Меню

Для двигателя постоянного тока независимого возбуждения имеющего следующие паспортные данные



Задача 2.16

Для двигателя постоянного тока независимого возбуждения , имеющего следующие паспортные данные : мощность , потребляемая двигателем , Р=14,828 кВт; ток Iном = 33,7 А; частоту вращения якоря nном = 3000 об/мин; КПД ном = 0,81, рассчитать и построить:

естественные механическую и электромеханическую характеристики;

искусственные механическую и электромеханическую характеристики; при включении в цепь якоря добавочного сопротивления Rд = 0,9 Ом; определить частоту вращения якоря двигателя для момента сопротивления Мс = 0,87Мном при работе двигателя на естественной и искусственной характеристиках;

пусковую диаграмму для трехступенчатого пуска, если ток переключения I1=1,92Iном; определить сопротивления ступеней пускового реостата;

механическую и электромеханическую характеристики динамического торможения со скорости, соответствующей заданному моменту сопротивления, при работе двигателя на естественной и искусственной характеристиках; определить тормозное сопротивление Rт , если допустимое значение тока якоря Iдоп.т=3,2Iном;

кривые переходного процесса при пуске и торможении;

/значение приведенного момента инерции взять из задачи 1/.

Источник

Методические указания к решению задач 18-27

Задачи этой группы относятся к теме «Электрические машины по­стоянного тока». Для их решения необходимо изучить материал, приве­денный в указателе литературы к теме, решить рекомендуемые задачи и ознакомиться с типовыми примерами 17-21. Сведения о некоторых типах машин постоянного тока даны в табл. 22.

Необходимо иметь представление о связи между напряжением на выводах U, э. д. с. Е и падением напряжения IаRа в обмотке якоря для генератора и двигателя: для генератора Е= U+IаRа; для двигателя U=Е+IaRa. Для определения элект­ромагнитного или полного момента, развиваемого двигателем, можно поль­зоваться формулой, приведенной в учебнике:

Здесь магнитный поток выражен в веберах (Вб), ток якоря в амперах (А), момент получаем в ньютон-мет­рах (Н·м). Если магнитный поток машины неизвестен, то электромагнит­ный момент можно найти, определив из формулы для противо- э. д. с. маг­нитный поток и подставив его в фор­мулу для Мэм:

Е = откуда Ф = Тогда Mэм =

Здесь Рэм =ЕIа — электромагнитная мощность, Вт; w — угловая скорость вращения, рад/с.

Аналогично можно вывести формулу для определения полезного номинального момента (на валу):

Здесь Рном выражаем в Вт; Мном получаем в Н·м.

Пример 17. Генератор с независимым возбуждением (рис. 88) работает в номинальном режиме при напряжении на выводах Uном = 220 В. Сопротивление обмотки якоря Rа=0,2 Ом; сопротивление нагрузки Rн=2,2 Ом; сопротивление обмотки возбуждения Rв=55 Ом. Напряжение для питания обмотки возбуждения Uв=110 В. Номиналь­ная частота вращения якоря nном=1200 об/мин. Определить: 1) э. д. с. генератора; 2) силу тока, отдаваемого потребителю; 3) силу тока в 1 обмотке возбуждения; 4) полезную мощность, отдаваемую генератором; 5) электромагнитный тормозной момент, преодолеваемый приводным двигателем.

Решение. 1. Ток, отдаваемый в нагрузку:

2. Ток в обмотке возбуждения

3. Ток в обмотке якоря

4. Э. д. с. генератора

5. Полезная мощность, отдаваемая генератором:

P2 = Uном Iн = 220·100 = 22 000 Вт = 22 кВт.

6. Электромагнитная мощность и электромагнитный тормозной момент:

Рэм = ЕIа = 240,4·102 = 24600 Вт = 24,6кВт;

Пример 18. Генератор с параллельным возбуждением (рис. 89) рассчитан на напряжение Uном =220 В и имеет сопротивление обмотки якоря Rа=0,08Ом, сопротивление обмотки возбуждения Rв=55 Ом. Генератор нагружен на сопротивление Rн= 1,1 Ом.

К. п. д. генератора ηг = 0,85. Определить: 1) токи в обмотке возбуждения Iв, в обмотке якоря Iа и в нагрузке Iв; 2) э. д. с. генератора Е; 3) полезную мощность Р2; 4) мощность двигателя для вращения генератора Р1; 5) электрические потери в обмотках якоря Ра и возбуждения Рв; 6) суммарные потери в генераторе; 7) электромагнитную мощность Рзм.

Решение. 1. Токи в обмотке возбуждения, нагрузке и якоре:

2. Э. д. с. генератора

Е = Uном + IаRa = 220 + 204 · 0,08 = 236,3 В.

3. Полезная мощность

Р2 = Uном /Iн = 220·200 = 44 000 Вт = 44 кВт.

4. Мощность приводного двигателя для вращения генератора

5. Электрические потери в обмотках якоря и возбуждения:

Ра = Rа = 204 2 ·0,03 = 3320 Вт = 3,32 кВт;

Рв = Rв 4 2 ·55 = 880 Вт = 0,88 кВт.

6. Суммарные потери мощности в генераторе

7. Электромагнитная мощность, развиваемая генератором:

Рэм = ЕIа = 236,3·204 = 48 300 Вт = 48,3 кВт.

Читайте также:  Стабилизатор тока для светодиодного фонарика

Пример 19. Электродвигатель постоянного тока с параллельным возбуждением (рис. 90) рассчитан на номинальную мощность Рном = 10 кВт и номинальное напряжение Рном=220 В. Частота вращения якоря n=3000 об/мин. Двигатель потребляет из сети ток I=63 А. Со­противление обмотки возбуждения Rв=85 Ом, сопротивление обмотки якоря Rа=0,3 Ом. Определить: 1) по­требляемую из сети мощность Р12)к. п. д. двигателя ηдв; 3) по­лезный вращающий момент М; 4) ток якоря Iа; 5) противо-э. д. с. в обмотке якоря Е; 6) суммарные потери в двигателе ; 7) потери в обмотках яко­ря Ра и возбуждения Рв.

Решение. 1. Мощность, пот­ребляемая двигателем из сети:

Р1= Uном I =220·63= 13 900 Вт = 13,9 кВт.

2. К- п. д. двигателя

3. Полезный вращающий момент (на валу)

М =9,55 Рном/n = 9,55·10·1000/3000 = 31,9 Н·м.

4. Для определения тока якоря предварительно находим ток воз­буждения

5. Противо-э. д. с. в обмотке якоря

6. Суммарные потери в двигателе

7. Потери в обмотках якоря и возбуждения:

Пример 20. Четырехполюсный двигатель с параллельным возбуждением (рис.90) присоединен к сети с Uном=110В и потребляет ток I=157 А. На якоре находится обмотка с сопротивлением Rа=0,0427 Ом и числом проводников N=360, обра­зующих четыре параллельных ветви (а=2). Сопротивление обмотки воз­буждения Rв=21,8 Ом. Магнитный поток полюса Ф= 0,008 Вб. Опреде­лить: 1) токи в обмотках возбужде­ния Iв и якоря Iа; 2) противо-э. д. с. Е; 3) электромагнитный момент Mэм; 4) электромагнитную мощность Rэм; 5)частоту вращения якоря n; 6) потери мощности в обмотках якоря Ра и возбуждения Рв.

Решение. 1. Токи в обмотках возбуждения и якоря

Iа = I — Iв = 157 — 5,05 = 151,95 А.

2. Противо-э. д. с. в обмотке якоря

3. Электромагнитный момент

4. Электромагнитная мощность

Рэм = ЕIа = 103,5·151,95 = 15 727 Вт = 15,727 кВт.

Зная Рэм, можно найти электромагнитный момент по формуле

Мэ = Рэм /w = Рэм / =60·15 727/ (2·3,14·2156) = 69,7 Н·м,

что и было получено выше.

Здесь частота вращения якоря

5. Потери мощности в обмотках якоря и возбуждения:

Ра = Rа = 151,95 2 · 0,0427=986 Вт;

Пример 21. Электродвигатель постоянного тока с последователь­ным возбуждением (рис. 91) присоединен к сети с напряжением Uном = 110 В и вращается с частотой n= 1500 об/мин, Двигатель развивает полезный момент (на валу) M=120 Н·м. К. п. д. двигателя ηдв = 0,84. Суммарное сопротивление обмоток якоря и возбуждения Rа+-Rпс = 0,02 Ом. Определить: 1) полезную мощность Р2; 2) потребляемую мощность Р1; 3) потребляемый из сети ток I; 4) сопротивление пуско­вого реостата, при котором пусковой ток ограничивается до 2,5I; 5) противо-э. д. с. в обмотке якоря.

Решение. 1. Полезную мощность двигателя определяем из формулы полезного момента

Р2 =Mn /9,55= 120·1500/9,55 = 18 848 Вт= 18,85 кВт.

2. Мощность, потребляемая из сети:

3. Ток, потребляемый из сети:

4. Необходимое сопротивление пускового реостата

Источник

Ответы на тестовые вопросы № 1-54 по дисциплине «Электротехника» (Ток в якоре параллельного возбуждения мощностью 3 кВт. Частота вращения на холостом ходу двигателя параллельного возбуждения)

Страницы работы

Содержание работы

1. Определить ток в якоре параллельного возбуждения мощностью 3 кВт, если напряжение на зажимах машины 120 В, rВ=76 Ом, а КПД двигателя 0,8

2. Указать уравнение, описывающее работу машины постоянного тока в режиме двигателя параллельного возбуждения

3. EГ=100 В; Iнагр=16 А; rЯ=0,36 Ом; IВ=2,2 А. Определить напряжение на выходе генератора параллельного возбуждения

4. Как влияет на работу генератора последовательная обмотка возбуждения при согласном включении?

1) Внешняя характеристика становиться более жесткой

5. Как называется обмотка, создающая основное продольное магнитное поле машины постоянного тока?

2) обмотка возбуждения

6. Указать искусственную реостатную характеристику двигателя постоянного тока параллельного возбуждения

7. Двигатель постоянного тока имеет паспортные данные: UН=220 В, IН=12 А, nН=1500 об/мин. Мощность потерь в обмотке якоря и в обмотке возбуждения dc_15.1.jpg (744 bytes)Р=dc_15.1.jpg (744 bytes)РЯ+dc_15.1.jpg (744 bytes)РВ=396 Вт Определить механическую мощность на валу двигателя

8. Чему равно напряжение на выходе генератора при работе его на холостом ходу?

9. Определить ток в обмотке возбуждения генератора параллельного возбуждения, если задано: rнагр=2 Ом; rВ=40 Ом; IЯ=2 А

Читайте также:  Тока лайф ворлд мод все локации

10. Чем вызвано уменьшение напряжения на зажимах генератора при увеличении нагрузки?

2) Увеличением падения напряжения в якоре

11. Каково назначение обмотки возбуждения машины постоянного тока?

2) Она создает основной магнитный поток

12. Какая кривая представляет собой зависимость скорости вращения двигателя постоянного тока с параллельным возбуждением от тока возбуждения?

13. Паспортные данные двигателя: UН=110 В, Iном=10 А, rЯ=1 Ом. Чему равно сопротивление пускового реостата, ограничивающего ток до 2Iном?

14. Найти уравнение, описывающее работу генератора параллельного возбуждения

15. Выходная мощность генератора P=5,2 кВт; потребляемая мощность P1=6,3 кВт. Определить мощность потерь и КПД генератора

wpe5.jpg (744 bytes)

2) P=1,1 кВт; 0,82

16. Чем определяется величина ЭДС генератора параллельного возбуждения?

1) Величиной потока возбуждения и скоростью вращения

17. Чем вызвано появление большого тока якоря при пуске двигателя постоянного тока?

3) Малым сопротивлением обмотки якоря и малой противоэдс

18. Какая кривая представляет собой характеристику холостого хода генератора?

19. Номинальная мощность двигателя параллельного возбуждения P=95 кВт, IДВ.Н=470 А, UН=220 В. Определить КПД двигателя

20. Указать правильную формулу для определения ЭДС машины постоянного тока

21. генератора независимого возбуждения rЯ=0,037 Ом; rнагр=0,407 Ом. Напряжение на зажимах генератора 230 В. Определить ЭДС генератора и ток якоря

22. По какой электрической цепи замыкается ток якоря постоянного тока?

1) а) Зажим, б) обмотка добавочного полюса (ОДП) в) щеточно-коллекторный узел г) обмотка якоря д) зажим е) нагрузка

23. В каком случае двигатель параллельного возбуждения может пойти в разнос (резко возрастает частота вращения)?

2) При обрыве цепи возбуждения

24. Какая точка соответствует ЭДС при завершении процесса самовозбуждения генератора?

25. Напряжение на зажимах двигателя с последовательным возбуждением 120 В, rЯ+rОВ=1,5 Ом. Вычислить ток, потребляемый двигателем, если противоэдс якоря равна 90 В

26. Совокупность каких выражений соответствует работе машины постоянного тока в двигательном режиме?

28. Для чего служит обмотка якоря генератора постоянного тока?

1) Для наведения ЭДС генератора

29. Как изменится ток, потребляемый двигателем при увеличении момента сопротивления механизма?

1) Ток возрастет

30. Какой из графиков правильно изображает зависимость ЭДС генератора с независимым возбуждением от тока возбуждения?

31. Рассчитать величину пускового реостата для ограничения пускового тока двигателя ПН-10 с паспортными данными: UН=110 В; IН=12,2 А; nН=1420 об/мин. Сопротивление цепи якоря rЯ=1 Ом; Iпуск=1,5IН.

wpeA.jpg (697 bytes)

1) rпуск5 Ом

32. Какое из приведенных ниже выражений определяет механическую характеристику двигателя с параллельным возбуждением?

33. rН=2 Ом, rВ=40 Ом, IЯ=20 А. Определить ток в нагрузке генератора параллельного возбуждения

34. Как влияет на работу генератора последовательная обмотка возбуждения при встречном включении?

3) Внешняя характеристика становится мягче

35. Каким образом можно изменить направление вращения двигателя постоянного тока? Указать неправильный ответ

3) Изменить направление тока возбуждения и тока якоря одновременно

36. Указать внешнюю характеристику генератора смешанного возбуждения при встречном включении обмоток возбуждения

37. Двигатель постоянного тока с последовательным возбуждением имеет следующие параметры: UН=230 В, IН=50 А, rЯ=0,3 Ом, nН=800 об/мин. Определить ЭДС, индуктируемую в обмотке якоря

38. В каком уравнении допущена ошибка?

39. Определить EГ и EД машины в генераторном и двигательном режимах работы при условии, что напряжение U=220 В, а падение напряжения в цепи якоря составляет 4,5% от U

40. При каком условии генератор постоянного тока может работать в двигательном режиме?

3) При подаче напряжения на обмотки якоря и возбуждения

41. Каким образом регулируется основной магнитный поток машин постоянного тока?

42. Указать естественную механическую характеристику двигателя с параллельным возбуждением

43. Двигатель постоянного тока работает от сети 220 В, потребляя ток 100 А. Сопротивление обмотки якоря 0,05 Ом. Чему равна ЭДС якоря двигателя?

44. Указать основное уравнение электрического состояния генератора постоянного тока

45. Номинальная мощность генератора параллельного возбуждения: P=25 кВт, UН=115 В, Iнагр=217 А, IВ=3 А, rЯ=0,009 Ом. Определить ток якоря и ЭДС якоря

46. Какое из перечисленных условий является необходимым для самовозбуждения генератора?

2) Наличие потока остаточного магнетизма

47. Как необходимо изменять ток возбуждения, чтобы обеспечить постоянное напряжение на зажимах генератора при изменении тока нагрузки?

Читайте также:  Значение передачи электрического тока

48. Как можно уменьшить пусковой ток двигателя постоянного тока с параллельным возбуждением?

3) Ввести сопротивление в цепь якоря

49. Указать внешнюю характеристику генератора смешанного возбуждения при согласном включении обмоток возбуждения

50. Мощность на валу двигателя P=100 кВт, UН=220 В, IДВ.Н=500 А, частота вращения 500 об/мин. Определить КПД двигателя и вращающий момент

51. ЭДС при пуске двигателя параллельного возбуждения равна

52. Какова мощность потерь в обмотке якоря генератора при токе IЯ=40 А, если его ЭДС EГ=230 В, а напряжение на выходе генератора UГ=225 В

53. Как измениться частота вращения на холостом ходу двигателя параллельного возбуждения, если напряжение на якоре понизиться?

54. Какая внешняя характеристика соответствует генератору с большим сопротивлением цепи якоря, если мощности их одинаковы?

Источник

Двигатель постоянного тока независимого возбуждения (ДПТ НВ)

ads

Двигатель постоянного тока независимого возбуждения (ДПТ НВ) В этом двигателе (рисунок 1) обмотка возбуждения подключена к отдельному источнику питания. В цепь обмотки возбуждения включен регулировочный реостат rрег, а в цепь якоря — добавочный (пусковой) реостат Rп. Характерная особенность ДПТ НВ — его ток возбуждения Iв не зависит от тока якоря Iя так как питание обмотки возбуждения независимое.

Схема двигателя постоянного тока независимого возбуждения (ДПТ НВ)

Механическая характеристика двигателя постоянного тока независимого возбуждения (ДПТ НВ)

Уравнение механической характе­ристики двигателя постоянного тока независимого возбуждения имеет вид

Уравнение механической характе­ристики двигателя постоянного тока независимого (параллельного) воз­буждения

где: n — частота вращения вала двигателя при холостом ходе. Δn — изменение частоты вращения двигателя под действием механической нагрузки.

Из этого уравнения следует, что механические характеристики двигателя постоянного тока независимого возбуждения (ДПТ НВ) прямолинейны и пересекают ось ординат в точке холостого хода n (рис 13.13 а), при этом изменение частоты вращения двигателя Δn, обусловленное изменением его механической нагрузки, пропорционально сопротивлению цепи якоря Rа =∑R + Rдоб. Поэтому при наименьшем сопротивлении цепи якоря Rа = ∑R, когда Rдоб = 0, соответствует наименьший перепад частоты вращения Δn. При этом механическая характеристика становится жесткой (график 1).

Механическая характеристика двигателя постоянного тока независимого возбуждения ДПТ

Механические характеристики двигателя, полученные при номинальных значениях напряжения на обмотках якоря и возбуждения и при отсутствии добавочных сопротивлений в цепи якоря, называют естественными рисунок 13.13, а (график 1 Rдоб = 0 ).

Если же хотя бы один из перечисленных параметров двигателя изменен (напряжение на обмотках якоря или возбуждения отличаются от номинальных значений, или же изменено сопротивление в цепи якоря введением Rдоб), то механиче­ские характеристики называют искусственными .

Искусственные механические характеристики, полученные введением в цепь якоря добавочного сопротивления Rдоб, называют также реостатными (графики 2 и 3).

При оценке регулировочных свойств двигателей постоянного тока наибольшее значение имеют механические характеристики n = f(M). При неизменном моменте нагрузки на валу двигателя с увеличением сопротивления резистора Rдоб частота вращения уменьшается. Сопротивления резистора Rдоб для получения искусственной механической характеристики, соответствующей требуемой частоте вращения n при заданной нагрузке (обычно номинальной) для двигателей независимого возбуждения:

Снимок 5

где U — напряжение питания цепи якоря двигателя, В; Iя — ток якоря, соответствующий заданной нагрузке двигателя, А; n — требуемая частота вращения, об/мин; n — частота вращения холостого хода, об/мин.

Частота вращения холостого хода n представляет собой пограничную частоту вращения, при превышении которой двигатель переходит в генераторный режим. Эта частота вращения превышает номинальную nном на столько, на сколько номинальное напряжение Uном подводимое к цепи якоря, превышает ЭДС якоря Ея ном при номинальной нагрузки двигателя.

Снимок 7

Снимок 8

На форму механических характеристик двигателя влияет величина основного магнитного потока возбуждения Ф. При уменьшении Ф (при возрастании сопротивления резистора rpeг) увеличивается частота вращения холостого хода двигателя n и перепад частоты вращения Δn. Это приводит к значительному изменению жесткости механической характеристики двигателя (рис. 13.13, б). Если же изменять напряжение на обмотке якоря U (при неизменных Rдоб и Rрег), то меняется n, a Δn остается неизменным [см. (13.10)]. В итоге механические характеристики смещаются вдоль оси ординат, оставаясь параллельными друг другу (рис. 13.13, в). Это создает наиболее благоприятные условия при регулировании частоты вращения двигателей путем изменения напряжения U, подводимого к цепи якоря. Такой метод регулирования частоты вращения получил наибольшее распространение еще и благодаря разработке и широкому применению регулируемых тиристорных преобразователей напряжения.

Используемая литература: — Кацман М.М. Справочник по электрическим машинам

Источник