Меню

Дальние передачи электроэнергии переменным током



Передача электроэнергии — распространенные способы и альтернативные варианты

Электричество не относится к накопительным ресурсам. На сегодняшний день нет эффективных технологий, позволяющих аккумулировать энергию, выработанную генераторами, поэтому передача электроэнергии потребителям относится к актуальным задачам. В стоимость ресурса входят затраты на его производство, потери при транспортировке и расходы на монтаж и обслуживание ЛЭП. При этом от схемы передачи напрямую зависит эффективность системы электроснабжения.

Высокое напряжение, как способ уменьшения потерь

Несмотря на то, что во внутренних сетях большинства потребителей, как правило, 220/380 В, электроэнергия передается к ним по высоковольтным магистралям и понижается на трансформаторных подстанциях. Для такой схемы работы есть весомые основания, дело в том, что наибольшая доля потерь приходится на нагрев проводов.

Мощность потерь описывает следующая формула: Q = I 2 * Rл ,

где I – сила тока, проходящего через магистраль, RЛ – ее сопротивление.

Исходя из приведенной формулы можно заключить, что снизить затраты можно путем уменьшения сопротивления в ЛЭП или понизив силу тока. В первом случае потребуется увеличивать сечения провода, это недопустимо, поскольку приведет к существенному удорожанию электропередающих магистралей. Выбрав второй вариант, понадобится увеличить напряжение, то есть, внедрение высоковольтных ЛЭП приводит к снижению потерь мощности.

Классификация линий электропередач

В энергетике принято разделять ЛЭП на виды в зависимости от следующих показателей:

  1. Конструктивные особенности линий, осуществляющих передачу электроэнергии. В зависимости от исполнения они могут быть двух видов:
  • Воздушными. Передача электричества осуществляется с использованием проводов, которые подвешиваются на опоры. Воздушные линии электропередачВоздушные линии электропередач
  • Кабельными. Такой способ монтажа подразумевает укладку кабельных линий непосредственно в грунт или в специально предназначенные для этой цели инженерные системы. Обустройство блочной кабельной канализацииОбустройство блочной кабельной канализации
  1. Вольтаж. В зависимости от величины напряжения ЛЭП принято классифицировать на следующие виды:
  • Низковольтные, к таковым относятся все ВЛ с напряжением не более 1-го кВ.
  • Средние – от 1-го до 35-ти кВ.
  • Высоковольтные – 110,0-220,0 кВ.
  • Сверхвысоковольтные – 330,0-750,0 кВ.
  • Ультравысоковольтные — более 750-ти кВ. Ультравысоковольтная ЛЭП Экибастуз-Кокчетав 1150 кВУльтравысоковольтная ЛЭП Экибастуз-Кокчетав 1150 кВ
  1. Разделение по типу тока при передаче электричества, он может быть переменным и постоянным. Первый вариант более распространен, поскольку электростанции, как правило, оборудованы генераторами переменного тока. Но для уменьшения нагрузочных потерь энергии, особенно на большой дальности передачи, более эффективен второй вариант. Как организованы схемы передачи электричества в обоих случаях, а также преимущества каждого из них, будет рассказано ниже.
  2. Классификация в зависимости от назначения. Для этой цели приняты следующие категории:
  • Линии от 500,0 кВ для сверхдальних расстояний. Такие ВЛ связывают между собой отдельные энергетические системы.
  • ЛЭП магистрального назначения (220,0-330,0 кВ). При помощи таких линий осуществляется передача электричества, вырабатываемого на мощных ГЭС, тепловых и атомных электростанциях, а также их объединения в единую энергосистему.
  • ЛЭП 35-150 кВ относятся к распределительным. Они служат для снабжения электроэнергией крупных промышленных площадок, подключения районных распределительных пунктов и т.д.
  • ЛЭП с напряжением до 20,0 кВ, служат для подключения групп потребителей к электрической сети.

Способы передачи электроэнергии

Осуществить передачу электроэнергии можно двумя способами:

  • Методом прямой передачи.
  • Преобразуя электричество в другой вид энергии.

В первом случае электроэнергия передается по проводникам, в качестве которых выступает провод или токопроводящая среда. В воздушных и кабельных ЛЭП применяется именно этот метод передачи. Преобразование электричества в другой вид энергии открывает перспективы беспроводного снабжения потребителей. Это позволит отказаться от линий электропередач и, соответственно, от расходов, связанных с их монтажом и обслуживанием. Ниже представлены перспективные беспроводные технологии, над совершенствованием которых ведутся работы.

Технологии беспроводной передачи электричества

Технологии беспроводной передачи электричества

К сожалению, на текущий момент возможности транспортировки электричества беспроводным способом сильно ограничены, поэтому об эффективной альтернативе методу прямой передачи говорить пока рано. Исследовательские работы в этом направлении позволяют надеяться, что в ближайшее время решение будет найдено.

Схема передачи электроэнергии от электростанции до потребителя

Ниже на рисунке представлены типовые схемы, из которых первые две относятся к разомкнутому виду, остальные — к замкнутому. Разница между ними заключается в том, что разомкнутые конфигурации не являются резервированными, то есть, не имеют резервных линий, которые можно задействовать при критическом увеличении электрической нагрузки.

Пример наиболее распространенных конфигураций ЛЭП

Пример наиболее распространенных конфигураций ЛЭП

Обозначения:

  1. Радиальная схема, на одном конце линии находится электростанция производящая энергию, на втором — потребитель или распределительное устройство.
  2. Магистральный вариант радиальной схемы, отличие от предыдущего варианта заключается в наличии отводов между начальным и конечным пунктами передачи.
  3. Магистральная схема с питанием на обоих концах ЛЭП.
  4. Кольцевой тип конфигурации.
  5. Магистраль с резервной линией (двойная магистраль).
  6. Сложнозамкнутый вариант конфигурации. Подобные схемы применяются при подключении ответственных потребителей.

Теперь рассмотрим более подробно радиальную схему для передачи вырабатываемой электроэнергии по ЛЕП переменного и постоянного тока.

Схемы передачи электроэнергии к потребителям при использовании ЛЭП с переменным (А) и постоянным (В) током

Рис. 6. Схемы передачи электроэнергии к потребителям при использовании ЛЭП с переменным (А) и постоянным (В) током

Обозначения:

  1. Генератор, где вырабатывается я электроэнергия с синусоидальной характеристикой.
  2. Подстанция с повышающим трехфазным трансформатором.
  3. Подстанция с трансформатором, понижающим напряжение трехфазного переменного тока.
  4. Отвод для передачи электироэнергии распределительному устройству.
  5. Выпрямитель, то есть устройство преобразующее трехфазный переменный ток в постоянный.
  6. Инверторный блок, его задача сформировать из постоянного напряжение синусоидальное.

Как видно из схемы (А), с источника энергии электричество подается на повышающий трансформатор, затем при помощи воздушных линий электропередач производится транспортировка электроэнергии на значительные расстояния. В конечной точке линия подключается к понижающему трансформатору и от него идет к распределителю.

Метод передачи электроэнергии в виде постоянного тока ( В на рис.6) от предыдущей схемы отличается наличием двух преобразовательных блоков (5 и 6).

Закрывая тему раздела, для наглядности приведем упрощенный вариант схемы городской сети.

Наглядный пример структурной схемы электроснабжения

Наглядный пример структурной схемы электроснабжения

Обозначения:

  1. Электростанция, где электроэнергия производится.
  2. Подстанция, повышающая напряжение, чтобы обеспечить высокую эффективность передачи электроэнергии на значительные расстояния.
  3. ЛЭП с высоким напряжением (35,0-750,0 кВ).
  4. Подстанция с понижающими функциями (на выходе 6,0-10,0 кВ).
  5. Пункт распределения электроэнергии.
  6. Питающие кабельные линии.
  7. Центральная подстанция на промышленном объекте, служит для понижения напряжения до 0,40 кВ.
  8. Радиальные или магистральные кабельные линии.
  9. Вводный щит в цеховом помещении.
  10. Районная распределительная подстанция.
  11. Кабельная радиальная или магистральная линия.
  12. Подстанция, понижающая напряжение до 0,40 кВ.
  13. Вводный щит жилого дома, для подключения внутренней электрической сети.

Передача электроэнергии на дальние расстояния

Основная проблема, связанная с такой задачей – рост потерь с увеличением протяженности ЛЭП. Как уже упоминалось выше, для снижения энергозатрат на передачу электричества уменьшают силу тока путем увеличения напряжения. К сожалению, такой вариант решения порождает новые проблемы, одна из которых коронные разряды.

С точки зрения экономической целесообразности потери в ВЛ не должны превышать 10%. Ниже представлена таблица, в которой приводится максимальная протяженность линий, отвечающих условиям рентабельности.

Таблица 1. Максимальная протяженность ЛЭП с учетом рентабельности (не более 10% потерь)

Напряжение ВЛ (кВ) Протяженность (км)
0,40 1,0
10,0 25,0
35,0 100,0
110,0 300,0
220,0 700,0
500,0 2300,0
1150,0* 4500,0*

* — на текущий момент ультравысоковольтная ВЛ переведена на работу с напряжением в половину от номинального (500,0 кВ).

Постоянный ток в качестве альтернативы

В качестве альтернативы электропередачи переменного тока на большое расстояние можно рассматривать ВЛ с постоянным напряжением. Такие ЛЭП обладают следующими преимуществами:

  • Протяженность ВЛ не влияет на мощность, при этом ее максимальное значение существенно выше, чем у ЛЭП с переменным напряжением. То есть при увеличении потребления электроэнергии (до определенного предела) можно обойтись без модернизации.
  • Статическую устойчивость можно не принимать во внимание.
  • Нет необходимости синхронизировать по частоте связанные энергосистемы.
  • Можно организовать передачу электроэнергии по двухпроводной или однопроводной линии, что существенно упрощает конструкцию.
  • Меньшее влияние электромагнитных волн на средства связи.
  • Практически отсутствует генерация реактивной мощности.

Несмотря на перечисленные способности ЛЭП постоянного тока, такие линии не получили широкого распространения. В первую очередь это связано с высокой стоимостью оборудования, необходимого для преобразования синусоидального напряжения в постоянное. Генераторы постоянного тока практически не применяются, за исключением электростанций на солнечных батареях.

С инверсией (процесс полностью противоположный выпрямлению) также не все просто, необходимо допиться качественных синусоидальных характеристик, что существенно увеличивает стоимость оборудования. Помимо этого следует учитывать проблемы с организацией отбора мощности и низкую рентабельность при протяженности ВЛ менее 1000-1500 км.

Кратко о свехпроводимости.

Сопротивление проводов можно существенно снизить, охладив их до сверхнизких температур. Это позволило бы вывести эффективность передачи электроэнергии на качественно новый уровень и увеличить протяженность линий для использования электроэнергии на большом удалении от места ее производства. К сожалению, доступные на сегодняшний день технологии не могут позволить использования сверхпроводимости для этих целей ввиду экономической нецелесообразности.

Источник

Методы передачи электроэнергии на расстояние

Электроэнергией является свойство магнитного поля преобразоваться в иные виды энергии. Такими видами энергии могут быть: механическая, химическая, паровая, лазерная. Число потребителей и источников потребления постоянно растет. Поэтому вопрос о способах передачи электроэнергии на большие расстояния, с сохранением мощности и ее распределением, остается открытым. Статья опишет основные и актуальные способы передачи, а также современные разработки в области беспроводных технологий.

Читайте также:  Как транзистор усиливает переменный ток

ЛЭП

Способы передачи электроэнергии

Электроэнергия или переменный ток, передается от источника к потребителю, через провода или подземные кабельные линии. Эти способы актуальны на протяжении многих лет. Связано это с тем, что нет технологии, способной передать электричество на большое расстояние при минимальных потерях с сохранением полной мощности. Да и способ еще должен быть максимально надежным и дешевым.

Схема передачи переменного электрического напряжения или постоянного электрического напряжения выглядит следующим образом:

Схема передачи переменного электрического напряжения

Принцип работы и объяснение схемы:

  1. В начале схемы находится генератор, вырабатывающий электричество.
  2. От генератора напряжение подается на трехфазный трансформатор, для повышения мощности. От него электричество течет по ЛЭП (линия электропередачи).
  3. После ЛЭП напряжение попадает на трехфазный понижающий трансформатор.
  4. От трансформатора напряжение подается потребителю, с существенным занижением.

Для постоянного тока существует выпрямительное устройство, которое находится после повышающего трансформатора. Пройдя по ЛЭП, постоянный ток сначала должен попасть на устройство преобразования постоянного тока в переменный, а только потом на понижающий трансформатор.

Воздушные и кабельные линии

Потребление электроэнергии по воздушным ЛЭП и кабельным линиям, представляет собой определенную схему. В начале схемы находится источник энергии, а именно электростанция. Электростанция подает завышенное напряжение на распределительную линию, в конце которой находится занижающий трансформатор. Основным минусом подобной схемы является именно потребность в подаче слишком высокой мощности. Связано это с потерей доли напряжения на расстоянии. Способов подобной передачи 2.

Воздушные линии представляют собой сеть высоковольтных проводов, подвешенных на столбы или опоры. Этот метод очень распространен и является эффективным. Но и у него есть ряд минусов:

  • большие затраты в рабочей силе и материале на стадии поставки новым потребителям на большое расстояние;
  • потеря значительной доли мощности с каждым километром;
  • требование подачи большой мощности в начале (от электростанции);
  • вред магнитного поля для человека;
  • большая вероятность повреждения и разрушения от природных катаклизмов;
  • большие трудности для монтажа ЛЭП в трудных, непроходимых регионах.

Воздушные линии

Воздушные линии подают потребителю переменный ток. По дальности и мощности они делятся на следующие категории:

  1. Воздушные линии напряжением до 1 кВ считаются низковольтными. Они являются окончанием схемы передачи к потребителю.
  2. Линии с напряжением от 1 до 35 кВ считаются средними.
  3. Высоковольтными линиями считаются ВЭЛ с напряжением 110-220 кВ. Эти линии являются началом схемы передачи напряжения.
  4. К сверхвысоковольтным относятся ВЭЛ напряжением 330–750 кВ.
  5. К ультра высоковольтным относятся ВЭЛ напряжением, превышающим 750 кВ.

Чем выше подаваемое напряжение, тем большие расстояния оно должно покрыть от источника к потребителю.

Кабельные линии

Кабельные линии работают по схожему принципу. По ним также поступает переменный электрический ток. Но проводят такие линии под землей или под водой. Основными недостатками подобной передачи являются:

  1. Большие трудности и затраты при прокладке. Кабельные линии прокладываются в местах, где невозможно или опасно проводить воздушные линии.
  2. Также идет потеря доли напряжения с расстоянием.
  3. Существует опасность механического повреждения или растяжения кабеля.
  4. Есть опасность шагового напряжения при повреждении, особенно в воде.
  5. Очень тяжело найти и устранить повреждение.

На данный момент существует 2 схемы передачи электроэнергии от источника к потребителю по воздушным или кабельным линиям:

  1. Разомкнутая схема. Эта схема передачи представляет собой источник напряжения и потребителя как прямую линию. Минусом такой схемы является отсутствие резервной линии при повреждении какого-либо участка.
  2. Замкнутая схема (более надежна). В ней источник и все потребители заключены в кольцо или сложную схему. При повреждении участка линии, подача электричества не прекращается.

Подобные схемы также делятся на категории.

Схемы в визуальном отображении:

Схемы в визуальном отображении

Разомкнутая схема бывает 3 видов:

  1. Схема радиального подключения, в которой на одном конце находится подающее устройство, а на втором конце потребитель энергии.
  2. Магистральная схема похожа на радиальную, но в ней присутствуют дополнительные отводы для потребления.
  3. Схема магистральной подачи, при которой между двумя источниками находится один потребитель.

Замкнутая схема также бывает 3 видов:

  1. Кольцевая схема с одним источником и потребителем.
  2. Магистральная схема с наличием резервного источника.
  3. Сложная замкнутая схема, для подключения потребителей особого назначения.

Все эти схемы относятся к передаче постоянного тока потребителю. Передача и распределение электроэнергии подобным способом является одинаковым для российских и зарубежных сетей.

Постоянный ток

Вторым способом передачи электрического тока потребителю, является постоянный ток. Подобный ток является выпрямленным. Он встречается в аккумуляторах, батарейках, зарядных устройствах. Такой ток и сейчас подается потребителям некоторых стран, но в очень малых количествах. Его вырабатывают солнечные батареи. Постоянный ток можно подавать по действующим ЛЭП и подземным кабелям. Плюсы такой передачи, следующие:

  1. С расстоянием нет потери мощности. Не придется завышать напряжение на электростанции.
  2. Статическая устойчивость не оказывает влияния на передачу и распределение.
  3. Не требуется настраивать частотную синхронизацию.
  4. Напряжение можно передать всего по одной линии с одним контактным проводом.
  5. Нет влияния электромагнитного излучения.
  6. Минимальная реактивная мощность.

Постоянный ток для потребителя не подается только по причине огромной себестоимости оборудования для электростанций.

Проводимость электрического тока и процент завышения в начале передачи, во многом зависят от сопротивления самой ЛЭП. Снизить сопротивление, — а тем самым нагрузку — можно при помощи охлаждения до сверхнизкой температуры. Это помогло бы увеличить расстояние для передачи энергии и существенно снизить потери. Сегодня нет технологии занижения температуры линии электропередачи. Такая технология является крайне дорогой и требует больших изменений в конструкции. Но в регионах крайнего севера этот способ вполне работает и намного занижает процент передачи мощностей и потери от расстояния.

Беспроводная передача

Передать и распределить ток по потребителям без использования проводов, это реалии наших дней. Об этом способе впервые задумался и воплотил его в жизнь Никола Тесла. На сегодняшний день ведутся разработки в этом направлении. Основных способов всего 3.

Катушки

Катушки

Катушками индуктивности является свернутый в спираль изолированный провод. Метод передачи тока состоит из 2 катушек, расположенных рядом друг с другом. Если подать электрический ток на одну из катушек, на второй появится магнитное возбуждение такого же напряжения. Любые изменения напряжения на катушке передатчике, изменятся на катушке приемнике. Подобный способ очень прост и имеет шансы на существование. Но есть и свои недостатки:

  • нет возможности подать высокое напряжение и принять его, тем самым невозможно обеспечить напряжением несколько потребителей одновременно;
  • невозможно передать электричество на большое расстояние;
  • коэффициент полезного действия (КПД) подобного способа — всего 40 %.

На данный момент актуальны способы простого использования катушек, как источника и получателя энергии. Этим способом заряжают электрические самокаты и велосипеды. Есть проекты электромобилей без аккумулятора, но на встроенной катушке. Предлагается использовать дорожное покрытие в качестве источника, а машину в качестве приемника. Но себестоимость прокладки подобных дорог очень высокая.

Лазер

Лазер

Передача электричества посредством лазера, представляет собой источник, преобразующий энергию электричества в лазерный луч. Луч фокусируется на приемник, который его преобразует обратно в электричество. Компания Laser Motive смогла передать при помощи лазера 0.5 Кв электрического тока, на расстояние в 1 км. При этом потеря напряжения и мощности составила 95 %. Причиной потери стала атмосфера Земли. Луч многократно сужается при взаимодействии с воздухом. Также проблемой может стать обычное преломление луча случайными предметами. Подобный способ, без потери мощности, может быть актуальным только в космическом пространстве.

Микроволновая передача

Микроволновая передача

Основой для передачи электроэнергии путем микроволн, стала способность 12 см волн, частотой в 2.45 ГГц, быть незаметными для атмосферы Земли. Подобная особенность могла бы сократить до минимума потерю при передаче. Для подобного способа нужны передатчик и приемник. Люди давно создали передатчик и преобразователь электрической энергии в микроволновую. Это изобретение называется магнетрон. Он стоит в каждой микроволновой печи и является очень безопасным. Вот с изобретением приемника и преобразователя микроволн обратно в электричество возникли проблемы.

В 60-х годах прошлого века, американцы изобрели ректенну. Иными словами, приемник микроволн. С помощью изобретения удалось передать 30 кВт электрического тока на расстояние в 1.5 км. При этом коэффициент потерь составил всего 18 %. На большее установка была не способна по причине использования полупроводниковых деталей в устройстве приемника. Для приема и передачи большей мощности энергии, при использовании ректенны, пришлось бы создать огромную принимающую панель. Это бы увеличило затрачиваемую энергию, частоту и длину волн, а значит и процент сопутствующей потери. Высокое излучение могло бы убить все живое в радиусе нескольких десятков метров.

ректенна

В СССР был изобретен циклотронный преобразователь микроволн в электричество. Он представлял собой 40 см трубку и был полностью собран на лампах. КПД устройства равнялось 85 %. Но для этого способа основным минусом является способ сборки на лампах. Устройства на подобных деталях могут вернуть человечество в мир огромных телефонов, компьютеров величиной с комнату. О миниатюрных электрических приборах можно забыть.

циклотронный преобразователь микроволн

Передачу микроволн можно было организовать из космоса. Подобный проект предполагал собирать энергию солнца при помощи спутника и перенаправлять на приемник, расположенный на поверхности Земли. Но для этого придется построить спутник диаметром в километр и приемник диаметром в 5 километров. О полетах в зоне действия системы можно полностью забыть.

Читайте также:  Форд стартер пусковой ток

Главной проблемой при передаче электричества беспроводным способом, является расстояние и атмосферные преломления. Стоит также учитывать мощности. Общая потребляемая мощность всех электрических приборов в квартире, равняется 30–40 кВт. Для обеспечения электричеством одной квартиры, пришлось бы строить гигантские сооружения.

На сегодняшний день единственным способом передачи энергии большой мощности, является проводной. Он не требует прямого и обратного преобразования электрической энергии. Достаточно только подать высокое напряжение в начале и существенно занизить его в конце. Этот способ имеет ряд недостатков, но остается актуальным долгие годы.

Видео по теме

Источник

Дальние передачи электроэнергии переменным током

Дальние передачи электроэнергии переменным и постоянным током.

Схемы электропередач переменного тока.

Линии электропередачи напряжением 500—750 кВ предназначаются как для передачи больших количеств электрической энергии в районы ее потребления от крупных тепловых и гидравлических электростанций, удаленных от промышленных центров, так и для взаимного обмена мощностями между энергосистемами. В зависимости от передаваемой мощности и назначения электропередачи 500—750 кВ строятся одно-цепными, двух-цепными и с большим количеством цепей (как, например, электропередача 735 кВ Маникуаган — Монреаль в Канаде). Линии передачи этих напряжений сооружаются преимущественно на одно-цепных опорах. Двухцепные опоры для линий 500 кВ применяются в Японии и частично в США, из-за ограниченности места и большой стоимости отчуждаемой земли. Межсистемные связи, как правило, выполняются одно-цепными; вторая цепь предусматривается в том случае, если имеются перспективы передачи по ним большой мощности.

Рис. 13-1. Электропередача 500 кВ

Двухцепные (и трех-цепные) электропередачи выполняются только по связанной схеме, с рядом промежуточных подстанций или переключательных пунктов, расположенных друг от друга на расстоянии 250—350 км. Примером такой электропередачи может служить представленная на рис. 13-1 (с небольшими упрощениями) электропередача 500 кВ Волгоград — Москва.

Назначение переключательных пунктов продольной емкостной компенсации индуктивности линий, поперечной индуктивной компенсации емкости линии, поперечной емкостной компенсации.

Переключательные пункты на двух-цепных электропередачах сооружаются в том случае, когда строительство промежуточных подстанций в данное время экономически не оправдывается из-за отсутствия достаточной нагрузки. С развитием экономики этих районов переключательные пункты переоборудуются в промежуточные подстанции. Так, например, было при строительстве первой электропередачи 500 кВ Куйбышев — Москва, на трассе протяженностью 850 км были построены три переключательных пункта. В настоящее время все переключательные пункты переоборудованы в подстанции.

Назначение переключательных пунктов — повышение пропускной способности электропередачи. Как известно, предельная передаваемая мощность по условиям устойчивости параллельной работы электростанции с приемной системой (идеальный предел передаваемой мощности) определяется формулой:

где Р — активная мощность, передаваемая приемной системой; Е и U э. д. с. генераторов передающей станции и напряжение приемной системы, приведенные к расчетному напряжению; ХS — результирующее сопротивление всей системы электропередачи (рис. 13-1), приведенное к тому же напряжению.

При связанной схеме электропередачи повреждение на линии выводит из работы не всю, а только часть линии (на рис. 13-1 при мерно 1/4 ее). Сопротивление электропередачи при этом изменится не столь значительно, как это имело бы место при выходе из работы всей линии; пропускная способность линии, как это видно из формулы (14-1), сохранится на высоком уровне. Для примера укажем, что при наличии двух —трех переключательных пунктов на двухцепной электропередаче 500 кВ протяженностью 800—1000 км пропускная способность ее повышается на 45—60%.

Расщепление проводов, применяемое на всех линиях напряжением 500—750 кВ, существенно снижает общее реактивное сопротивление линий. На линиях 500 кВ расщепление фазы производится на 3 провода с шагом расщепления 400 мм, что дает снижение ХЛ на 33% по сравнению с тем, которое было бы в линии с одним проводом в фазе. В линиях 750 кВ расщепление фазы производится на 4 провода с шагом 600 мм (линия Донбасс — Днепр — Винница) или на 5 проводов с шагом 300 мм (Ленинград — Конаково).

Продольная емкостная компенсация индуктивного сопротивления линии служит средством дальнейшего повышения пропускной способности электропередачи. Компенсируется около 40—50% индуктивного сопротивления линии. Большая степень компенсации может вызвать параметрическую неустойчивость — самовозбуждение генераторов. При компенсации реактивного сопротивления на 25% пропускная способность электропередачи увеличивается на 30— 40%, а при 50% —в 1,7— 2 раза.

Установки продольной компенсации (УПК) размещаются на промежуточных подстанциях или на переключательных пунктах.

При относительно небольшой степени компенсации ограничиваются одной УПК на электропередачу. Для повышения надежности работы конденсаторы УПК разбиваются на две или три параллельных цепи (рис. 13-3). Применение продольной компенсации на первой электропередаче 500 кВ Куйбышев — Москва протяженностью 850 км со степенью компенсации 25% повысило ее пропускную способность с 1350 до 1800 МВт, а па электропередаче Братск — Иркутск (586км, XК/XЛ, = 0,35) с 1150 до 1600МВт. Предусмотрено устройство продольной компенсации также на двух подстанциях электропередачи Волгоград — Москва и на других линиях.

Рис. 13-2. Электропередача, связывающая электростанцию с электрической системой:
а—принципиальная схема; б—схема замещения.

Поперечная и индуктивная к компенсация емкости линий предназначается для снижения избыточной реактивной мощности и выравнивания напряжения вдоль линий при работе их с нагрузками меньше натуральной мощности и при холостом ходе. Поперечная компенсация осуществляется с помощью шунтовых реакторов, подключенных к линиям в разных ее точках.

Генерируемая линиями передачи реактивная мощность зависит от рабочего напряжения в них. Потери же реактивной мощности в индуктивном сопротивлении линий зависят от величины и коэффициента мощности нагрузки линий. При нагрузке, равной натуральной мощности, генерируемая и теряемая в индуктивном сопротивлении реактивная мощность приблизительно компенсируют друг друга. При нагрузке свыше натуральной мощности потери реактивной мощности больше генерируемой и, следовательно, возникает недостаток реактивной мощности на приемном конце линии, а при нагрузке меньше натуральной мощности — обнаруживается ее избыток.

Рис. 13-3. Переключательный пункт с установкой продольной компенсации 500 кВ

При фиксированных равных напряжениях в начале и конце электропередачи напряжение в середине линии при нагрузках меньше натуральной мощности повышается из-за избытка реактивной мощности, генерируемой линией. При относительно малых нагрузках напряжение в середине линии может достигнуть значения выше допустимого по изоляции для данного класса напряжения. При холостом ходе линии, связанном, например, с подготовкой к синхронизации питающей станции с приемной системой, влияние емкости линии скажется значительным повышением напряжения на отключенном конце линии, тем большим, чем больше длина включаемого участка электропередачи.

При наличии шунтовых реакторов избыточная реактивная мощность, генерируемая линией, направляется в реакторы, чем и обеспечивается нормальный уровень напряжения в линии. Наличие реакторов приводит также к уменьшению потерь активной мощности в линиях и снижению уровня внутренних перенапряжений. Мощность реакторов обычно определяется условиями работы линий в режиме холостого хода. Степень компенсации зарядной мощности линий 500 кВ различна: от 42—64% в СССР до 100% за рубежом. Установка реакторов на приемных концах электропередач напряжением 500 кВ в СССР не применяется, а генерируемая частью приемного конца линии реактивная мощность используется в приемной системе. Размещение реакторов на передающем конце и в середине линии дает нужные результаты по улучшению распределения напряжения вдоль нее при малых нагрузках и холостом ходе линии.

ШВ — шунтирующий выключатель; ШР шунтирующий разрядник; R—успокаивающее сопротивление

Реакторы могут включаться как непосредственно в линию электропередачи, так и на вторичном (110, 35 кВ) напряжении трансформаторов промежуточных подстанций. Наибольший эффект при равной мощности дают реакторы, включенные непосредственно в линию. На электропередаче Волгоград — Москва (рис, 13-1) и других принят смешанный способ включения: 70% суммарной мощности реакторов включают на высшем напряжении и 30% на вторичном. Реакторы на передающем конце линии включаются наглухо, остальные — через выключатели. При больших нагрузках в линии, когда создается недостаток реактивной мощности, эти реакторы могут быть выведены из работы.

На линиях напряжением 735 кВ за рубежом (рис. 13-4) реакторы устанавливаются на всех участках электропередачи протяженностью 240 км и более по обоим их концам, при этом все реакторы включены в линию наглухо. На линии электропередачи 750 кВ Ленинград — Конаково протяженностью 524 км по условиям холостого хода линии запроектирована 100%-ная компенсация зарядной мощности, с установкой по две группы реакторов на каждом ее конце (2 Х 300 MB-A).

Рис. 13-4. Одна из трех цепей электропередачи 735 кВ Маникуаган—Квебек—Монреаль (Канада)

Поперечная емкостная компенсация, осуществляемая на приемных подстанциях путем установки СК или У Б К, обеспечивает снабжение реактивной мощностью потребителей при больших нагрузках в электропередаче. Поперечная компенсация вместе с шунтовыми реакторами, присоединенными в начале и в середине линий, позволяют эффективно регулировать напряжение вдоль электропередачи при самых разнообразных режимах ее работы.

Схемы эл. передач постоянного тока.

Электропередачи постоянного тока (ППТ) предназначаются для транспорта больших количеств электроэнергии на дальние расстояния, передачи мощности через большие водные пространства по кабельным линиям и для связи между энергосистемами.

Связь отдельных электрических систем друг с другом посредством ППТ делает допустимой несинхронную совместную работу их на различных частотах. Направление потока мощности по линии передачи легко изменить автоматическим переключением в устройствах сеточного управления вентилей. Токи короткого замыкания в приемной системе переменного тока не могут возрастать при передаче электроэнергии постоянным током за счет передающей системы и наоборот, так как инвертор не подпитывает точку короткого замыкания. ППТ используются также для связи энергосистем в тех случаях, когда требуется иметь независимое регулирование частоты в каждой из объединенных систем.

Читайте также:  Трансформатор тока 4nc5112 2cb21

Допустимая напряженность электрического поля для кабелей постоянного тока в 5— 6 раз выше, чем для кабелей переменного тока. Для примера можно сказать, что кабели, рассчитанные для работы с номинальным напряжением 35 кВ переменного тока, могут быть использованы для постоянного тока напряжением 200 кВ. Поэтому, несмотря на большую стоимость концевых устройств ППТ, передачи постоянного тока с кабельными линиями при длинах 30—40 км становятся соизмеримыми по стоимости с кабельными передачами переменного тока или даже выгоднее их ППТ с кабельными линиями высокого напряжения ±250 кВ эксплуатируются за рубежом (Англия, Новая Зеландия и др ).

Кратности внутренних перенапряжений на воздушных линиях постоянного тока ниже, чем для линий переменного тока. Это значит, что при одинаковых уровнях изоляции для ППТ можно применить более высокое напряжение. Конструкция линии ППТ много проще, чем линии переменного тока, меньше количество гирлянд изоляторов, меньше затрата металла Важно отметить также, что предел передаваемой мощности ППТ не зависит от длины электропередачи, как для переменного тока, поскольку устойчивость работы ППТ определяется в основном преобразователями (инверторами)

В СССР впервые в мировой практике в 1965 г была осуществлена передача энергии постоянным током при напряжении ±400 кВ по воздушной биполярной линии Волгоград — Донбасс, связывающей Центральною и Южную энергосистемы Пропускная способность электропередачи 720 МВт, протяженность линии 473 км, ППТ Волгоград — Донбасс в настоящее время успешно работает в реверсивном режиме.

Обладая значительными достоинствами, передача электроэнергии постоянным током не лишена и крупных недостатков. Появляется необходимость в возведении сложных концевых подстанций с большим количеством преобразователей высокого напряжения и вспомогательной аппаратуры, меньшая надежность в работе из-за пропусков и обратных зажиганий в ртутных вентилях, требуется большая мощность установок для компенсации реактивной мощности преобразователей. Усложняется и удорожается промежуточный отбор мощности для электроснабжения районов, расположенных вдоль трассы линии передачи постоянного тока.

В экономическом отношении применение электропередач постоянного тока с воздушными линиями оправдывается при транспорте больших количеств энергии на дальние расстояния. Экономическая граница между передачами переменного и постоянного тока по дальности транспорта энергии лежит в пределах 800—1000 км — для передач без промежуточного отбора мощности и 1000—1400 км — с промежуточным отбором 25—50% передаваемой мощности. Чем больше передаваемая мощность, тем меньше граничное расстояние выгодности передачи мощности постоянным током.

На рис 13-5 представлена принципиальная схема ППТ. Вырабатываемый генераторами электростанции трехфазный переменный ток поступает в повысительный трансформатор 1, обмотки СН которого, работающие на выпрямительную установку, имеют различные соединения — звездой и треугольником. Переменный ток от каждой обмотки со сдвигом фаз в 30° поступает в выпрямительную установку, состоящую из вентилей (ртутных выпрямителей с сеточным управлением), включенных по мостовой схеме (рис. 13-6). Таким образом, вся установка состоит из четырех мостов, в каждой фазе которых включено по два вентиля. Все вентильные мосты соединены последовательно (каскадная схема) Средняя точка четырех-мостовой схемы заземлена наглухо, образуя две полуцепи “полюс — земля” биполярной передачи. Каждая из полуцепей может оставаться в работе при выведенной другой полуцепи в ремонт или по другой причине. В этом случае передача будет работать по униполярной схеме с возвратом тока через землю и со сниженной вдвое мощностью.

Рис 13 5 Схема электропередачи энергии постоянным током с биполярной линией.

1 — трехо-бмоточный трансформатор (группа) с расщепленными обмотками СН и НН 2 — вольтодобавочный трансформатор 3 — вентильный мост, 4 — шунтирующий вентиль, 5 — шунтирующий аппарат 6 — линейный реактор, 7 — токоограничивающий реактор, 8 — конденсаторная батарея фильтр, 9 — синхронный компенсатор.

Вентильный мост является основным агрегатом преобразовательной подстанции Подключенный к обмотке трехфазного трансформатора (рис. 13-6) он создает шестифазный режим выпрямления тока, а каскадное соединение двух мостов с подключением каждого моста к обмоткам трансформатора, имеющим сдвиг в 30° (соединенным звездой и треугольником), создает 12-фазный режим выпрямления. Выпрямленный ток поступает в двухпроводную линию и передается на приемную подстанцию. Для сглаживания пульсации выпрямленного тока в линии установлены реакторы с большим индуктивным сопротивлением, а для снижения амплитуды аварийного тока при обратном зажигании вентиля последовательно с обмотками трансформаторов, питающими выпрямительные мосты, установлены токоограничивающие реакторы. Параллельно каждому мосту включен шунтирующий вентиль и шунтирующий аппарат, назначение которых исключить из схемы мост в случае его повреждения.

Для инвертирования постоянного тока, т. е. преобразования его в трехфазный, на приемной подстанций используют такие же управляемые

ртутные вентили, как и для выпрямления переменного тока. Мостовая схема соединения инверторной установки такая же, как у выпрямительной, но с обратным включением полюсов. Инвертор работает как быстродействующий переключатель, включающий каждую фазу понизительного трансформатора дважды за один период изменения напряжения приемной системы — при прямом и обратном его направлениях, и тем самым обусловливает протекание в цепи трансформатора переменного тока. Реактивная мощность, необходимая для инвертирования тока (около 0,55 квар на 1 кВт передаваемой мощности) и для покрытия потребности нагрузки, получается от конденсаторных батарей-фильтров, включенных на приемные шины инверторной подстанции. Эти же установки служат и для фильтрации высших гармоник инвертированного переменного тока. В случае необходимости дополнительно устанавливают также СК с присоединением его к третичной обмотке трансформатора.

Рис. 13-6. Схема вентильного моста UН = 110 кВ
1 — вентиль; 2 — анодный реактор.

Современные мощные вентили изготавливаются на анодное испытательное напряжение 130 кВ и, следовательно, максимальное рабочее напряжение электропередачи, изображенной на рис. 13-5, составляет ±200 кВ. Чтобы получить в линии передачи более высокое напряжение, применяют последовательное включение большего количества мостов, а чтобы повысить надежность работы установки, вентили включают на половинное номинальное напряжение. Так, например, для линии передачи Волгоград—Донбасс напряжением ±400 кВ принято восемь вентильных мостов, включенных последовательно, с двумя вентилями в каждом плече моста, работающих при половинном номинальном напряжении.

При проектировании ППТ большой пропускной способности идут на параллельное включение вентилей в плече моста, что позволяет довести ток и мощности моста до требуемой величины. В настоящее время созданы полупроводниковые приборы (тиристоры), позволяющие построить выпрямительную аппаратуру на напряжение 1500 кВ. Так, например, преобразовательные подстанции электропередачи Экибастуз — Центр будут оборудованы уже не ртутными выпрямителями, а полупроводниковыми.

Эта электропередача, протяженностью 2400 км, напряжением 1500 кВ (±750 кВ) предназначается для передачи до 40 млрд. кВт -ч электрической энергии в год при мощности передачи до 6 млн. кВт. Электрическая энергия будет вырабатываться на пяти тепловых электростанциях мощностью по 4000- кВт, с энергоблоками по 500 МВт. Электростанции, первая из которых уже начата строительством, будут работать на местном буром угле.

Передача энергии из Итатского бассейна, где намечено построить десять электростанций по 6,4 млн. кВт с энергоблоками по 800 МВт, потребует применения для ППТ более высокого напряжения — 2200 кВ (±1000 кВ).

Источник

Рыжов Ю.П. Дальние электропередачи сверхвысокого напряжения

Рыжов Ю.П. Дальние электропередачи сверхвысокого напряжения

Рыжов Ю.П. Дальние электропередачи сверхвысокого напряжения

Предисловие

Настоящая книга отражает содержание курсов лекций «Дальние электропередачи переменного тока» и «Электропередачи и вставки постоянного тока», читаемых в настоящее время в Московском энергетическом институте (техническом университете) студентам, специализирующимся в области электроэнергетических систем и сетей. Книга, или отдельные ее главы могут быть полезны и при изучении других курсов, где рассматриваются вопросы передачи электрической энергии на расстояние.¶

Эти курсы лекций, названия которых иногда менялись при сохранении и обогащении их содержания, читаются с 60-х годов прошлого столетия. Они были поставлены по инициативе заведующего кафедрой «Электрические системы» проф. В.А. Веникова, выпустившего в 1960 г. книгу «Дальние электропередачи». В основу этой книги были положены исследования, выполнявшиеся им и сотрудниками кафедры на физической модели электропередачи Куйбышев – Москва. За последующие годы по этим курсам было издано два учебных пособия (1972 и 1985 гг), в настоящее время ставших библиографической редкостью. Кроме того, был издан ряд методических пособий, были разработаны и введены в учебные планы лабораторные работы, расчетные задания, курсовое проектирование.¶

При написании данного учебника был использован весь опыт преподавания упомянутых курсов, накопленный за истекшее время кафедрой «Электроэнергетические системы» МЭИ. В учебнике применительно к требованиям учебного курса систематизируются сведения, приводимые в специальных изданиях и журнальных статьях, рассматриваются основные вопросы, связанные с теорией передачи электрической энергии переменным и постоянным током. При этом главное внимание уделяется режимным характеристикам электропередач.¶

Ряд других не менее важных вопросов, таких как перенапряжения и изоляция, конструктивная часть линий, экономические показатели электропередач, в соответствии с учебным планом излагаются в других курсах, поэтому здесь они рассматриваются сжато или вообще опускаются.¶

Источник