Меню

Детекторный радиоприемник может работать без источника тока



Детекторный радиоприемник

Детекторный радиоприемник

Исполнитель: учащийся 9А класса Львов Андрей Олегович
Руководитель: Климов Александр Юрьевич, (Ведущий инженер СУНЦ УрГУ), optek (at) mail.ru

Словарь сокращений и обозначений

А — Ампер, единица измерения силы тока.
В — Вольт, единица измерения напряжения.
Вт – Ватт, единица измерения мощности.
Гн – Генри, единица измерения индуктивности.
ДРП – детекторный радиоприемник.
Др.- другие.
КПД – коэффициент полезного действия.
КПЕ – конденсатор переменной емкости.
УГО – условное графическое обозначение.
Ф — Фарада
ЭАП — электроакустический преобразователь.
Е — напряженность электрического поля радиостанции в месте приема.
m — коэффициент модуляции.
Q — добротность колебательного контура.
W – мощность.

Введение

В настоящее время известно множество типов радиоприемников: детекторный, прямого усиления, регенеративный, сверхрегенеративный, супергетеродинный и прямого преобразования. Из перечисленных, детекторный радиоприемник (далее по тексту — ДРП), имеет наихудшую чувствительность и селективность, но, несмотря на невысокие параметры, он представляет интерес для начинающих радиолюбителей и специалистов.

Простота конструкции, недефицитность деталей и отсутствие источников питания (именно поэтому ДРП изучается в средних учебных заведениях в наше время) способствовали его популярности в 20-40гг 20в. Дадим определение ДРП: это приемник, работающий за счет энергии радиоволн и не имеющий усилителя. Следует заметить, что приемник прямого усиления – это тот же детекторный с каскадами усиления сигнала низкой частоты.

1. Классическая схема ДРП

Рис.1. Типовая схема ДРП

Существует два основных варианта классических схем ДРП. Первый вариант изображен на рис.1. Второй вариант отличается от первого только тем, что детекторный диод подключен не к части контура, а к контуру полностью.

1.1. Функциональная схема ДРП

Рис. 2. Функциональная схема классического ДРП.

Радиотракт включает в себя входные цепи приемника: антенна, заземление, колебательный контур. Детектор — каскад детектирования на точечном диоде и сглаживающий конденсатор С2. Электроакустический преобразователь (ЭАП) служит для преобразования электрического сигнала в звуковой. В качестве ЭАП используются: наушники, электродинамические громкоговорители («динамики»).

1.2. Принцип работы ДРП

Настроив контур на частоту принимаемой радиостанции, выделяем высокочастотный АМ — сигнал. Частота его колебаний велика (более 100 кГц), и в наушниках он слышен не будет. Сигнал нужно продетектировать (преобразовать ВЧ электрические колебания, в колебания НЧ). Для этого служит диод VD 1 (рис.1). Он обладает свойством проводить ток только в одном направлении, от анода, обозначенного треугольником, к катоду. Положительные полуволны колебаний в контуре вызовут ток через диод, а отрицательные закроют его, и тока не будет. При отсутствии конденсатора C 2 через наушники будет протекать пульсирующий ток. Он содержит постоянную составляющую, которая изменяется со звуковой частотой. Такой ток уже вызовет в наушниках звук. Процесс детектирования улучшается при подсоединении блокировочного конденсатора C 2. он заряжается положительными полуволнами почти до амплитудного значения колебаний, а в промежутках между ними сравнительно медленно разряжается током через наушники.

2. Компоненты ДРП

2.1. Колебательный контур

Классическая схема ДРП изображена на рис. 1. Она повторяется во многих популярных книжках и журналах. Антенна WA 1 и заземление присоединены к колебательному контуру (катушка L 1 и КПЕ C 1). Колебательный контур служит для выделения из всей массы принимаемых сигналов лишь одного, желаемого. Если частота сигнала совпадает с частотой настройки контура, напряжение на нем максимально. Для настройки в пределах диапазона изменяют емкость (используют КПЕ), для переключения диапазонов изменяют индуктивность катушки L 1.

2.2. Диод

По применению полупроводниковые диоды разделяются на группы: выпрямительные, высокочастотные, туннельные и некоторые другие (рис.2).

В качестве полупроводникового материала в диодах используется германий, кремний и арсенид галлия (в туннельных диодах).

Первые диоды стали известны с начала 20в (1906-1908 гг). Тогда же и появились первые ДРП. В 20-40гг 20в радиолюбители изготавливали детекторные диоды из кристаллов цинкита или пирита. В России пионерные работы по диодам проводил О.Лосев, который помимо детекторных диодов изготовил и первые светодиоды (он наблюдал свечение кристалла карборунда при подключении к нему батареи питания). В классических ДРП используются германиевые диоды Д2, 18,20, как самые дешевые и широко распространенные.

2.3. Конденсаторы

В классической схеме ДРП два конденсатора. С1 – переменный керамический или воздушный, предназначен для настройки приемника на частоту радиостанции (5-300 пФ). С2 нужен, чтобы убрать ВЧ – составляющую и повысить качество звука (2000 – 6800 пФ).

2.4. Головные телефоны

В России первым в приемнике высокоомные головные телефоны использовал П.Н.Рыбкин в 1899 г. За рубежом работами по усовершенствованию ДРП в эти же годы занимался Г.Маркони.

Последний элемент разбираемой схемы ДРП – головные телефоны. Для ДРП подходят только высокоомные телефоны (ТА-4, ТОН-2, ТОН-2М, ТАГ-1, ТГ-1), абсолютно не подходят низкоомные или наушники от плейера. Параметры некоторых из них приведены в Приложении 1.

Для телефонов ТОН-2 сопротивление на частоте 1000 Гц составляет 12000 Ом. Минимальная амплитуда сигнала 1000 Гц, слышимая человеком в наушниках ТОН-2 составляет 5 мВ. В классическом ДРП амплитуда сигнала на наушниках достигает 20 мВ (достаточно громко и разборчиво слышна речь и музыка), что соответствует электрической мощности 0,02 мкВт.

3. Недостатки классической схемы детекторного приемника

а) Для согласования сопротивлений колебательного контура и диода используется катушка связи (обычно 1/5-1/10 от числа витков катушки).

Следовательно, на диод поступает ВЧ напряжение в 5-10 раз меньшее, чем наводится в контуре, то есть, с большими потерями мощности (в 25-100 раз).

б) Используется энергия одного полупериода сигнала.

в) Головные телефоны сильно искажают сигнал и имеют низкий КПД (из-за металлической мембраны). Головные телефоны малоэффективны при работе на низких частотах, из-за жесткой мембраны не работают на высоких звуковых частотах. Рабочий диапазон частот наушников 300-3500 Гц. Получить качественный звук в этом случае просто невозможно.

4. Применение классического ДРП.

ДРП, выполненный по классической схеме, и в наше время находит применение для: настройки радиолюбительских передатчиков и настройки передатчиков систем электронного дистанционного управления. В любительской литературе описано успешное применение ДРП для поиска маломощных шпионских закладок (в просторечии именуемых «жучками»). В этих случаях нагрузкой ДРП работает микроамперметр постоянного тока на 10-100 мкА, шунтированный конденсатором.

5. Совершенствование ДРП

Если посмотреть на функциональную схему ДРП, можно прийти к следующим выводам: классическая схема свои возможности усовершенствования исчерпала. Кардинальное улучшение параметров ДРП возможно при полной переделке всех функциональных узлов ДРП, собранного по классической схеме.

5.1. Громкоговорящий ДРП

Добиться увеличения громкости и улучшения качества сигнала можно модернизацией всех узлов классического ДРП. В качестве колебательного контура выступает катушка индуктивности на ферритовом стержне. Эта катушка имеет межвитковую емкость, а настройка на радиостанцию производится перемещением катушки на сердечнике. Более оптимальное согласование детектора с контуром производится конденсатором связи С1 (сопротивление контура сотни килоом, а детектора 5-20 кОм). Замена одного диода диодным мостом позволяет увеличить громкость ЭАП, так как теперь в ДРП используется энергия обоих полупериодов ВЧ сигнала. Диодный мост выполнен на диодах типа Д310, так как у них меньше сопротивление и меньше потери, чем у диодов Д2, 18, 20.

Рис.4 Прибор для выбора детекторного диода

О качестве диода позволяет судить параметр — «прямой ток при напряжении 1 В», чем он больше, тем лучше.

Рис.5 Усовершенствованный классический ДРП

В качестве ЭАП используется динамик мощностью 1-8 Вт и сопротивлением катушки 4-8 Ом. Для согласования сопротивлений детектора и ЭАП служит понижающий трансформатор (

220 В/9-12 В). Для увеличения отдачи динамик устанавливается на отражательный экран. Модернизированный ДРП дает выигрыш по мощности относительно классической схемы ДРП в 140-400 раз.

5.2. Применение модернизированного ДРП.

Улучшенный ДРП является практически вечным источником бесплатной энергии «из воздуха». Он питает светильник на сверхъярком светодиоде (белом или желтом) и способен подзарядить аккумулятор, часовую батарейку или пальчиковую (типа АА или ААА) из будильника или пейджера. Он может найти применение в местах, где нет электричества, например, в коллективных садах (в доме и овощной яме), в горах. Если от него запитать светильник на сверхъярком красном светодиоде (2-10 кд), он заменит медицинский аппарат светотерапии «Дюна-Т». Также от него можно питать «серебряный ионатор» — прибор для серебрения воды.

Читайте также:  Наиболее опасным прохождение тока тело человека рука нога

Рис.6 ДРП – источник электрической энергии.

Накопительный конденсатор С2 рассчитан на рабочее напряжение 25-60 В при минимальном токе утечки. Приемник настраивается на самую мощную СВ или ДВ радиостанцию в этом регионе.

5.3. ДРП, питаемый «свободной энергией поля»

Для более полного использования энергии несущей, модернизированный ДРП дополняется каскадом усиления на германиевом транзисторе. И данный приемник работает громче. Теперь он стал приемником прямого усиления.

Рис.7 ДРП (приемник прямого усиления) с увеличенным КПД.

Транзистор в усилителе приемника низкочастотный и маломощный: МП39-42. Сигнал ЗЧ на базу подается через разделительный конденсатор С3. ЭАП приемника состоит из динамика ВА1, включенного через согласующий трансформатор Т1.

Настройка этого приемника сводится к настройке входного контура на частоту мощной радиостанции и одновременной подстройке емкости С1, а затем подбору сопротивления R 1 по максимальной громкости звучания.

6. Экспериментальная часть

6.1. Сборка и наладка модернизированного ДРП.

Для собранного по рис.5 модернизированного ДРП и настроенного перемещением катушки по стержню на радиостанцию «Радио России» (длина волны 260 кГц – диапазон ДВ) вольтметр на выходе приемника показал напряжение 0,25 В. После согласования сопротивлений контура и детектора согласующим конденсатором вольтметр показал 2,35 В. Затем был подключен ЭАП: динамик 6ГД-3. Полоса воспроизводимых частот 6ГД-3: 100-10000 Гц. Громко и с высоким качеством слышна музыка и речь. Антенна: медный провод диаметром 0,5 мм и длиной 8 метров. В качестве заземления использована батарея центрального отопления. Если вместо ЭАП включали сверхъяркий желтый светодиод, то наблюдали его яркое свечение!

Таким образом, все мои предположения подтвердились. Улучшенный ДРП может работать в качестве практически вечного источника энергии. Громкость звучания этого приемника можно дополнительно увеличить при использовании рупора, установленного на ЭАП.

При замене ДВ катушки на более высокодобротную на выходе приемника было получено напряжение 5,30 В и громкость приемника значительно возросла. Дальнейшее увеличение громкости приемника можно получить за счет применения более эффективной антенны.

6.2. Сборка и наладка ДРП с каскадом усиления на транзисторе (питаемый энергией электромагнитной волны).

Приемник собранный по рис.7 работал значительно громче, чем модернизированный ДРП. И это естественно, так как транзисторный усилитель НЧ питается постоянной составляющей сигнала, а она в 3-10 раз выше, чем НЧ составляющая, вдобавок транзистор усиливает слабый НЧ сигнал.

Приложение

Таблица 1 Электрические параметры высокоомных телефонов типа ТОН-2

Основные параметры

Значение параметра

Модуль полного электрического сопротивления переменному току одного телефонного капсюля на частоте 1000 Гц, не менее, Ом

Неравномерность частотной характеристики отдачи капсюля в диапазоне частот 300-3000 Гц, не более, дБ

Таблица 2 Электрические параметры детекторных диодов

Тип диода

Назначение

Среднее значение выпрямленного тока, мА

Прямой ток при напряжении 1 В, мА

Обратный ток не более, мА (при напряжении, В)

Наибольшее допустимое обратное рабочее напряжение, В

Наименьш. амплитуда обратного пробивного напряжения , В

Выпрямление переменных напряжений

* Диоды Д2 предназначены для работы в различных схемах. Оформлены в стеклянном корпусе. Предельная рабочая частота 150 МГц при температуре окружающей среды от –60 до +70 О С. Емкость между выводами при обратном напряжении на диоде – 1 пФ.

Таблица 3 Параметры громкоговорителей

Тип громкоговорителя

Отдача, Па

Треб. W сигнала для громкости 60дБ, мВт

1ГД-5, 1ГД-28, 1ГД-36

Словарь терминов

АНТЕННА (от лат. antenna — мачта, рей), в радио — устройство, предназначенное (обычно в сочетании с радиопередатчиком или радиоприемником) для излучения или (и) приема радиоволн.

ДИОД [от ди. и (электр)од ], 2-электродный электровакуумный, полупроводниковый или газоразрядный прибор с односторонней проводимостью. Применяется в электро- и радиоаппаратуре для выпрямления переменного тока, детектирования, преобразования частоты, переключения электрических цепей.

ЗАЗЕМЛЕНИЕ, устройство для электрического соединения с землей аппаратов, машин, приборов и др.; предназначено для защиты от опасного действия электрического тока, а в ряде случаев для использования земли в качестве проводника тока или одного из плеч несимметрического вибратора (антенны).

КОНДЕНСАТОР электрический, система из двух или более подвижных или неподвижных электродов (обкладок), разделенных диэлектриком (бумагой, слюдой, воздухом и др.). Обладает способностью накапливать электрические заряды. Применяется в радиотехнике, электронике, электротехнике и т. д. в качестве элемента с сосредоточенной электрической емкостью.

ПИРИТ – медный минерал (в основном содержащий дисульфид меди)

СЕЛЕКТИВНОСТЬ (избирательность) радиоприемника, его способность выделять полезный радиосигнал на фоне посторонних электромагнитных колебаний (помех). Параметр, характеризующий эту способность количественно. Наиболее распространена частотная селективность.

ТРАНЗИСТОР (от англ. transfеr — переносить и резистор), полупроводниковый прибор для усиления, генерирования и преобразования электрических колебаний, выполненный на основе монокристаллического полупроводника (преимущественно из кремния или германия), содержащего не менее трех областей с различной — электронной и дырочной — проводимостью.

ТРАНСФОРМАТОР (от лат. transformo — преобразую), устройство для преобразования каких-либо существенных свойств энергии (напр., электрический трансформатор, гидротрансформатор).

Именной указатель

Лосев Олег Владимирович (1903-42), российский радиофизик. Создал (1922) полупроводниковый радиоприемник (кристадин). Открыл ряд явлений в кристаллических полупроводниках («свечение Лосева», фотоэлектрический эффект и др.).

Маркони Гульельмо (1874-1937), итальянский радиотехник и предприниматель. С 1894 в Италии, а с 1896 в Великобритании проводил опыты по практическому использованию электромагнитных волн; в 1897 получил патент на изобретение способа беспроводного телеграфирования. Организовал акционерное общество (1897). Способствовал развитию радио как средства связи. Нобелевская премия (1909, совместно с К. Ф. Брауном).

Поляков Владимир Тимофеевич – известный советский и российский радиотехник, специалист по радиоприемным устройствам

Попов Александр Степанович (4 (16) марта 1859, пос. Турьинские Рудники Верхотурского уезда Пермской губернии, ныне Краснотурьинск Екатеринбургской области – 31 декабря 1905 (13 января 1906), Санкт-Петербург), российский физик и электротехник, один из пионеров применения электромагнитных волн в практических целях, в том числе для радиосвязи.

Рыбкин Петр Николаевич – ассистент А. С. Попова, первый использовал в радиоприемнике высокоомные телефоны.

Источник

RadiobookA

По теме

Радио-начинающим

КАК РАБОТАЕТ ДЕТЕКТОРНЫЙ ПРИЕМНИК

В одно и то же время на земном шаре работает много радиостанций. Радиоволны всех этих станций доходят до нашей приемной антенны и создают в ее проводах электрические токи высокой частоты. Если бы приемник превращал в звуки все эти токи, мы услышали бы из громкоговорителя сразу множество звуков. Понять такую передачу невозможно. Из множества электрических колебаний в антенне приемник должен выделить только одни, именно той радиостанции, которую мы желаем слушать. Для этого каждый приемник снабжается ручками настройки. Внутри приемника эти ручки ведут к контуру настройки, состоящему из катушки индуктивности и конденсатора.

Рис. 10. Схема детекторного приемника и его основные детали.

Прежде чем познакомиться с колебательным контуром, разберемся в явлении, которое называют резонансом.

Предположим, что на одном „столе лежат две гитары, настроенные в одной музыкальной тональности. Всякая струна на любой гитаре — это колебательная система, обладающая способностью излучать звук какой-то определенной частоты. Настроить одинаково две струны — значит добиться, чтобы они при возбуждении колебались с одинаковой частотой. Если заставить звучать какую-либо струну на одной гитаре, например басовую, то такая же струна второй гитары отзовется на колебание первой. Все остальные струны, способные колебаться с другими частотами, не будут реагировать на звучание басовой струны.

Это явление, когда колебания одной системы вызывают появление колебаний той же частоты в другой системе, называется резонансом.

Чтобы выделить из множества электрических колебаний, возникающих в приемной антенне, именно те колебания, которые нам нужны, требуется построить электрическую систему, способную отзываться на эти колебания. Такой системой является колебательный контур.

Если электрически возбудить контур, зарядив, например, его конденсатор, то в контуре возникнут электрические колебания определенной частоты. Эта частота определяется данными катушки и конденсатора, образующих контур.

Под действием высокочастотного переменного напряжения, подводимого от антенны, в колебательном контуре тоже появятся электрические колебания. Эти колебания будут иметь заметную величину только в том случае, если частота действующего на контур напряжения близка к собственной частоте контура. В этом случае контур как бы «отзывается» на приходящие колебания, резонирует с ними.

Читайте также:  Никола тесла чудеса переменного тока

Если же частота внешних колебаний отличается от собственной частоты контура, то колебания в нем будут весьма слабыми. Чем больше частота внешних колебании отличается от собственной частоты контура, тем слабее будут эти колебания воздействовать на контур.

Настройку контура на нужную частоту можно вести, изменяя емкость конденсатора (применяя переменный конденсатор) или индуктивность катушки контура (применяя вариометр или передвигая высокочастотный сердечник катушки).

Итак, колебания, уловленные антенной, нужно направить в колебательный контур, настроенный на частоту принимаемой станции. Под действием принятых колебаний в контуре подивится ток такой же частоты; все остальные колебания, попадающие из антенны в контур, не произведут на него заметного действия. Таким образом, будут отсеяны все ненужные, мешающие сигналы и выделится сигнал принимаемой станции.

Так обычный детекторный приемник можно настроить на радиостанции, работающие на длинных и средних волнах (то есть с длиной волны от 200 до 2 000 м).

Чрезвычайно важным в настройке приемника является плавность и непрерывность процесса настройки приемника на всем диапазоне. Это осуществляется специальным устройством конденсатора переменной емкости или катушки, получившей название вариометра.

С той же целью делают катушки индуктивности из нескольких секций (секционированными) и от каждой секции выводят специальный отвод. Это дает возможность включать с помощью ползунка нужное число секций, а не всю катушку сразу.

Иногда радиолюбителю невозможно бывает подобрать конденсатор переменной емкости, а сделать хороший самодельный вариометр начинающему радиолюбителю очень трудно. Тогда плавную настройку приемника на радиостанции можно осуществить изменением индуктивности катушки с помощью подвижного металлического ползунка. Там, где движется ползунок, с поверхности провода счищают изоляцию, и поэтому между катушкой и ползунком образуется хороший скользящий контакт. Передвигая ползунок вдоль катушки, приемник настраивают на различные радиостанции.

Из множества электрических (высокочастотных) колебаний в антенне настроенный колебательный контур отбирает колебания только от той радиостанции, которую мы хотим слушать.

Поворачивая ручки приемника, можно настроить приемник на любые другие радиостанции, но каждый раз, при каждом новом положении ручек настройки мы будем принимать только одну радиостанцию.

Однако настроить приемник — это еще только полдела. Как известно, высокочастотные сигналы, улавливаемые антенной, представляют собой комбинацию двух различных по частоте электрических колебаний. В эту комбинацию входят колебания высокой и низкой частоты.

Если бы такую комбинацию колебаний подать в громкоговоритель или телефонные трубки, то радиолюбитель ничего бы не услышал, так как громкоговоритель не может воспроизводить колебаний высокой частоты. Он воспроизводит только колебания низкой (звуковой) частоты, именно те колебания, которые были «созданы» перед микрофоном Поэтому прежде чем подать к громкоговорителю полученные антенной колебания, они должны быть переработаны. Для этого в приемнике устанавливают специальное устройство — детектор, который, как говорят, детектирует принятые сигналы. (Детектировать в переводе на русский язык значит «обнаруживать».)

Что же «обнаруживает» детектор? Он обнаруживает в приходящих модулированных колебаниях колебания низкой частоты и, обнаружив эти колебания, пропускает их в громкоговоритель или телефонные трубки.

Таким образом, детектор снимает с высокочастотных колебаний звуковой узор; говорят — детектор выпрямляет переменный ток высокой частоты.

Самый простой детектор — кристаллический. Главными частями такого детектора являются специальная стальная пружинка и кристалл. Они образуют так называемую детектирующую пару. Для детектора подбирают такую пару проводников (или кристаллов), которая практически проводит ток лишь в одном направлении.

В одни моменты времени, когда модулированные колебания имеют именно это направление, ток проходит и через детектор, когда же направление модулированных колебаний делается обратным, в цепи детектора ток не возникает. В результате после детектора получается ток постоянного направления, в котором нарушается тесная связь между токами высокой и низкой частоты и каждый из них после детектора следует по своему пути.

На рисунке 11 изображен детектор, который состоит из металлической чашечки с помещенным в ней кристаллом и металлического рычажка с прикрепленной к нему пружинкой. Рычажок может свободно перемещаться в любом направлении и позволяет установить острие пружинки на любую точку кристалла.

Панелька детектора изготовляется из хорошего изоляционного материала, в ней укрепляются две контактные ножки, которыми детектор вставляется в соответствующие гнезда приемника.

Наиболее распространенным кристаллом для детектора является гален.

Детектор с кристаллом и пружинкой весьма неустойчив в работе. Он боится сотрясений, так как при этом сбивается чувствительная точка на кристалле, при которой громкость приема получается наибольшей.

Работа такого детектора в сильной степени зависит от чистоты кристалла, от остроты конца пружинки и степени нажатия пружинки на кристалл.

Более удобными являются цвитекторы, или детекторы с постоянной точкой.

Рис. 11. Устройство детектора и телефонов: а — самодельный детектор; б — цвитектор; в — устройство пьезоэлектрических телефонов.

Монтируется такой детектор в штепсельной вилке, одна из ножек которой соединяется с чашечкой кристалла кремния, а вторая — с контактной пластинкой. Чашечка помещается в центральном отверстии штепсельной вилки кверху дном и имеет шлиц. Если при сильном сотрясении или значительном грозовом разряде детектор потеряет чувствительность, то плавным вращением чашечки с помощью отвертки можно восстановить его работоспособность. Вообще же этот детектор работает достаточно стабильно и не требует такой регулировки. Поэтому на заводах после оборки кремниевых детекторов и установки у них рабочей точки поверхности чашечек со стороны шлица покрываются лаком или краской.

Описанный детектор обладает хорошей чувствительностью; он дешев, прост и удобен в обращении.

Группа советских специалистов под руководством инженера А. Пужай разработала конструкцию германиевого детектора. Германиевый детектор обладает высокой чувствительностью и весьма устойчив в работе. Такой детектор по внешнему виду напоминает маленький круглый конденсатор постоянной емкости.

В заключение отметим, что до появления электронной лампы кристалл был единственным типом детектора, применявшимся в радиоприемниках. Однако после появления электронной лампы положение изменилось. Электронная лампа, способная не только детектировать, но также усиливать колебания, стала вытеснять кристаллический детектор.

Чтобы услышать передачу, в цепь детектора включают телефонные трубки. Токи низкой (звуковой) частоты, проходя по катушкам головных телефонов, заставят их стальные мембраны повторить те самые колебания, которые совершила мембрана микрофона в радиостудии.

Что же происходит в приемнике с токами высокой частоты? Они выполнили свои обязанности — доставили в приемник колебания низкой частоты — и находят для себя более доступный путь через так называемые блокировочные конденсаторы, уходя в землю.

В детекторном приемнике такой конденсатор включается параллельно телефонным трубкам.

Действие пьезоэлектрических телефонных трубок, чаще всего применяемых в этом приемнике, основано на свойствах кристаллов сегнетовой соли. Основной частью их является квадратный элемент, состоящий из двух пластинок, выпиленных из кристалла сегнетовой соли (рис. 11,в) и помещенных в целлулоидную оболочку. Если к такому элементу подвести ток, то кристалл изогнется. Стоит нам изменить направление тока, как элемент изогнется в обратную сторону. Нетрудно догадаться, что при подведении к элементу звуковой частоты он будет совершать колебания той же частоты. Два угла пьезоэлемента в трубках укрепляются с помощью металлических контактных выводов, третий угол укреплен в корпусе трубок, а к четвертому прикрепляется тонкая металлическая мембрана. При подведении к элементу звукового сигнала его колебания передадутся мембране и вызовут колебания воздуха (звук).

Крупным недостатком пьезоэлектрических телефонов является их механическая непрочность и зависимость качества работы от температуры и влаги Однако такие трубки имеют сравнительно высокое сопротивление и большую чувствительность по сравнению с электромагнитными трубками.

Источник

Мини-лекции. Детекторный радиоприёмник

Уважаемые читатели, Вы знаете что такое: детектор, «деревянная антенна», металлический изолятор? А почему это зеркало зеркальное? Что такое радио FM? Вы слышали про такое как: гармоники, обратная связь, супергетеродин? Из какой «оперы» такие названия как: максимум максиморум, DSB, SSB, ПАЛСЕКАМ? Что чернее чёрного? И почему это кино, которое Вы смотрите по телевидению, короче на 4%? А Вы знаете как подключить два-три телевизора к одной антенне? А почему одни спутники «висят» над землёй, а другие движутся? Если Вы затрудняетесь с ответом или впервые слышите обо всём этом, или Вам просто интересно, то все мои мини-лекции для Вас!

Читайте также:  Что принимают за направление тока исторически

Все мини-лекции в большей или меньшей степени связаны между собой. И содержание предыдущей лекции так или иначе раскрывает содержание последующей! Насколько возможно, постараюсь Вас не нагружать подробностями. Думаю, что Вы узнаете что-то новое для себя, полезное и посмотрите на всё другими глазами!?

Детекторный радиоприёмник. Самый простой. Самый дешёвый. Самый, самый. Ему не нужно какое-либо питание. Он работает за счёт принимаемого сигнала! Всё, что нужно было, так это длинная антенна и хорошее заземление! И на этом преимущества заканчивались! А далее одни недостатки! Низкая чувствительность, так, что принимались лишь мощные близлежащие радиостанции. Низкая избирательность, зачастую приходилось слушать две, а то и три одновременно работающие радиостанции! Приём ведётся, на так называемые головные телефоны, или как их неправильно называют, — наушники. Слушать можно только одному — двум слушателям, увы! Детекторный радиоприёмник прост в изготовлении и использовании. Один из вариантов такого радиоприёмника Вы видите на рисунке вверху, слева. Это реконструкция 1983-го года, моего детекторного радиоприёмника собранного ещё в далёком, 1956 году. Одним радиоприёмником промышленного изготовления я пользовался в 1960-м году. Небольшая пластмассовая коробочка под названием «Комсомолец» рисунок внизу, слева.
Принципиальная схема на рис3.

«Комсомолец» настраивался на станции изменением индуктивности катушки контура. Перестройка велась с помощью сердечника из ферромагнитных материалов и скачками манипуляцией непосредственно катушкой контура. Мой же самодельный перестраивался изменением индуктивности. С помощью ползунка менялось число витков катушки. На рисунке антенный вход (a). Заземление (f). Катушка контура (b). Ползунок (c). Детектор (d) и гнёзда подключения головных телефонов (e).
Схема моего радиоприёмника на рис2.

Забудем на время о том, что Вы прочитали и посмотрим на рис1. Это схема одного из вариантов детекторного приёмника. Вся схема разделена на три функциональные части. Первая слева, это колебательный контур. Он состоит из катушки индуктивности L и конденсатора Сп. А так как контур подключен к антенне и заземлению, то к контуру подключен конденсатор, — антенна и поверхность земли. Кстати, это учитывается во всех схемах и в моём тоже! Стрелочка перекрещивающая пластины конденсатора говорит о том, что конденсатор переменной ёмкости. Принцип действия показан на рис4а и там же общий вид конденсатора заводского изготовления. С амплитудной модуляцией Вы уже познакомились и картинка слева, на рис4 Вам знакома. Детектор, точечный полупроводниковый диод, отличающийся малой ёмкостью и работой на высоких частотах (радиочастотах). Пропуская через себя только положительные составляющие промодулированного сигнала он работает как вентиль. Нам высокочастотная составляющая не нужна и её через блокировочный конденсатор Сб прямёхонько отправляем на землю. То есть через головные телефоны она не проходит. Низкочастотная же составляющая наоборот, проходит через головные телефоны, превращаясь в звук.

Осталось разобраться с колебательным контуром. Если не применять высоких слов, то это фильтр! Его задача отделять нужный сигнал от остальных. Проще говоря он должен пропустить полосу частот переданную радиостанцией. Как это всё работает? На рис.6а — общий вид контура, а на рис.6b — схема. На рис.7, — схема поясняющая принцип работы колебательного контура. Подключенная батарея (элемент) к конденсатору заряжает его. После заряда отключаем батарею (элемент) от конденсатора и замыкая ключ, соединяем заряженный конденсатор к катушке индуктивности. Конденсатор начнёт разряжаться через катушку. Катушка индуктивности является инертным элементом и протекание тока через неё не прекратится и после того как конденсатор полностью разрядится! Продолжающий течь ток начинает перезаряжать конденсатор. Заряженный же конденсатор начнёт тут же разряжаться, но ток пойдёт уже в противоположную сторону. И процесс будет продолжаться до тех пор пока вся энергия израсходуется на нагрев проводов и прочие потери. Протекающий по цепи ток будет иметь синосуидальную форму, с уменьшающейся со временем амплитудой рис5. Говорят, что в контуре будут происходить затухающие колебания с частотой по формуле на рис.8, зависящие от параметров контура L и C. Длина волны по формуле на рис.9.

В идеале на частоте собственных колебаний (на частоте резонанса) сопротивление контура в точках подключения антенны и заземления будет высоким, а на других низким. И чем дальше частоты находятся от резонансной, тем более сопротивление будет стремиться к нулю и независимо выше резонансной частоты или ниже. На рис.11 показана типичная для колебательного контура амплитудно-частотная характеристика. Если максимальное значение принять за единицу, то точки на уровне 0,707 дадут частоты ограничившие полосу пропускания контура. Полоса пропускания П будет равна разности частот [f2-f1]. Отчего же зависит полоса пропускания и можно ли её изменить? Да можно! Для оценки качества контура существует такой параметр как Q, — добротность контура. Её зависимость показана на рис.10. Сопротивление потерь, катушки r считаем постоянной (почти), то Q зависит в основном от соотношения L и C контура. На графиках рис.12 показано как от величины добротности меняется кривая амплитудно-частотной характеристики и соответственно полоса пропускания.

Перестраивая контур с помощью конденсатора переменной ёмкости мы естественно изменяем и добротность рис.10,12. И хотя это всё теоретически, но всё же! Стало быть и избирательность изменяется. Самая высокая в начале диапазона и низкая в конце. Но если учесть емкость антенна-заземление то изменение добротности будет не так резко изменяться. И это хоть немного, но радует!

Источник

Детекторный радиоприемник может работать без источника тока

Звезда активнаЗвезда активнаЗвезда активнаЗвезда активнаЗвезда активна

Н.И. Коноплянко, Херсонская обл.
Первичное изучение радиодела по традиции начинается с детекторного приемника. Описанный в данной статье приемник с антенной, подвешенной под потолком комнаты размерами 7×8 м, вот уже несколько лет служит учебным пособием на занятиях радиокружка.

Детекторный приемник привлекателен тем, что для его выполнения требуется совсем немного простых деталей и не нужен источник питания. Классическая схема детекторного приемника, неоднократно описанная в литературе, состоит из антенны, самодельной катушки индуктивности, конденсатора переменной емкости, высокочастотного диода, телефонного капсюля и заземления. От качества заземления в значительной мере зависит количество энергии, которую антенна может передать приемнику. Поэтому в детекторном приемнике для уверенного приема должны быть как антенна большой длины, так и хорошее заземление, выполнить которое не всегда возможно. Однако если вместо традиционной несимметричной штыревой антенны применить симметричную антенну в виде замкнутой рамки, надобность в заземлении отпадает.
Схема детекторного приемника без заземления показана на рисунке.

Антенна (прямоугольник ABCD) выполнена из медной или стальной оцинкованной проволоки диаметром 0,5. 2 мм. Если на проводе имеется изоляция, ее снимать не нужно. Антенну подвешивают вокруг одноэтажного дома снаружи под козырьком крыши или располагают внутри большой комнаты по ее периметру под потолком (желательно на втором этаже и выше, если дом многоэтажный). Провод антенны крепят на гвоздях (по 2 шт.), вбитых в каждый угол. Гвозди нужно обязательно изолировать изолентой.
Такую антенну можно повесить внутри школьного кабинета физики, не опасаясь за ее сохранность. Если периметр прямоугольника ABCD около 40 м, то антенна выполняет функцию контурной катушки. Прием станций возможен в диапазоне средних волн. При длине антенны около 20 м ее нужно выполнить из двух изолированных друг от друга рамок. Длина отрезков ОЕ и KF некритична, расстояние между проводами снижения 4. 10 см.
Конденсатор переменной емкости может быть любого типа емкостью от 5. 10 до 200. 500 пФ. Диод VD1 должен быть обязательно германиевым высокочастотным, например, ГД507, Д20, Д18, Д2. Головной телефон BF1 высокоомный ТОН-1, ТОН-2 или другой с сопротивлением обмоток 1,5. 3 кОм. Желательно включить два телефона последовательно. С помощью такого приемника в вечернее и ночное время в сельской местности вдали от городов и передающих центров можно услышать несколько мощных вещательных станций средневолнового диапазона.
РА №3/2005

Оставлять комментарии могут только зарегистрированные пользователи

Источник

Adblock
detector