щетками включают конденсатор С и резистор R1. Компенсация температурной погрешности осуществляется с помощью термистора Rт (полупроводникового прибора, сопротивление которого зависит от температуры). Он включается совместно с добавочным резистором R2 параллельно подвижной катушке. Чтобы уменьшить влияние тряски и вибраций на работу счетчиков, их устанавливают на э. п. с. на резинометаллических амортизаторах.

Индукционный счетчик имеет два электромагнита (рис. 338,а), между которыми расположен алюминиевый диск 7. Вращающий момент в приборе создается в результате взаимодействия переменных магнитных потоков Ф1 и Ф2, созданных катушками электромагнитов, с вихревыми токами Iв1 и Iв2, индуцируемыми ими в алюминиевом диске (так же, как и в обычном индукционном измерительном механизме, см. § 99).

В индукционном счетчике вращающий момент М должен быть пропорционален мощности P=UIcos?. Для этого катушку 6 одного из электромагнитов (токовую) включают последовательно с нагрузкой 5, а катушку 2 другого (катушку напряжения) — параллельно нагрузке. В этом случае магнитный поток Ф1 будет пропорционален току I в цепи нагрузки, а поток Ф2 — напряжению U, приложенному к нагрузке. Для обеспечения требуемого угла сдвига фаз ? между потоками Ф1 и Ф2 (чтобы sin? = cos?) в электромагните катушки напряжения предусмотрен магнитный шунт 3, через который часть потока Ф2 замыкается

Рис. 337. Ферродинамический счетчик электрической энергииРис. 337. Ферродинамический счетчик электрической энергии

Рис. 338. Индукционный счетчик электрической энергииРис. 338. Индукционный счетчик электрической энергии

помимо диска 7. Угол сдвига фаз между потоками Ф1 и Ф2 точно регулируется изменением положения металлического экрана 1, расположенного на пути потока, ответвляющегося через магнитный шунт 3.

Тормозной момент создается так же, как в ферродинамическом счетчике. Компенсация момента трения осуществляется путем создания небольшой несимметрии в магнитной цепи одного из электромагнитов с помощью стального винта.

Для предотвращения вращения якоря при отсутствии нагрузки под действием усилия, созданного устройством, компенсирующим трение, на оси счетчика укрепляется стальной тормозной крючок. Этот крючок притягивается к тормозному магниту 4, благодаря чему предотвращается возможность вращения подвижной системы без нагрузки.

При работе же счетчика под нагрузкой тормозной крючок практически не влияет на его показания.

Чтобы диск счетчика вращался в требуемом направлении, необходимо соблюдать определенный порядок подключения проводов к его зажимам. Нагрузочные зажимы прибора, к которым подключают провода, идущие от потребителя, обозначают буквами Я (рис. 338,б), генераторные зажимы, к которым подключают провода от источника тока или от сети переменного тока,— буквами Г.

Источник

Измерение тока, напряжения и мощности

Измерение тока. Для измерения тока используются амперметры. Амперметр включается в цепь таким образом, чтобы через него проходил весь измеряемый ток, т.е. последовательно. Поэтому его сопротивление должно быть малым по сравнению с сопротивлением цепи.

Для измерения постоянного тока используются приборы магнитоэлектрической системы, реже приборы электромагнитной системы. Для измерения переменного тока частотой 50 Гц в основном применяют приборы электромагнитной системы. Сопротивление этих приборов лежит в пределах от долей ома до нескольких ом.

Читайте также:  Защитные устройства при электрическом токе

Для расширения пределов измерения амперметров в цепях постоянного тока используют шунты. Их сопротивления подсчитывают по формуле:

где Iан — номинальное значение тока амперметра; Rа — внутреннее сопротивление амперметра; Iш — ток, проходящий через шунт.

Для расширения пределов измерения амперметров в цепях переменного тока используют измерительные трансформаторы тока.

Измерение напряжения. Для измерения напряжения используют вольтметры.

Вольтметры включаются параллельно участку электрической цепи, на котором измеряют напряжение. Вольтметр должен иметь большое сопротивление по сравнению с сопротивлением соответствующего участка цепи. В цепях постоянного тока используют вольтметры магнитоэлектрической системы, но обычно с добавочным сопротивлением.

Для расширения пределов измерений вольтметров в цепях постоянного тока до 4500 В служат добавочные резисторы (сопротивления). Их сопротивление определяют по формуле:

где Uн — номинальное напряжение прибора; Umax — максимальное измеряемое напряжение; RV — сопротивление вольтметра.

В цепях переменного тока используют вольтметры электромагнитной и электродинамической системы.

Измерение мощности. Мощность в электрической цепи синусоидального тока определяется по формуле:

P=U I · cos(Ð ),

где U и I — действующие значения напряжения и тока; j =Ð — угол разности начальных напряжения и тока (угол сдвига фаз).

Для измерения мощности в электрических цепях необходимо измерить напряжение, ток и угол сдвига фазы. Для этого используется прибор — ваттметр с двумя катушками. Это приборы электродинамической и ферродинамической измерительных систем. Катушка напряжения включается параллельно участку цепи, подобно вольтметру, ее зажимы на лицевой стороне ваттметра обозначены буквой U. Токовая катушка включается в цепь последовательно, подобно амперметру, ее зажимы обозначены буквой I (рисунок 1.4.).

Рисунок 1.4 — Схема включения ваттметра

На ваттметре начало токовой катушки и катушки напряжения отмечены звездочками, это генераторные зажимы. При измерении активной мощности эти зажимы включаются со стороны источника энергии. Такие же особенности имеет и так же включается в сеть фазометр — прибор, предназначенный для измерения угла сдвига фаз j. Он позволяет непосредственно определить по шкале угол j и cos j.

Цена деления многопредельного ваттметра определяется по формуле:

где Uп, Iп— предельные значения напряжения и тока, указанные на соответствующих зажимах прибора; n — число делений шкалы.

Активная мощность, измеряемая ваттметром,

где Wизм — число делений шкалы, указываемое стрелкой прибора.

Таким же образом определяется цена деления амперметра и вольтметра, если шкала прибора не проградуирована в единицах измерения.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Ваттметр для измерения мощности в розетке

Выполнение любого действия требует траты силы. Чем сложнее процессы, тем больше уходит последней. Ранее, величина измерялась в лошадином эквиваленте. То есть, относительно перемещения груза. Сила бралась от количества совместно работающих парнокопытных, для сдвига некой массы, на определенное расстояние, в течении установленного времени.

Применение упомянутого аналога затруднено во множестве современных сфер жизни. К примеру, сложно определить, сколько лошадей требуется, чтобы нагреть на градус воду, или генерировать фотон освещения. Да и вместо реактивного двигателя использовать табун не получиться. На смену лошадиным силам пришел ватт, который определяет затраченную энергию за единицу времени. Если брать числовой эквивалент, — 1 л.с. равна 735 Вт.

Знание текущей мощности производимой работы важно в разрезе учета расхода энергоносителей (электричества, бензина, газа), обеспечения безопасности — система доставки должна выдерживать подобные траты, и расчета соответствующего результата «приложенным усилиям».

Объединение мощного реактивного двигателя и автомобиля

В целях выявления количества ватт разработаны разные автоматические измерители, от типа выполняемой работы и вида затраченной энергии. Наиболее нужными для обыденной жизни из них стали электрические, называемые ваттметрами. От проходящей силы тока за единицу времени зависит эффективность финальных процессов его переработки — яркости ламп, оборотов двигателей, нагрева и охлаждения. Не на последнем месте находится безопасность доставки энергоносителя — по тонким проводникам мощный ток запускать нельзя. Критически сильный поток электронов их физически сожжет в процессе своего движения. Нужен и учет объема текущего расхода для планирования последующих затрат.

Виды мощности электросетей

В промышленности и быту используются цепи постоянного и переменного движения тока. Для каждой из них применяют свой метод получения результата. В линиях непрерывной подачи энергии ватты вычисляются перемножением текущего напряжения на амперы потребления. Для периода времени, в формулу добавляется прошедшее его количество:

Формула расчета мощности для постоянного напяржения

В отношении переменных сетей все сложнее. В них различают несколько видов мощности, важных для получения итоговых результатов измерения:

  • Мгновенная. Формула нахождения для синусоидальных сетей, наподобие классических бытовых электролиний — Pватт = Uвольт × Iампер × cos φ, где φ — угол сдвига фаз. Если вид электрического сигнала отличается, — «мгновенное» количество ватт вычисляют по сумме соответствующих средних мощностей отдельных гармоник. Другой способ получения значения — знание проводимости цепи, или ее активного сопротивления. Математически взаимосвязь выражается формулами:
    • Pватт = I2 × r, где I — сила тока в амперах, а r — сопротивление в оммах,
    • Pватт = U2 × g, где U — напряжение вольт, g — проводимость в сименсах (обозначение См, или S в документации).
  • Активная мощность. Наиболее важная характеристика импульсных цепей потребления. Среднее количество затраченной энергии, преобразовавшееся в конечную работу за период времени. Выражается формулой:Формула активной мощности
  • Реактивная мощность. В цепях переменного тока находится элементы, нагружающих линию, но не приводящих к результативному уходу энергии в другие состояния. То есть, количество электронов остается прежним. Нюанс, непосредственно имеющий значение в том, что движение реактивного тока импульсное. Когда он идет в катушки индуктивности, конденсаторы, обмотки двигателей, он «как бы» покидает цепь. Возвращаясь от них, общий поток энергии системы насыщается добавочными частицами.
    Математически связь между реактивной Q, полной S и активной мощностью P описывается следующим выражением:Формула реактивной мощностиКроме СИ в ваттах, результат измерения Q обозначают в варах (вольт-амперах реактивных).
  • Полная мощность. Берется из корня сумм квадратов активной и реактивной мощностей. Математически описывается следующей формулой:Формула полной мощностиКроме системной единицы в ваттах результат можно встретить обозначенным в вольт-амперах или V·A.

Классификация ваттметров

В общем виде, ваттметры можно разделить на аналоговые и цифровые. Оба класса могут ориентироваться на постоянный, или переменный ток, быть универсальными, обладать различной точностью и нишей использования. Существуют одно- и трехфазные измерительные приборы.

Большинство цифровых и аналоговых измерителей фиксируют «мгновенные» значения характеристики, что может быть удобно с одной стороны для контроля, но не дает обзора ситуации в целом — на общее потребление линии по времени.

Электродинамические аналоговые приборы

Основа электродинамического ваттметра — две катушки, одна из которых имеет фиксированное положение, вторая подвижна и закреплена на оси индикаторной стрелки. Обе имеет разное количество витков и подключение к линии. Первая монтируется к исследуемой цепи последовательно, вторая — параллельно через резистор. Принцип работы механизма устройства заключен в том, что чем сильнее ток течет в фиксированной катушке, тем мощнее магнитные поля между ней и подвижной, а значит больше отклоняется стрелка, указывающая на текущее значение характеристики.

Читайте также:  Типовая схема пуска двигателя постоянного тока с независимым возбуждением

Схема включения ваттметра подобного класса подразумевает нахождение его последовательно с линией нагрузки потребителя. Главный минус большинства аналоговых устройств — без сильного усложнения конструкции, невозможно получать раздельную информацию по активной, реактивной и полной мощности.

Цифровые измерительные аппараты

Принцип действия цифрового измерительного прибора всегда одинаков — внутренняя микро-ЭВМ (микроконтроллер) обрабатывает сигнал от аналогового датчика исследуемой линии и выводит результат на экран или числовой индикатор. Схема подключения ваттметра подобного класса похожа на используемую у аналоговых — параллельно нагрузке. Основной плюс цифровых измерителей в их универсальности и широте возможностей. К примеру, для раздельного вычисления реактивной, активной и полной мощности, не нужно использовать сложные аппаратные конструкции — достаточно предусмотреть несколько дополнительных сенсоров. Не редкость объединение разноплановых измерительных устройств в одном корпусе — амперметра, вольтметра, анализатора «мгновенного» расхода и его значений по периоду времени.

Цифровой ваттметр

Виды исполнения измерителей

Ваттметры делятся на мобильные (носимые), стационарные (щитовые), лабораторные и бытовые. Все представленные разновидности могут быть выполнены в аналоговом и цифровом классе устройств.

Мобильные

Сюда относятся тестеры небольшого размера, для единовременной разовой проверки каналов нагрузки. Питание подобные аппараты, часто получают от самой исследуемой линии. Есть варианты, оснащенные аккумуляторами, или батареями. Зависимые от сети — часто аналогового, автономные — цифрового класса.

Мобильный цифровой ваттметр

Стационарные

Подключение ваттметра стационарного вида обычно выполняется в щитах питания зданий, домов, квартир, или в иных точках центрального распределения энергии. Отдельными постоянными измерительными устройствами выступают лабораторные аппараты. Первые предназначены целям постоянного контроля расхода линии, вторые для единовременной, но высокоточной пробы электрического потребления отдельных нагрузок.

Ваттметр стационарного типа бывает аналогового и цифрового класса. Плюсом первого выступает непревзойденная надежность, второго — удобство и функциональность. Частым случаем, монтируемых в щиток и учитывающих потребление аппаратов можно назвать классические счетчики расхода электроэнергии. К сожалению, они не определяют «моментальные» значения, но дают представление об общих затратах на нагрузку линии в киловатт часах.

Бытовые

Аппараты подобного вида не очень точны, и предназначены обычно для измерения расхода одного, реже двух бытовых устройств. Классическое исполнение — переходник с индикатором, размещаемый между гнездом 220 В и вилкой потребителя. Подобный ваттметр, вставляемый в розетку, может, в зависимости от модели, показывать и «мгновенный» общий расход, или разделять его на активный, реактивный, комплексный и общие киловатт-часы.

Бытовые ваттметры

Обозначение на принципиальных схемах

Часто требуется разобрать документальное описание, к какой линии уже смонтирован, или должен быть подключен в будущем, измеряющий прибор. Вне зависимости от его вида, ваттметр на схеме обозначается элементом:

УГО ваттметра на схеме

Получение результата иным путем

Показания ваттметра, не единственный способ получить значения текущего расхода линии. Для вычисления характеристики достаточно пользоваться классическим мультиметром. Для чего, вначале тестер подключают параллельно цепи нагрузки, выясняют текущий вольтаж. Затем размещают его последовательно к ней и замеряют силу тока. Подставив полученные значения в ранее описанные формулы, рассчитывают нужное количество ватт:

Pватт = Vвольт × Aампер

Правда, в отношении результативных данных, есть один нюанс. Для цепей постоянного движения тока результат будет соответствовать реальной активной нагрузке. Для переменных — полной мощности, включая реактивную, которая обычно не нужна. Чтобы получить приблизительно реальные ватты потребления, нужно результат из предыдущего примера, для сетей переменного тока 220 В, умножить на cos 120°. То есть, формула примет вид:

Формула расчета мощности с помощью мультиметра

Полученная величина будет приблизительно соответствовать активной мощности цепи потребления. Вместо многофункционального прибора, вполне доступно использование для измерений первоначальных характеристик линии, отдельного вольтметра и амперметра.

Резюме

Статья полностью дает понять, что такое ваттметр, как его подключать в цепь потребления, какие различия между цифровыми и аналоговыми приборами. Предоставлены сведения о вычислении характеристик нагрузки без специализированного измерителя.

Видео по теме

Источник

Методы измерения мощности в электрических цепях

Очень часто при проектировании электрических схем радиолюбители сталкиваются с проблемой измерения мощности, которую потребляют радиокомпоненты. Специалисты в метрологической сфере рекомендуют два метода, позволяющих вычислить и грамотно рассчитать ее значение. В этом случае нужно разобрать подробнее физический смысл величины, а также ее составляющих, от которых она зависит.

Измерение мощности

Общие сведения

При проектировании устройств нужно уметь правильно рассчитывать мощность электроэнергии электрооборудованием. Это необходимо, прежде всего, для долговечной работы устройства. Если изделие работает на износ, то оно способно выйти из строя сразу или в течение некоторого времени.

Такой вариант считается недопустимым, поскольку существуют виды техники, которые должны работать без отказов (аппарат искусственного дыхания, контроль уровня метана в шахте и так далее), так как от этого зависит человеческая жизнь. К основным характеристикам электрической энергии относятся следующие: мощность, сила тока, напряжение (разность потенциалов) и электропроводимость (сопротивление) материалов.

Мощность потребителя

 измерение мощности в цепях переменного тока

Мощность не следует путать с электрической энергией. Единицей измерения первой является ватт (Вт), название которой произошло от фамилии известного физика Джеймса Уатта. Физическим смыслом 1 Вт является расход электрической энергии за единицу времени, равной 1 секунде (1 Вт = расход 1 джоуля за 1 секунду). Существуют производные единицы измерения: милливатт (1 мВт = 0,001 Вт), киловатт (1 кВт = 1000 Вт), мегаватт (1 МВт = 1000 кВт = 1000000 Вт), гигаватт (1 ГВт = 1000 МВт = 1000000 кВт = 1000000000 Вт) и так далее. Для измерения электрической энергии применяются специальные счетчики, а ее единицей измерения является Вт*ч.

Ватт можно связать с некоторыми физическими величинами: 1 Вт = 1 Дж/с = (1 кг * sqr (м)) / (c * sqr (c)) = 1 Н * м / с = 746 л. с. Последнее числовое значение называется электрической лошадиной силой. Ваттметр — измеритель электрической мощности. Однако ее величину можно определить и другим способом. Для этого следует разобрать физические величины, от которых она зависит.

Сила тока

Измерение электрической энергии

Количество электрического заряда, который проходит через токопроводящий материал за единицу времени, называется силой электрического тока. Сокращенно величину называют силой тока или током. Она обозначается литерами «I» или «i» и имеет направление (векторная величина). Измеряется ток в амперах (А). Существуют также производные единицы, образованные при помощи приставок: 1 мА = 0,001 А, 1 кА = 1000 А и так далее. Измерить его значение можно амперметром. Для этого его нужно подключать последовательно в электрическую цепь.

Физическим смыслом тока в 1 А является прохождение электрического заряда в 1 Кл (кулон) за 1 секунду через площадь поперечного сечения S. В 1 кулоне содержится примерно 6,241*10^(18) электронов.

Ток в научной интерпретации классифицируется на постоянный и переменный. Первый вид не изменяет своего направления за единицу времени, но его амплитудные значения могут изменяться. Направление и амплитуда переменного тока изменяется по определенному закону (синусоидальный и несинусоидальный). Основным параметром считается его частота. Определяется тип переменного тока с помощью осциллографа.

Электрическое напряжение

Электрическое напряжение

Из курса физики известно, что каждое вещество состоит из атомов, которые обладают нейтральным зарядом. Они состоят из субатомных частиц. К ним относятся следующие: протоны, электроны и нейтроны. Первые имеют положительный заряд, вторые — отрицательный, а третьи — не заряжены вообще.

Суммарный заряд протонов компенсирует заряд всех электронов. Однако под действием внешних сил это равенство нарушается, и электрон «вырывается» из атома, который уже обладает положительным зарядом. Он притягивает электрон с соседнего атома, и процесс повторяется до тех пор, пока энергия не будет минимальной (меньше энергии «вырывания» электрона).

Читайте также:  Дисбаланс тока электродвигателя что это

При межатомном взаимодействии образуется электромагнитное поле с отрицательной или положительной составляющими. Разность между двумя точками противоположных по знаку составляющих называется электрическим напряжением. Работа электромагнитного поля по перемещению точечного электрического заряда из точки А в точку В называется разностью потенциалов. Физический смысл напряжения (U): разность потенциалов в 1 В между двумя точечными зарядами в 1 Кл, на перемещение которых тратится энергия электромагнитного поля, равная 1 Дж.

Единицей измерения является вольт (В). Определить значение разности потенциалов можно с помощью вольтметра, который подключается параллельно. Производными единицами измерения считаются следующие: 1 мВ = 0,001 В, 1 кВ = 1000 В, 1 МВ = 1000 кВ = 1000000 В и так далее.

Сопротивление электрической цепи

Электропроводимость материала зависит от нескольких факторов: электронной конфигурации, типа вещества, геометрических параметров и температуры. Сведения об электронной конфигурации вещества можно получить из периодической таблицы Д. И. Менделеева. Согласно этой информации вещества бывают:

  1. Проводниками.
  2. Полупроводниками.
  3. Диэлектриками.

К первой группе следует отнести все металлы, электролиты (растворы, проводящие ток) и ионизированные газы. Носителями электрического заряда в металлах являются электроны. В растворах их роль выполняют ионы, которые бывают положительными (анионы) и отрицательными (катионы). Свободными носителями заряженных частиц в газах считаются свободные электроны и положительно заряженные ионы.

Полупроводники проводят электричество только при определенных условиях. Например, при воздействии на него внешних сил. Под их действием кулоновские связи электрона с ядром уменьшаются. При этом отрицательно заряженная частица «вырывается». На ее месте образуется «дырка», обладающая положительным зарядом. Она притягивает соседний электрон, вырывая его с атома. В результате этого осуществляется движение электронов и дырок. Изоляторы или диэлектрики вообще не проводят электричество. К ним относятся материалы без свободных носителей заряда, а также инертные газы.

Сопротивление электрической цепи

В проводниках при повышении температурных показателей происходит рост величины сопротивления. При этом происходит разрушение и искажение кристаллической решетки. Заряженные частицы сталкиваются (взаимодействуют) с атомами и другими частицами материала. В результате их движение замедляется, но потом снова возобновляется под действием электромагнитного поля. Процесс этого «взаимодействия» называется электрической проводимостью вещества. Однако в полупроводниках при повышении температуры эта величина уменьшается. К геометрии материалов следует отнести следующие: длину и площадь поперечного сечения.

Сопротивление измеряется в Омах (Ом) при помощи омметра, который подсоединяется параллельно к участку цепи или радиодетали. Существуют производные единицы измерения: 1 кОм = 1000 Ом, 1 МОм = 1000 кОм = 1000000 Ом.

Методы измерения

Методы измерения тока

Мощность можно определить двумя способами: косвенным и прямым. В первом случае это делается при помощи амперметра и вольтметра, а также осциллографа. Измеряются значения напряжения и тока, а затем по формулам вычисляется мощность. Этот способ имеет один недостаток: величина мощности получается с некоторой погрешностью.

При использовании прямого метода используется специальный прибор-измеритель. Он называется ваттметром и показывает мгновенное значение мощности. У каждого из способов есть свои достоинства и недостатки. Какой из методов наиболее оптимален, определяет сам радиолюбитель. Если проектируется какое-либо изделие, которое отличается надежностью, то следует применять прямой метод. В других случаях рекомендуется воспользоваться косвенным методом.

Косвенный способ

Мощность в цепях постоянного и переменного токов определяется различными способами. Для каждого случая существуют свои законы и формулы. Однако мощность можно не рассчитывать, поскольку она указана на электрооборудовании. Расчет применяется только при проектировании устройств.

Для цепей постоянного тока нужно воспользоваться формулой: P = U * I. Ее можно вывести из закона Ома для участка или полной цепи. Если рассматривается полная цепь, то формула принимает другой вид с учетом ЭДС (е): P = e * I. Основные соотношения для расчета:

  1. Для участка электрической цепи: P = I * I * R = U * U / R.
  2. Для полной цепи, в которой подключен электродвигатель или выполняется зарядка аккумулятора (потребление): P = I * e = I * e — sqr (I) * Rвн = I * (e — (I * Rвн)).
  3. В цепи присутствует генератор или гальванический элемент (отдача): P = I * (e + (I * Rвн)).

Эти соотношения невозможно применять для цепей переменного тока, поскольку он подчиняется другим физическим законам. При измерении мощности в цепях переменного тока следует учитывать ее составляющие (активная, реактивная и полная). Если в цепи присутствует только резистор, то мощность считается активной. При наличии емкости или индуктивности — реактивной. Полная — сумма активной и реактивной составляющих.

Для вычисления первого типа физической величины применяется формула такого вида: Ра = I * U * cos (a). Значения тока и напряжения являются среднеквадратичными, а cos (a) — косинус угла между ними. Для определения реактивной мощности нужно воспользоваться следующей формулой: Qр = I * U * sin (a). Если нагрузка в цепи является индуктивной, то значение будет больше 0. В противном случае — меньше 0. Полная мощность Р определяется по следующему соотношению: P = Pa + Qp.

Прямое определение величины

Для определения значения мощности в цепях переменного и постоянного тока применяются ваттметры. В них используются электродинамические или ферроидальные механизмы. Приборы с электродинамическим механизмом выпускаются в виде переносных приборов. Они обладают высоким классом точности. Измерители мощности рекомендуется применять при выполнении точных расчетов для цепей постоянного и переменного тока с частотой до 5 кГц.

Измерительные приборы

Ферродинамические приборы изготавливаются в виде электронных узлов, которые вставляются в измерительные стенды или щитовые. Основное их назначение — контроль приблизительных параметров потребления мощности электрооборудованием. Они обладают низким классом точности и применяются для измерения значений мощности переменного тока. При постоянном токе погрешность увеличивается, поскольку это обусловлено искажением петли гистерезиса ферромагнитных сердечников.

По диапазону частот приборы можно разделить на две группы: низкочастотные и радиочастотные. Ваттметры низких частот применяются в сетях промышленного питания переменного тока. Радиочастотный тип рекомендуется применять для точных измерений при проектировании различной техники. Они делятся на две категории по мощности:

  1. Проходящие.
  2. Поглощающие.

Первый вид подключается в разрыв линии, а второй — в ее конец в качестве нагрузки согласования. Кроме того, приборы для измерения мощности бывают аналоговыми и цифровыми.

Ваттметр прибор

При измерении мощности на высоких частотах применяются электронные и термоэлектронные ваттметры. Главным узлом считается микроконтроллер и преобразователь активной мощности. Последний преобразовывает переменный ток в постоянный. После этого происходит перемножение в микроконтроллере силы тока и напряжения. Результатом является сигнал на выходе, который зависит от I и U.

Ваттметр состоит из двух катушек. Первая из них подключается последовательно в цепь нагрузки, а другая (подвижная с резистором) — параллельно. В цифровых моделях роль катушек выполняют датчики тока и напряжения. Прибор имеет две пары зажимов. Одна пара применяется для последовательной цепи, а другая — для параллельной. Для правильного включения ваттметра выполняется обозначение * одной из двух пар зажимов.

Таким образом, для измерения мощности электрического тока применяются два метода. Первый из них является косвенным, а второй — прямым. Последний рекомендуется применять при проектировании сложной техники.

Источник

Adblock
detector