Меню

Для чего нужна обмотка возбуждения машин постоянного тока



Для чего нужна обмотка возбуждения машин постоянного тока

Доброго времени суток, дорогие читатели!

В этой статье я расскажу о том, что такое возбуждение в двигателях постоянного тока и «с чем его едят».

Наверное, каждый из нас в детстве имел игрушки с электроприводом. Те же, кто в те годы отличался любопытностью, не упустили возможность разобрать эти игрушки, дабы посмотреть, а что там внутри.

Заглянув внутрь такой игрушки, нами был найден маленький электромоторчик постоянного тока. Естественно, тогда мы и не задумывались над тем, почему он работает. Некоторые из нас, найдя в игрушке моторчик, решались разобрать и его. Вот эти-то любопытные товарищи, разобрав моторчик, находили там постоянный магнит (иногда не один), щетки и якорь с коллектором.

Что такое возбуждение в двигателях постоянного тока

Что такое возбуждение в двигателях постоянного тока

Так вот, как раз постоянный магнит и является простейшей системой возбуждения для моторов постоянного тока. Ведь якорь моторчика вращается только тогда, когда вокруг него присутствует постоянное магнитное поле, которое и создается при помощи постоянного магнита.

Двигатели постоянного тока промышленных масштабов в качестве возбудителей используют специальные обмотки, именуемые обмотками возбуждения.

Подключение же этих обмоток может быть самым различным. Они могут включаться параллельно якорю, последовательно с ним, смешано и, даже, независимо от них.

Возбуждающая обмотка состоит из значительно большего числа витков, нежели якорная. В связи с этим ток якорной обмотки в десятки раз превосходит ток возбуждающей. Скорость вращения такого движка может меняться в зависимости от нагрузки и магнитного потока. Благодаря свойствам подключения, движки параллельного включения довольно мало подвержены перемене частоты вращения.

Теперь рассмотрим вариант раздельного подключения рабочей и возбуждающей обмоток. Такой движок именуется мотором с независимым возбуждением.

Скорость такого движка может регулироваться при помощи смены сопротивления якорной цепи, или магнитного потока.

Тут есть небольшой нюансик: не стоит слишком уменьшать ток возбуждения при таком включении двигателя, поскольку это чревато очень большим подъемом якорного тока. Тем же самым опасен и обрыв цепи возбуждения этих двигателей. Кроме того, если нагрузка мотора с таким включением мала, либо при его включении на холостой ход может произойти такой сильный его разгон, что возникнет опасность для движка.

Как я уже говорил, разновидностью ДПТ независимого возбуждения считаются устройства, имеющие в качестве возбудителя постоянные магниты. Скажу несколько слов и о них.

Поскольку ДПТ и машины синхронного типа могут использовать вместо возбудителей постоянные магниты, то подобный вариант считается достаточно привлекательным. И вот почему:

  • у такого устройства снижено потребления тока за счет уменьшения числа обмоток, в результате чего такие показатели подобных машин, как КПД оказываются выше.
  • С использованием вместо возбудителя постоянных магнитов упрощается конструкция возбуждающих цепей движка, что повышает его надежность, ведь постоянный магнит не требует питания, следовательно у такого мотора нет токосъемного узла на роторе.

Теперь о последовательном включении обмоток (двигатели с последовательным возбуждением).

В этом варианте подключения якорный ток будет являться и возбуждающим. Это становится причиной изменения магнитного потока в сильной зависимости от нагрузки. Это является причиной большой нежелательности пуска их на холостом ходу и при маленькой нагрузке.

Применение же такое включение нашло там, где требуется значительный момент пуска, либо возможность выдерживания кратковременных перегрузок. В связи с этим их применяют, как средства тяги для трамваев, троллейбусов, электровозов, метро и подъемных кранов. Кроме того, их применяют, как средство запуска для ДВС (в качестве стартеров).

Последним вариантом включения движков постоянного тока считается их смешанное включение.

Каждый из полюсов этих моторов оснащен парой обмоток, одна из которых параллельная, а другая – последовательная. Подключать их возможно двумя способами:

  • Согласный метод (в этом случае токи складываются)
  • Встречный вариант (вычитание токов)

Соответственно, в зависимости от варианта подключения (от чего меняется и соотношение магнитных потоков) такой мотор может оказаться приближен либо к устройству, имеющему последовательное возбуждение, либо к движку с параллельным возбудом.

В большинстве случаев основной обмоткой у них считают последовательную обмотку, а параллельную – вспомогательной. За счет параллельной обмотки у таких моторов скорость при небольших нагрузках, практически не растет.

Если требуется получение значительного момента при пуске и возможность регулирования скорости на переменных нагрузках, используется подключение согласного типа. Встречное же подключение используется при необходимости получения постоянной скорости при изменяющейся нагрузке.

Если возникает необходимость реверсирования ДПТ (смены направления его вращения), то меняют направление тока в одной из его рабочих обмоток.

Методом смены полярности подключения клемм двигателя возможно поменять направление только тех моторов, которые включены по независимой схеме, либо движков с постоянным магнитом в качестве возбудителя. Во всех иных устройствах необходима смена направления тока в одной из рабочих обмоток.

Кроме того, движки постоянного тока нельзя включать методом подключения полного напряжения. Это связано с тем, что величина их пускового тока, примерно в 2 десятка раз выше номинального (это зависит от размеров и скорости двигателя). Токи пуска движков больших размеров могут и в полсотни раз превосходить их номинальный рабочий ток.

Токи больших величин способны вызвать эффект кругового искрения коллектора, в результате чего коллектор разрушается.

Чтобы выполнить включение ДПТ, используется методика плавного включения, либо применение пусковых реостатов. Включение прямого типа возможно лишь на небольших напряжениях и для маленьких движков, имеющих большое сопротивление якорной обмотки.

Пишите комментарии, дополнения к статье, может я что-то пропустил.
Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Всего доброго.

Короткая заметка:Без встраиваемых светодиодных потолочных светильников, вы не добьетесь оригинального светового дизайна на кухне. Перейдя по ссылке, вы сможете узнать, как просто, можно организовать интерьер света.

Источник

Возбуждение двигателя постоянного тока. Схемы возбуждения.

Возбуждение двигателя постоянного тока является отличительной особенностью таких двигателей. От типа возбуждения зависят механические характеристики электрических машин постоянного тока. Возбуждение может быть параллельным последовательным смешанным и независимым. Тип возбуждения означает, в какой последовательности включены обмотки якоря и ротора.

При параллельном возбуждении обмотки якоря и ротора включаются параллельно друг другу к одному источнику тока. Так как у обмотки возбуждения больше витков чем у якорной то и ток в ней течет незначительный. В цепи, как обмотки ротора, так и обмотки якоря могут включаться регулировочные сопротивления.

Обмотка возбуждения может подключаться и к отдельному источнику тока. В этом случае возбуждение будет называться независимым. У такого двигателя характеристики будут схожи с двигателем, в котором применяется постоянный магнит. Скорость вращения двигателя с независимым возбуждением, как и у двигателя с параллельным возбуждением зависит от тока якоря и основного магнитного потока. Основной магнитный поток создается обмоткой ротора.

Скорость вращения можно регулировать с помощью реостата включенного в цепь якоря изменяя тем самым ток в нем. Также можно регулировать ток возбуждения, но здесь нужно быть осторожным. Так как при его чрезмерном уменьшении или полном отсутствии в результате обрыва питающего провода ток в якоре может возрасти до опасных значений.

Также при малой нагрузке на валу или в режиме холостого хода скорость вращения может настолько увеличится, что может привести к механическому разрушению двигателя.

Если обмотка возбуждения включена последовательно с якорной, то такое возбуждение называется последовательным. При этом через якорь и обмотку возбуждения протекает один и тот же ток. Таким образом, магнитный поток изменяется с изменением нагрузки двигателя. А следовательно скорость двигателя будет зависеть от нагрузки.

Двигатели с таким возбуждением нельзя запускать на холостом ходу либо с небольшой нагрузкой на вал. Их применяют в том случае если, требуется большой пусковой момент или способность выдерживать кратковременные перегрузки.

При смешанном возбуждении используются двигатели, у которых на каждом полюсе есть по две обмотки. Их можно включить так чтобы магнитные потоки как складывались, так и вычитались.

Читайте также:  Как проверить обмотку электродвигателя постоянного тока мультиметром

В зависимости от того как соотносятся магнитные потоки двигатель с таким возбуждением может работать как двигатель с последовательным так и двигатель с параллельным возбуждением. Все зависит от ситуации, если нужен большой стартовый момент, такая машина работает в режиме согласного включения обмоток. Если же необходима постоянная скорость вращения, при динамически изменяющейся нагрузке применяют встречное включение обмоток.

В машинах постоянного тока можно изменять направление движения ротора. Для этого необходимо изменить направление тока в одной из обмоток. Якорной либо возбуждения. Изменением полярности направление вращения двигателя можно добиться только в двигателе с независимым возбуждением, или в котором используется постоянный магнит. В других схемах включения нужно переключать одну из обмоток.

Стартовый ток в машине постоянного тока достаточно велик, поэтому ее следует запускать с добавочным реостатом, чтобы избежать повреждения обмоток.

Источник

ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА

Двигатели постоянного тока широко востребованы в бытовой аппаратуре, для питания которой используется постоянное напряжение.

Существуют сложности с их запуском, которые возникают из-за того, что работа электрических машин основана на взаимодействии подвижного ротора с вращающимся электромагнитным (э/м) полем статора.

В случае постоянного напряжения питания формирование вращающегося магнитного поля невозможно без применения вспомогательных узлов и устройств, выбор которых определяет существующее разнообразие модификаций двигателей такого типа.

Разновидности двигателей постоянного тока.

Электрические машины этого типа различаются по способу получения вращающегося магнитного поля, зависящего от конструкции вспомогательного узла. В соответствие с этим все двигатели делятся на

  • коллекторные;
  • бесколлекторные;
  • устройства с внешним возбуждением.

В первом случае для подачи питания на ламели ротора используются специальные графитовые щетки. Менять полярность подаваемого напряжения, создавая аналог вращающегося магнитного поля, удается за счет разорванной конструкции токоподающего узла (слева на рисунке).

Виды двигателей постоянного тока

В бесколлекторном двигателе вращающееся э/м поле формируется специальным коммутирующим узлом. Функцию последнего выполняют электронные схемы на полупроводниковых элементах, имеющие различное исполнение. Благодаря этому удается получить бесконтактное взаимодействие полей, без щеток и коллектора.

Типичный представитель такого электродвигателя – мотор-колесо, известное большинству любителей езды на малогабаритных транспортных средствах. Еще один распространенный способ запуска двигателя – включение в схему специальных обмоток возбуждения.

СПОСОБЫ ВОЗБУЖДЕНИЯ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА

Под возбуждением электродвигателей постоянного тока (ПТ) понимается эффект создания в них ЭДС, обеспечивающей вращение ротора. Их рабочие характеристики зависят от того, каким образом включена обмотка возбуждения (ОВ) по отношению к цепи якоря.

Наиболее распространены следующие схемы подключения:

  • с независимым возбуждением (две обмотки не связаны одна с другой, а ОВ питается от отдельного источника);
  • с параллельным возбуждением или шунтируемого типа (в них ОВ включена параллельно якорной цепочке);
  • с последовательным возбуждением (ОВ включается последовательно с якорной обмоткой).

В ряде случаев, связанных с особенностями эксплуатации двигателей постоянного тока, применяется комбинированная схема включения.

Иногда ее называют «смешанной» или «компаундной» (в ней последовательное подключение совмещается с параллельным). Рассмотрим каждый из перечисленных вариантов более подробно.

Независимое возбуждение.

При этой схеме подключения обмотка возбуждения электрически не связана с катушкой якоря (рис.1). Для снижения тепловых потерь и создания необходимой величины ЭДС число витков в ней делается достаточно большим, что позволяет снизить ток возбуждения.

Принцип независимого возбуждения двигателя

Регулировать ток в якоре можно посредством резистора Rдоб, включенного последовательно. Частоту вращения можно менять резистором Rрег. Возможность независимого управления параметрами двигателя относят к плюсам этой схемы.

Ее минус – необходимость использования дополнительного источника питания, что приводит к увеличению материальных издержек. Применение схемы с независимым возбуждением определяется особенностями конструкции управляемого электропривода.

Параллельное возбуждение.

Электрическая схема подключения с параллельным возбуждением в целом напоминает рассмотренную выше. Ее особенность – наличие электрической связи ОВ с якорной цепью (рис.2).

Параллельное возбуждение обмоток двигателя постоянного тока

Эффективность работы двух рассмотренных схем практически одинакова. Преимущество этого способа включения в том, что в данной ситуации отпадает необходимость в дополнительном источнике питания. Ее минус – невозможность раздельной регулировки параметров электродвигателя.

Принцип работы электродвигателя с последовательным возбуждением.

Особенностью этой схемы является последовательное включение ОВ и якорной цепочки (рис.3). При таком варианте подключения ток якоря является одновременно и током возбуждения (Iя =Iв). Это вынуждает производителей оборудования наматывать ОВ проводом того же сечения, что и у якоря.

Последовательное возбуждение обмоток электродвигателя

Недостаток этой схемы – в том, что скорость двигателя зависит от нагрузки на валу. При ее увеличении падение напряжения на обмотках и магнитный поток возрастают. А это приводит к сильному падению скорости вращения. При снижении нагрузки частота вращения двигателя резко возрастает и может достичь опасных значений (он может начать работать «вразнос»).

Данный вариант применяют в случаях, когда необходимо выдерживать большое пусковое усилие (момент). Или же когда двигателю предстоит работать в режиме кратковременных перегрузок. Схемы с последовательным запуском используются в тяговых двигателях (в метро, трамваях, электровозах и троллейбусах).

Принцип действия двигателя со смешанным возбуждением.

К каждому из полюсов системы со смешанным возбуждением подключено две обмотки: последовательная и параллельная (рис.4). Их допускается включать таким образом, чтобы магнитные потоки суммировались (согласное подключение), либо вычитались один из другого (встречное включение).

Смешанное возбуждение обмоток двигателя

В зависимости от того, как соотносятся части каждого из магнитных потоков, двигатель постоянного тока со смешанным возбуждением приближаются по своим свойствам к одному из уже рассмотренных ранее вариантов.

Такие схемы применяются в ситуациях, когда необходим большой по величине пусковой момент и одновременно невозможно обойтись без регулировки частоты вращения вала при переменных нагрузках.

БЕСКОЛЛЕКТОРНЫЙ ДВИГАТЕЛЬ ПОСТОЯННОГО ТОКА

Бесколлекторным называют двигатель, ток в статорных обмотках которого коммутируется особыми электронными устройствами («драйверами» или «инверторами»). Такой коммутатор состоит из набора полупроводниковых элементов, создающих вращающее поле путем подачи тока в соответствующую обмотку.

Скорость вращения вала у агрегатов этого типа значительно выше, чем у коллекторных с постоянными магнитами. Это позволяет увеличить удельную мощность двигателя и повысить его КПД.

Устройство и принцип действия.

Любой бесколлекторный двигатель состоит из следующих основных узлов:

  • статор с обмотками;
  • вращающийся ротор с постоянными магнитами;
  • контроллер, обеспечивающий формирование в статоре вращающегося э/м поля.

На статоре бесколлекторного двигателя располагаются 3 обмотки, которые, как и у электродвигателей переменного тока называются фазными.

Допустимость такого названия объясняется следующим. Несмотря на того, что эти агрегаты работают от источника постоянного напряжения (аккумуляторов) – управляющий коммутацией обмоток контроллер включает ток поочередно.

Это приводит к формированию в них переменной составляющей в виде прямоугольных импульсов. Они и создают видимость трехфазного вращающегося э/м поля, характерного для коллекторных электродвигателей синхронного или асинхронного типа.

Особенности конструкции.

В зависимости от того, по какой схеме включаются обмотки статора («звезда» или «треугольник») система содержит соответственно четыре или три рабочих шины. Катушки наматываются в пазах между зубьями сердечника статора, распределяясь равномерно по фазам.

В статор нередко интегрируются датчики Холла, фиксирующие текущее положение ротора.

С их помощью удается передавать информацию контроллеру, который в каждый момент «знает», в какой точке находится ротор и подает питающий импульс на нужную обмотку. Такая возможность повышает эффективность функционирования двигателя с максимально возможной отдачей (мощностью).

© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

Источник

masterok

Мастерок.жж.рф

Хочу все знать

Как работает двигатель постоянного тока ? masterok August 4th, 2013

Дорогие мои читатели, начинаем разбирать темы августовского стола заказов (боже мой, как быстро летит время!). Сегодняшняя тема может быть мало кого заинтересует, зато если кого заинтересует, так это будет очень в пользу им. Слушаем trudnopisaka: Напишите пожалуйста понятно о устройстве электродвигателей постоянного тока. Можно на примере одного из типов. Ведь с одной стороны принцип работы очень простой, а с другой, если разобрать один из электродвигателей, то там много деталей, назначение которых не очевидно. А на сайтах в начале поисковой выдачи есть только название этих деталей, в лучшем случае. Планирую с детьми собрать простой электродвигатель, чтобы это помогло им в понимании техники и они не боялись ее осваивать.

Первый этап развития электродвигателя (1821-1832) тесно связан с созданием физических приборов для демонстрации непрерывного преобразования электрической энергии в механическую.

Читайте также:  Ток күшінің амплитудалық мәнін

В 1821 году М. Фарадей, исследуя взаимодействие проводников с током и магнитом, показал, что электрический ток вызывает вращение проводника вокруг магнита или вращение магнита вокруг проводника. Опыт Фарадея подтвердил принципиальную возможность построения электрического двигателя.

Для второго этапа развития электродвигателей (1833-1860) характерны конструкции с вращательным движением якоря.

Томас Дэвенпорт — американский кузнец, изобретатель, в 1833 году сконструировал первый роторный электродвигатель постоянного тока, создал приводимую им в движение модель поезда. В 1837 году он получил патент на электромагнитную машину.

В 1834 году Б. С. Якоби создал первый в мире электрический двигатель постоянного тока, в котором реализовал принцип непосредственного вращения подвижной части двигателя. 13 сентября 1838 г. лодка с 12 пассажирами поплыла по Неве против течения со скоростью около 3 км/ч. Лодка была снабжена колесами с лопастями. Колеса приводились во вращение электрическим двигателем, который получал ток от батареи из 320 гальванических элементов. Так впервые электрический двигатель появился на судне.

Испытания различных конструкций электродвигателей привели Б. С. Якоби и других исследователей к следующим выводам:

  • расширение применения электродвигателей находится в прямой зависимости от удешевления электрической энергии, т. е. от создания генератора, более экономичного, чем гальванические элементы;
  • электродвигатели должны иметь по возможности малые габариты, большую мощность ибольший коэффициент полезного действия;
  • этап в развитии электродвигателей связан с разработкой конструкций с кольцевым неявнополюсным якорем и практически постоянным вращающим моментом.

Третий этап развития электродвигателей характеризуется открытием и промышленным использованием принципа самовозбуждения, в связи с чем был окончательно осознан и сформулирован принцип обратимости электрической машины. Питание электродвигателей стало производиться от более дешёвого источника электрической энергии — электромагнитного генератора постоянного тока.

В 1886 году электродвигатель постоянного тока приобрёл основные черты современной конструкции. В дальнейшем он всё более и более совершенствовался.

В настоящее время трудно представить себе жизнь человечества без электродвигателя. Он используется в поездах, троллейбусах, трамваях. На заводах и фабриках стоят мощные электрические станки. Электромясорубки, кухонные комбайны, кофемолки, пылесосы — всё это используется в быту и оснащено электродвигателями.

Подавляющее большинство электрических машин работает по принципу магнитного отталкивания и притяжения. Если между северным и южным полюсами магнита поместить проволоку и пропустить по ней ток, то её вытолкнет наружу. Как это возможно? Дело в том, что проходя по проводнику, ток формирует вокруг себя круговое магнитное поле по всей длине провода. Направление этого поля определяют по правилу буравчика (винта).

При взаимодействии кругового поля проводника и однородного поля магнита, между полюсами магнитное поле с одной стороны ослабевает, а с другой усиливается. То есть среда становится упругой и результирующая сила выталкивает провод из поля магнита под углом 90 градусов в направлении, определяемом по правилу левой руки (правило правой руки используется для генераторов, а правило левой руки подходит только для двигателей). Эта сила называется «амперовой» и её величина определяется по закону Ампера F=BхIхL, где В – значение магнитной индукции поля; I – ток, циркулирующий в проводнике; L – длина провода.

Это явление использовали как основной принцип работы первых электродвигателей, этот же принцип используют и поныне. В двигателях постоянного тока малой мощности для создания постоянного магнитного поля применяются постоянные магниты. В электромоторах средней и большой мощности однородное магнитное поле создают с помощью обмотки возбуждения или индуктора.

Рассмотрим принцип создания механического движения с помощью электричества более подробно. На динамической иллюстрации показан простейший электромотор. В однородном магнитном поле вертикально располагаем проволочную рамку и пропускаем по ней ток. Что происходит? Рамка проворачивается и по инерции двигается какое-то время до достижения горизонтального положения. Это нейтральное положение – мёртвая точка — место, где воздействие поля на проводник с током равно нулю. Чтобы движение продолжилось, нужно добавить ещё хотя бы одну рамку и обеспечить переключение направление тока в рамке в нужный момент. На обучающем видео внизу страницы хорошо виден этот процесс.

Современный двигатель постоянного тока вместо одной рамки имеет якорь с множеством проводников, уложенных в пазы, а вместо постоянного подковообразного магнита имеет статор с обмоткой возбуждения с двумя и более полясами. На рисунке показан двухполюсный электромотор в разрезе. Принцип его работы следующий. Если по проводам верхней части якоря пропустить ток движущийся «от нас» (отмечено крестиком), а в нижней части — «на нас» (отмечено точкой), то согласно правилу левой руки верхние проводники будут выталкиваться из магнитного поля статора влево, а проводники нижней половины якоря по тому же принципу будут выталкиваться вправо. Поскольку медный провод уложен в пазах якоря, то, вся сила воздействия будет передаваться и на него, и он будет проворачиваться. Дальше видно, что когда проводник с направлением тока «от нас» провернётся вниз и станет против южного полюса создаваемого статором, то он будет выдавливаться в левую сторону, и произойдёт торможение. Чтобы этого не случилось нужно поменять направление тока в проводе на противоположное, как только будет пересечена нейтральная линия. Это делается с помощью коллектора – специального переключателя, коммутирующего обмотку якоря с общей схемой электродвигателя.

Таким образом, обмотка якоря передаёт вращающий момент на вал электромотора, а тот в свою очередь приводит в движение рабочие механизмы любого оборудования, такого как, например, станок для сетки рабицы. Хотя в этом случае используется асинхронный двигатель переменного тока, основной принцип его работы идентичен принципу действия двигателя постоянного тока – это выталкивание проводника с током из магнитного поля. Только у асинхронного электромотора вращающееся магнитное поле, а у электродвигателя постоянного тока – поле статичное.

Конструктивно все электрические двигатели постоянного тока состоят из индуктора и якоря, разделенных воздушным зазором.

Индуктор (статор) электродвигателя постоянного тока служит для создания неподвижного магнитного поля машины и состоит из станины, главных и добавочных полюсов. Станина служит для крепления основных и добавочных полюсов и является элементом магнитной цепи машины. На главных полюсах расположены обмотки возбуждения, предназначенные для создания магнитного поля машины, на добавочных полюсах — специальная обмотка, служащая для улучшения условий коммутации.

Якорь электродвигателя постоянного тока состоит из магнитной системы, собранной из отдельных листов, рабочей обмотки, уложенной в пазы, и коллектора служащего для подвода к рабочей обмотке постоянноготока.

Коллектор представляет собой цилиндр, насаженный на вал двигателя и избранный из изолированных друг от друга медных пластин. На коллекторе имеются выступы-петушки, к которым припаяны концы секций обмотки якоря. Съем тока с коллектора осуществляется с помощью щеток, обеспечивающих скользящий контакт с коллектором. Щетки закреплены в щеткодержателях, которые удерживают их в определенном положении и обеспечивают необходимое нажатие щетки на поверхность коллектора. Щетки и щеткодержатели закреплены на траверсе, связанной с корпусомэлектродвигателя.

Коллекторный движок он очень хорош. Он чертовски легко и гибко регулируется. Можно повышать обороты, понижать, механическая характеристика жесткая, момент он держит на ура. Зависимость прямая. Ну сказка, а не мотор. Если бы не одна ложка дегтя во всей этой вкусняшке — коллектор.

Это сложный, дорогой и очень ненадежный узел. Он искрит, создает помехи, забивается проводящей пылью от щеток. А при большой нагрузке может полыхнуть, образовав круговой огонь и тогда все, капец движку. Закоротит все дугой наглухо.

Но что такое коллектор вообще? Нафига он нужен? Выше я говорил, что коллектор это механический инвертор. Его задача переключать напряжение якоря туда сюда, подставляя обмотку под поток.

Коллектор в электрических машинах выполняет роль выпрямителя переменного тока в постоянный (в генераторах) и роль автоматического переключателя направления тока во вращающихся проводниках якоря (в двигателях).

Читайте также:  Амперметр постоянного тока как его подключить

Когда магнитное поле пересекается только двумя проводниками, образующими рамку, коллектор будет представлять собой одно кольцо, разрезанное на две части, изолированные одна от другой. В общем случае каждое полукольцо носит название коллекторной пластины.

Начало и конец рамки присоединяются каждый к своей коллекторной пластине. Щетки располагаются таким образом, чтобы одна из них была всегда соединена с проводником, который будет двигаться у северного полюса, а другая — с проводником, который будет двигаться у южного полюса.

Рис. 2. Упрощенное изображения коллектора

Рис. 3. Выпрямление переменного тока с помощью коллектора

Сообщим рамке вращательное движение в направлении по часовой стрелке. В момент, когда вращающаяся рамка займет положение, изображенное на рис. 3, А, в ее проводниках будет индуктироваться наибольший по величине ток, так как проводники пересекают магнитные силовые линии, двигаясь перпендикулярно к ним.

Индуктированный ток из проводника В, соединенного с коллекторной пластиной 2, поступит на щетку 4 и, пройдя внешнюю цепь, через щетку 3 возвратится в проводник А. При этом правая щетка будет положительной, а левая отрицательной.

Дальнейший поворот рамки (положение В) приведет снова к индуктированию тока в обоих проводниках; однако направление тока в проводниках будет противоположно тому, которое они имели в положении А. Так как вместе с проводниками повернутся и коллекторные пластины, то щетка 4 снова будет отдавать электрический ток во внешнюю цепь, а по щетке 3 ток будет возвращаться в рамку.

Отсюда следует, что, несмотря на изменение направления тока в самих вращающихся проводниках, благодаря переключению, произведенному коллектором, направление тока во внешней цепи не изменилось.

В следующий момент (положение Г), когда рамка вторично займет положение на нейтральной линии, в проводниках и, следовательно, во внешней цепи тока опять не будет.

В последующие моменты времени рассмотренный цикл движений будет повторяться в том же порядке. Таким образом, направление индуктированного направление тока во внешней цепи благодаря коллектору все время будет оставаться одним и тем же, а вместе с этим сохранится и полярность щеток.

Щёточный узел необходим для подвода электроэнергии к катушкам на вращающемся роторе и переключения тока в обмотках ротора. Щётка — неподвижный контакт (обычно графитовый или медно-графитовый). Щётки с большой частотой размыкают и замыкают пластины-контакты коллектора ротора. Как следствие, при работе ДПТ происходят переходные процессы, в обмотках ротора. Эти процессы приводят к искрению на коллекторе, что значительно снижает надёжность ДПТ. Для уменьшения искрения применяются различные способы, основным из которых является установка добавочных полюсов. При больших токах, в роторе ДПТ возникают мощные переходные процессы, в результате чего, искрение может постоянно охватывать все пластины коллектора, независимо от положения щёток. Данное явление называется кольцевым искрением коллектора или «круговой огонь». Кольцевое искрение опасно тем, что одновременно выгорают все пластины коллектора и срок его службы значительно сокращается. Визуально кольцевое искрение проявляется в виде светящегося кольца около коллектора. Эффект кольцевого искрения коллектора не допустим. При проектировании приводов устанавливаются соответствующие ограничения на максимальные моменты (а следовательно и токи в роторе), развиваемые двигателем.Конструкция двигателя может иметь один или несколько щеточно-коллекторных узлов.

А на дворе то уже 21 век и дешевые и мощные полупроводники сейчас на каждом шагу. Так зачем нам нужен механический инвертор если мы можем сделать его электронным? Правильно, незачем! Так что берем и заменяем коллектор силовыми ключами, а еще добавляем датчики положения ротора, чтобы знать в какой момент переключать обмотки.

А для пущего удобства выворачиваем двигатель наизнанку — гораздо проще вращать магнит или простенькую обмотку возбуждения, чем якорь со всей этой тряхомудией на борту. В качестве ротора тут выступает либо мощный постоянный магнит, либо обмотка питаемая с контактных колец. Что хоть и смахивает на коллектор, но не в пример надежней его.

И получаем что? Правильно! Бесщеточный двигатель постоянного тока aka BLDC. Все те же няшные и удобные характеристики ДПТ, но без этого мерзкого коллектора. И не надо путать BLDC с синхронными двигателями. Это совсем разные машины и разным принципом действия и управления, хотя конструктивно они ОЧЕНЬ схожи и тот же синхронник вполне может работать как BLDC, добавить ему только датчиков да систему управления. Но это уже совсем другая история. ВОТ ТУТ можно прочитать про него подробнее.

Продолжая тему двигателя постоянного тока нужно отметить, что принцип действия электродвигателя основывается на инвертировании постоянного тока в якорной цепи, чтобы не было торможения, и вращение ротора поддерживалось в постоянном ритме. Если изменить направление тока в возбуждающей обмотке статора, то, согласно правилу левой руки, изменится направление вращения ротора. То же самое произойдёт, если мы поменяем местами щёточные контакты, подводящие питание от источника к якорной обмотке. А вот если поменять «+» «-» и там и там, то направление вращения вала не изменится. Поэтому, в принципе, для питания такого мотора можно использовать и переменный ток, т.к. ток в индукторе и якоре будет меняться одновременно. На практике такие устройства используются редко.

Думаю многие из вас кто баловался с движками могли заметить, что у них есть ярко выраженный пусковой ток, когда мотор на старте может рвануть стрелку амперметра, например, до ампера, а после разгона ток падает до каких-нибудь 200мА.

Почему это происходит? Это работает противоэдс. Когда двигатель стоит, то ток который через него может пройти зависит только лишь от двух параметров — напряжения питания и сопротивления якорной обмотки. Так что предельный ток который может развить движок и на который следует рассчитывать схему узнать несложно. Достаточно замерить сопротивление обмотки двигателя и поделить на это значение напряжение питания. Просто по закону Ома. Это и будет максимальный ток, пусковой.

Но по мере разгона начинается забавная вещь, обмотка якоря движется поперек магнитного поля статора и в ней наводится ЭДС, как в генераторе, но направлена она встречно той, что вращает двигатель. И в результате, ток через якорь резко снижается, тем больше, чем выше скорость.

А если движок дополнительно еще подкручивать по ходу, то противоэдс будет выше питания и движок начнет вкачивать энергию в систему, став генератором.

Что касается электрической схемы включения двигателя, то их несколько и они показаны на рисунке. При параллельном соединении обмоток, обмотка якоря делается из большого количества витков тонкой проволоки. При таком подключении коммутируемый коллектором ток будет значительно меньше из-за большого сопротивления и пластины не будут сильно искрить и выгорать. Если делать последовательное соединение обмоток индуктора и якоря, то обмотка индуктора делается из провода большего диаметра с меньшим количеством витков, т.к. весь якорный ток устремляется через статорную обмотку. При таких манипуляциях с пропорциональным изменением значений тока и количества витков, намагничивающая сила остаётся постоянной, а качественные характеристики устройства становятся лучше.

На сегодняшний день двигатели постоянного тока мало используются на производстве. Из недостатков этого типа электрических машин можно отметить быстрый износ щёточно-коллекторного узла. Преимущества – хорошие характеристики запуска, лёгкая регулировка частоты и направления вращения, простота устройства и управления.

В настоящее время двигатели постоянного тока независимого возбуждения, управляемые тиристорными преобразователями, используются в промышленных электроприводах.’Эти при­воды обеспечивают регулирование скорости в широком диапазо­не. Регулирование скорости вниз от номинальной осуществляется изменением напряжения на якоре, а вверх — ослаблением потока возбуждения. Ограничения, по мощности и скорости обусловлены свойствами используемых двигателей, а не полупроводниковых приборов. Тиристоры могут соединяться последовательно или па­раллельно, если они имеют недостаточно высокий. класс по напря­жению или току. Ток якоря и момент ограничены перегрузочной способностью двигателя по нагреву.

Принцип работы:

Сборка двигателя постоянного тока ПО ДЕТАЛЯМ:

Источник