Меню

Что значит источник тока отключен



35. Электродинамика Читать 0 мин.

35.441. Цепи

Через конденсатор постоянный ток не течёт.

Напряжение на параллельных участках цепи одинаково.

В системе отключенных конденсаторов заряд всегда остаётся постоянным. Напряжение и ёмкость может меняться.

Выделившееся количество теплоты равно разности начальной и конечной энергии:

― начальная энергия системы [Дж];

Ек ― конечная энергия системы [Дж].

Начальные и конечные энергии определяются энергиями конденсаторов и катушек индуктивности входящих в цепь.

После установления равновесия, напряжение есть только на конденсаторах, не подключенных параллельно к резисторам.

Конденсатор в цепи постоянного тока

Плоский конденсатор представляет собой пластинки, на которых может скапливаться заряд. Между пластинками находится пространство, заполненное диэлектриком (или воздухом в роли диэлектрика). Поскольку диэлектрики ― вещества, плохо проводящие ток, от одной пластины конденсатора через слой диэлектрика на другую пластину заряд перейти не может, а значит, через конденсатор ток не проходит. Если на участке цепи находится такой конденсатор ― этот участок «заблокирован», тока в нем нет.

Если на участке цепи находится конденсатор не заряженный, или заряженный частично, а цепь подключают к источнику тока ― на обкладках конденсатора начинает скапливаться заряд. Это означает, что на этом участке цепи до конденсатора есть ток ― до тех пор, пока конденсатор не заряжен полностью.

Если цепь от источника тока отключить, и в ней есть заряженный конденсатор ― конденсатор начинает разряжаться. Заряды с одной обкладки конденсатора пытаются перейти на другую, по «длинному пути» ― через всю цепь, создавая, таким образом, ток. Ток в такой цепи будет до тех пор, пока конденсатор не разрядится.

Пример: Пусть в цепи есть два резистора с сопротивлениями R1 и R2, источник ЭДС ε, и конденсатор емкостью C:

Конденсатор C полностью заряжен. В этом случае токи в цепи не проходят через участок цепи FG ― его словно нет в цепи, и в расчетах параметров цепи он не учитывается. Ток считается выходящим из положительно заряженной клеммы источника ЭДС (тонкая и длинная) к входящим в отрицательно заряженную клемму (жирная короткая черта):

Конденсатор разряжен или заряжен не док конца. В этом случае конденсатор только заряжается, и ток в цепи через точку F проходит — вплоть до обкладки конденсатора – но дальше, в точку G ток не проходит.

Конденсатор заряжен, но от источника ЭДС цепь отключена. В этом случае ток идет через всю цепь ― пока конденсатор может служить источником зарядов и пока полностью не разрядится. Когда конденсатор разрядится ― ток в цепи прекратится.

Напряжения на всех параллельных участках цепи равны ― это основное свойство параллельного подключения. Вне зависимости от того, находится на ветви резистор, или конденсатор. Таким образом, во всех случаях для примера выше, напряжение на конденсаторе C равно напряжению на резисторе R1, и равно напряжению на резисторе R2. Благодаря этому свойству, зная, например, энергию, скопившуюся на заряженном конденсаторе, или его заряд, можно вычислить напряжение на резисторах.

Заряженный конденсатор, отключенный от цепи. У заряженного конденсатора на обкладках находится определенное количество заряда. Если конденсатор отключить от цепи ― заряду некуда переместиться, и он остается на конденсаторе неизменным. Получить дополнительный заряд, если он заряжен не до конца, конденсатору тоже неоткуда. Заряд конденсатора, отключенного от цепи, постоянен.

Электроемкость конденсатора ― это его физико-геометрическая характеристика, показывающая, как много заряда он может скопить. Электроемкость конденсатор не зависит ни от заряда на его обкладках, ни от напряжения в цепи.

Электроемкость конденсатора равна C = $\frac <\varphi_2 - \varphi_1>= \frac$ , где

C ― электроемкость конденсатора, [Ф];

(φ2 – φ1) ― разность потенциалов на обкладках конденсатора, [В];

U ― напряжение на обкладках конденсатора [В].

Электроемкость плоского конденсатора зависит от размеров его пластин, расстояния между ними, а также типа диэлектрика, который заполняет пространство между пластинами.

Электроемкость плоского конденсатора равна C = $\frac<\varepsilon\varepsilon_0 S>$ , где

C ― ёмкость конденсатора [Ф];

ε ― диэлектрическая проницаемость;

ε0 ― электрическая постоянная;

S ― площадь обкладок конденсатора [м2];

d ― расстояние между обкладками [м].

В электрической цепи за счет сопротивления, которое преодолевают движущиеся в материале заряды, выделяется тепло. Количество теплоты, которая выделяется в цепи, равно разности начальной и конечной энергии всей системы Q = ¸ где

― начальная энергия системы [Дж];

― конечная энергия системы [Дж].

В цепи энергия скапливается на конденсаторах (энергия электрического поля) и на катушках индуктивности (энергия магнитного поля). Поэтому энергия электромагнитных сил в цепи в любой момент равна сумме энергий на конденсаторах и на катушках, которые входят в цепь.

Энергия электрического поля заряженного конденсатора равна We = $\frac <2>= \frac <2>= \frac<2C>$ , где

We ― энергия электрического поля конденсатора, [Дж];

C ― электроемкость конденсатора, [Ф];

U ― напряжение на обкладках конденсатора, [В];

q ― заряд на обкладках конденсатора, [Кл].

Энергия магнитного поля катушки индуктивности равна E = $\frac<2>$ , где

E ― энергия магнитного поля катушки [Дж];

L ― индуктивность катушки [Гн];

I ― сила тока в катушке [А].

Состояние равновесия и зарядка конденсаторов

Пример 1: в цепи, изображенной на рисунке, есть ЭДС и резисторы с сопротивлениями R1 и R2, оба конденсатора емкостями C1 и C2 разряжены.

Ток от источника ЭДС до конденсатора C1 будет идти до тех пор, пока конденсатор C1 не будет полностью заряжен. При этом от конденсатора C1 дальше заряды не проходят ― ни на резисторы R1 и R2, ни на конденсаторC2. Как только конденсатор C1 полностью заряжается, в системе наступает состояние равновесия ― напряжение на конденсаторе становится равным ЭДС, весь возможный заряд конденсатор принял. Поскольку ток через него не прошел до конденсатора C2 ― этот конденсатор так и остался незаряженным. Напряжение есть лишь на конденсаторе C1, а на конденсаторе C2напряжение равно нулю. Зарядка конденсатораC1:

Читайте также:  Как записать мгновенное значение тока в комплексной форме

После того, как конденсатор C1 заряжен, ток в цепи прекращается.

Пример 2: в цепи, изображенной на рисунке, есть ЭДС и резисторы с сопротивлениями R1 и R2, все три конденсатора емкостями C1, C2 и C3 разряжены.

Ток, выходя из источника ЭДС, разделяется на два тока ― один питает подзарядку конденсатораC1, а другой ― конденсатораC2. Состояние равновесия наступает, когда оба конденсатора полностью заряжены ― в цепи ток больше не проходит. Но так как ток дальше конденсаторов не проходит ― конденсатор C3 не получает заряд, и остается разряженным. Напряжение на конденсаторе C3 равно нулю.

Зарядка конденсаторов C1 иC2:

После того, как конденсаторыC1 и C2 заряжены, ток в цепи прекращается.

Источник

Действия с конденсатором

date image2015-04-17
views image7387

facebook icon vkontakte icon twitter icon odnoklasniki icon

9. Емкость плоского конденсатора С1 = 10 -10 Ф. Диэлектрик – фарфор. Конденсатор зарядили до разности потенциалов U1 = 600 В и отключили от источника. Какую работу необходимо совершить, чтобы вынуть диэлектрик из конденсатора? Трением пренебречь.

Если конденсатор отключили от источника, то напряжение уменьшается, но остается q = const.Энергия конденсатора: Т.к. q=const, то необходимо использовать формулу . Авнеш. = W2 – W1

Если конденсатор остается подключенным к источнику, то q ≠ const, а

U = const = q1/C1 = q2/C2и W = ½ (CU 2 ).

10.Плоский конденсатор электроемкостью 4нФ подсоединен к источнику напряжения 10 В. Затем, не отключая конденсатор от источника, расстояние между его обкладками увеличили в 2 раза.

1) Найти, во сколько раз изменились следующие величины: а) электроемкость конденсатора, б) заряд на его обкладках, в) напряжение на конденсаторе, г) поверхностная плотность заряда, д) напряженность электростатического поля, е) поток Е через пластину конденсатора,

ж) электрическая индукция D, з) плотность энергии электрического поля в конденсаторе,

и) энергия конденсатора.

2) Рассчитать работу, затраченную на изменение расстояния между обкладками.

3) Найти заряд, прошедший через источник.

1) а) если С1 = 4 нФ, то

в) Т.к. конденсатор от источника не отключается, то U2 = U1 = U =10 B, но изменяется заряд:

б) q1= C1U, q2= C2Uq2 / q1 = ½.

г) → σ2 / σ1 = ½. д) Е2 / Е1 = ½.

з)w = ½εεE 2 → w2 / w1 = ¼.

и)Когда U = const, то W = ½CU 2 ,

2) Работа внешних сил, затраченная на изменение расстояние между обкладками, рассчитывается как изменение энергии конденсатора:

A= W2W1 = ½ W1W1 = — ½ W1 = — ¼ C1U 2 = — 10 -7 Дж.

3) Найдем заряд, прошедший через источник:

q = q1q2 = q1 — ½ q1 = ½ q1= ½ C1U = 2∙10 -8 Кл.

Источник

Короткое замыкание

Что такое короткое замыкание

Короткое замыкание (КЗ, англ. short curcuit) — незапланированное соединение точек цепи с различными потенциалами друг с другом или с другими электрическими цепями через пренебрежимо малое сопротивление. При этом образуется сверхток, значения которого на порядки превышают предусмотренные нормальными условиями работы.

Определение КЗ из “Элементарного учебника физики” Ландсберга

короткое замыкание определение

В результате короткого замыкания выходит из строя электрооборудование, происходят возгорания. О самых разрушительных последствиях коротких замыканий мы регулярно узнаем из новостных рубрик «Чрезвычайные происшествия». Что же именно происходит при КЗ? В результате чего они появляются? Какими могут быть последствия? Давайте рассмотрим подробнее эти и другие вопросы в приведенной ниже статье.

Как образуется короткое замыкание

Как мы помним из учебника физики за 8 класс, закон Ома для участка цепи определяется по формуле:

закон Ома формула

I – сила тока в цепи, А

U – напряжение, В

R – сопротивление, Ом

Давайте рассмотрим вот такую схему

Короткое замыкание

Если мы подключим настольную лампу EL к источнику тока Bat и замкнем ключ SA, то вольфрамовая нить лампы начнет разогреваться под тепловым воздействием тока. В этом случае значительная часть электрической энергии преобразуется в световую и тепловую.

А теперь покончим с лирическими отступлениями и замкнем два провода, которые идут на лампочку, через толстый провод AВ

Короткое замыкание

Что будет дальше, если мы замкнем контакты ключа SA?

короткое замыкание

В результате ток пойдет по укороченному пути, минуя нагрузку. Короткий путь в данном случае и есть провод AB. Сопротивление провода АВ близко к нулю. В результате наша схема преобразуется в делитель тока. Согласно правилу делителя тока, если нагрузки соединены параллельно, то через нагрузку с меньшим сопротивлением побежит большая сила тока, а через нагрузку с большим значением сопротивления – меньшая сила тока. Так как провод АВ обладает почти нулевым сопротивлением, то через него потечет большая сила тока, согласно опять же закону Ома:

Короткое замыкание

Как я уже сказал, в режиме КЗ сила тока достигает критических значений, превышающих допустимые для данной цепи.

Закон Джоуля-Ленца

Согласно закону Джоуля-Ленца, тепловое действие тока прямо пропорционально квадрату силы тока на данном участке электрической цепи

закон джоуля ленца формула

Q – это количество теплоты, которое выделяется на сопротивлении нагрузки Rн . Выражается в Джоулях. 1 Джоуль = 1 Ватт х секунда.

I – сила тока в этой цепи, А

Rн – сопротивление нагрузки, Ом

t – период времени, в течение которого происходит выделение теплоты на нагрузке Rн , секунды

Это означает, что на проводе AB будет выделяться бешеное количество теплоты. Провод резко нагреется от температуры, а потом и сгорит. Все зависит от мощности источника питания.

То есть, если ток при коротком замыкании возрастет в 20 раз, то количество выделяющейся при этом теплоты — примерно в 400 раз! Вот почему бывшая еще мгновение назад мирной электроэнергия превращается в настоящее стихийное бедствие: горит проводка, расплавленный металл проводов поджигает находящиеся рядом предметы, возникают пожары.

Существуют еще запланированные и контролируемые КЗ, а также специальное замыкающее оборудование. Например, сварочные аппараты работают как раз на контролируемом КЗ, где требуется большая сила тока для плавки металла.

короткое замыкание сварочный ток

Основные причины короткого замыкания

Все многообразие причин возникновения коротких замыканий можно свести к следующим:

  • Нарушение изоляции
  • Внешние воздействия
  • Перегрузка сети

Нарушение изоляции вызывается как естественным износом, так и внешним вмешательством. Естественное старение элементов электросети ускоряется за счет длительного теплового воздействия тока (тепловое старение изоляции), агрессивных химических сред.

Читайте также:  У идеального источника тока внутреннее сопротивление равно бесконечности

Внешние воздействия могут быть вызваны грызунами, насекомыми и другими животными. Сюда же относится и человеческий фактор. Это может быть “кривой” электромонтаж, либо несоблюдение техники электробезопасности.

Намного чаще короткое замыкание вызывается перегрузкой сети из-за подключения большого количества потребителей тока. Так, если совокупная мощность одновременно включенных в бытовую сеть электроприборов превышает допустимую нагрузку на проводку, с большой вероятностью произойдет короткое замыкание, так как сила тока в такой цепи начинает превышать допустимое значение. Такое явление можно часто наблюдать в домах со старой проводкой, где провода чаще всего алюминиевые и не рассчитаны на современные мощные электроприборы.

Ток короткого замыкания

Сверхток, образующийся в результате КЗ, называется током короткого замыкания. Как только произошло короткое замыкание в цепи, ток короткого замыкания достигает максимальных значений. После того, как провода начнут греться и плавиться, ток короткого замыкания идет на спад, так как сопротивление проводов в при нагреве возрастает.

Для источников ЭДС ток короткого замыкания может быть вычислен по формуле

ток короткого замыкания

Iкз – это ток короткого замыкания, А

E – ЭДС источника питания, В

Rвнутр. – внутреннее сопротивление источника ЭДС, Ом

Более подробно про ЭДС и внутреннее сопротивление читайте здесь.

Ниже на рисунке как раз изображен такой источник ЭДС в виде автомобильного аккумулятора с замкнутыми клеммами

короткое замыкание источник ЭДС

Внутреннее сопротивление автомобильного аккумулятора может достигать значений в доли Ома. Теперь представьте, какой ток короткого замыкания будет течь через проводник, если закоротить им клеммы аккумулятора. Внутреннее сопротивление аккумулятора зависит от многих факторов. Возьмем среднее значение Rвнутр = 0,1 Ом. Тогда ток короткого замыкания будет равен Iкз =E/Rвнутр. = 12/0,1=120 Ампер. Это очень большое значение.

Виды коротких замыканий

В цепи постоянного тока

В этом случае КЗ бывает, как правило, между напряжением питания, которое чаще всего обозначается как “+”, и общим проводом схемы, который соединяют с “-“. Последствия такого КЗ зависят от мощности источника питания постоянного тока. Если в автомобиле голый плюсовой провод заденет корпус автомобиля, который соединяется с “минусом” аккумулятора, то провода начнут плавится и гореть как спички, при условии если не сработает предохранитель, либо вместо него уже стоит “жучок” – самопальный предохранитель. Ниже на фото вы можете увидеть результат такого КЗ.

короткое замыкание сгорел автомобиль

В цепи переменного тока

Трехфазное замыкание

короткое замыкание трехфазное

Это когда три фазных провода коротнули между собой.

Трехфазное на землю

короткое замыкание на землю

Здесь все три фазы соединены между собой, да еще и замкнуты на землю

Двухфазное

короткое замыкание двухфазное

В этом случае любые две фазы замкнуты между собой

Двухфазное на землю

короткое замыкание двухфазное на землю

Любые две фазы замкнуты между собой, да еще и замкнуты на землю

Однофазное на землю

короткое замыкание однофазное на землю

Однофазное на ноль

короткое замыкание фаза ноль

Эти две ситуации чаще всего бывают в ваших квартирах и домах, так как к простым потребителям идет два провода: фаза и ноль.

В трехфазных сетях наиболее часто происходит однофазное замыкание на землю – 60-70% всех коротких замыканий. Двухфазные КЗ составляют 20-25%. Двойное замыкание фаз на землю происходит в электросетях с изолированной нейтралью и составляет 10-15% всех случаев. До 3-5% занимают трехфазные КЗ, при которых происходит нарушение изоляции между всеми тремя фазами.

В электрических двигателях короткое замыкание чаще всего возникает между обмотками двигателя и его корпусом.

Последствия короткого замыкания

Во время КЗ температура в зоне контакта возрастает до нескольких тысяч градусов. Помимо воспламенения изоляции, расплавления и механических повреждений выключателей и розеток и возгорания проводки, следствием замыкания может стать выход из строя компьютерного и телекоммуникационного оборудования и линий связи, которые находятся рядом, вследствие сильного электромагнитного воздействия.

Но падение напряжения и выход из строя оборудования — не самое опасное последствие. Нередко короткие замыкания становятся причиной разрушительных пожаров, зачастую с человеческими жертвами и огромными экономическими потерями.

Из-за удаленности и большого сопротивления до места замыкания защитное оборудование может не сработать. Бывают ситуации, когда ток недостаточен для срабатывания защиты и отключения напряжения, но в месте КЗ его вполне хватает для расплавления проводов и возникновения источников возгорания. Поэтому, токи коротких замыканий очень важны для расчетов аварийных режимов работы.

последствия короткого замыкания

Меры, исключающие короткое замыкание

Еще на заре развития электротехники появились плавкие предохранители. Принцип действия подобной защиты очень прост: под влиянием теплового действия тока предохранитель разрушается, тем самым размыкая цепь. Предохранители наиболее часто используются в бытовых электросетях и бытовых электроприборах, электрическом оборудовании транспортных средств и промышленном электрооборудовании до 1000 В. Встречаются они и в цепях с высоковольтным оборудованием.

Вот такие предохранители используются в цепях с малыми токами

стеклянный предохранитель

вот такие плавкие предохранители вы можете увидеть в автомобилях

автомобильный предохранитель

А вот эти большие предохранители используются в промышленности, и они уже рассчитаны на очень большие значения токов

промышленный плавкий предохранитель

Более сложную конструкцию имеют автоматические выключатели, оснащенные электромагнитными и/или тепловыми датчиками. Ниже на фото однофазный автоматический выключатель, а справа – трехфазный

однофазный автомат трехфазный автомат

Их принцип действия основан на размыкании цепи при превышении допустимых значений силы тока.

В быту мы чаще всего сталкиваемся со следующими устройствами защиты электросети:

  • Плавкие предохранители (применяются в том числе в бытовых электроприборах).
  • Автоматические выключатели.
  • Стабилизаторы напряжения.
  • Устройства дифференциального тока.

Все вышеперечисленное защитное оборудование относится к устройствам вторичной защиты, действующим по инерционному принципу. На вводе бытовых электросетей наиболее часто устанавливаются автоматические защитные устройства, действующие по адаптивному принципу. Такие устройства можно увидеть возле счетчиков электроэнергии квартир, коттеджей, офисов.

В высоковольтных сетях защита чаще обеспечивается:

  • Устройствами релейной защиты и другим отключающим оборудованием.
  • Понижающими трансформаторами.
  • Распараллеливанием цепей.
  • Токоограничивающими реакторами.

Большинства коротких замыканий можно избежать, если устранить основные причины их возникновения: своевременно ремонтировать или заменять изношенное оборудование, исключить вредные воздействия человека. Не допускать неправильных действий при монтажных и ремонтных работах, соблюдать СНИПы и правила техники безопасности.

Читайте также:  Сила тока сечение трехфазная сеть

Источник

Токи при включении и выключении источника тока в электрической цепи (для самостоятельной работы).

Характерным примером явления самоиндукции служат так назы-ваемые токи замыкания и размыкания в электрических цепях постоян-ного тока. При включении (выключении) источника энергии возраста-ние силы тока при замыкании электрической цепи и убывание силы тока при ее размыкании происходит не мгновенно, а постепенно.

Представим себе, что мы замыкаем контур, в результате чего в нем возникает электрический ток. При этом магнитное поле тока возрастает, а следовательно, возрастает и поток магнитной индукции через пло-щадь, ограниченную контуром. Согласно правилу Ленца, возникающий индукционный ток будет создавать поток индукции, компенсирующий увеличение первоначального магнитного потока. Следовательно, инду-цируется ток, создающий магнитное поле, направленное противополож-но магнитному полю первоначального тока. Отсюда заключаем, что ин-дукционный ток направлен противоположно замыкаемому току. Этот индуцируемый ток обратного направления называется током замыка-ния.Ток замыкания уменьшает ток,идущий в контуре.Наличие токазамыкания приводит к тому, что нарастание тока в цепи при его вклю-чении происходит медленнее, чем при отсутствии тока.

Аналогичное явление мы наблюдаем при размыкании цепи. Если в контуре сила тока падает , то при этом уменьшается поток магнитной индукции через площадь, ограниченную контуром. В контуре инду-цируется ток, создающий по правилу Ленца поток индукции, увели-

II

чивающий уменьшающийся поток, т. е. индуцируется ток в том же направлении, в котором шел основной ток. Этот индуцируемый ток называется током размыкания. Ток размыкания направлен в ту же сторону, что и основной ток.

1 ε

Ток замыкания и размыкания можно наблюдать с помощью схемы, представленной на рис. 3.5.1, содержащей индуктивность L, не зависящую от силы тока I, сопротивление R и источник электро-энергии с э. д. с. ε.

Определим характер изменения силы тока при замыкании элек-трической цепи. Переведем переключатель К в положение 1. В этом случае в цепи будет действовать ЭДС ε источника и ЭДС самоин-

дукции ε c = −L di . Тогда, благодаря явлению самоиндукции, полная
dt IR =ε+εc=ε − L di
э. д. с. в контуре будет равна , откуда сила тока в
контуре окажется равной: dt
ε − L di
I = dt . (3.5.1)
ε R
Замечая, что величина = I – установившееся в цепи значение
R

силы тока, который протекал бы по контуру при отсутствии самоин-дукции, перепишем выражение (3.5.1) в виде:

I I = L dI . (3.5.2)
R dt

Так как значение I постоянно, то dI можно заменить на –d(II), то-

гда d ( I 0 − I ) = − R L dt. Интегрируя обе части этого выражения, получим:

ln( I I ) = − R t +ln C. (3.5.3)
L

Произвольную постоянную lnС определим из условия, что I = 0 при t = 0, откуда lnC = lnI и выражение (3.5.3) принимает вид:

ln I I = − R t I I = I e R t ,
L
I L
или окончательно получим:
I = I (1− e R t ) = ε (1 −e R t ).
L L
R

Это выражение показывает, что при включении э. д. с. ток в цепи не сразу достигает значения I, но достигает его постепенно и теммедленнее, чем больше коэффициент самоиндукции контура L и чем меньше сопротивление контура R. Графически зависимость силы тока от времени при включении изображена на рис. 3.5.2, кривая 1. Теоре-тически ток должен достигнуть своего конечного значения I лишь через бесконечно большой промежуток времени. Практически для обычных значений коэффициента самоиндукции L, ток достигает сво-его предельного значения весьма быстро.

1
2
t
Рис. 3.5.2
Величина L = τ, имеющая размерность времени, называется по-
R

стоянной цепи.

Теперь рассмотрим случай размыкания цепи. Для этого переклю-чатель К (рис. 3.5.1) переведем из положения 1 в положение 2.

Чтобы выяснить характер тока размыкания, предположим, что в некотором контуре первоначально существовала э. д. с., которая под-держивала в нем силу тока I. Затем в момент времени, для которого мы примем t = 0, эта э. д. с. выключается, но контур остается замкну-

тым, причем полное сопротивление его равно R. Тогда в контуре ток прекратится не сразу, но будет продолжать идти еще некоторое время

за счет э. д. с. самоиндукции ε c = −L dI dt .

Сила тока самоиндукции определится законом Ома: Ic = ε R c = − R L dI dt .

Это равенство можно переписать в виде: dI I = − R L dt, что пред-

ставляет собой дифференциальное уравнение, определяющее зависи-мость силы тока самоиндукции от времени.

Интегрируя правую и левую части уравнения, получим:

ln I = − R t + ln C, (3.5.6)
L

где С − произвольная постоянная. Значение этой произвольной посто-янной получим из условия, что I = I при t = 0, откуда: lnI = lnC. Та-ким образом, получим:

ln I = − R t ,или I = I e R t . (3.5.7)
L
I L

Это соотношение показывает, что сила тока при выключении э. д. с.

спадает по экспоненциальному закону,при этом спадает тем медлен-

нее, чем больше коэффициент самоиндукции L и чем меньше сопро-тивление R. Зависимость силы тока размыкания от времени графиче-ски представлена на рис. 3.5.2, кривая 2.

Время t , в течение которого сила тока размыкания спадает до поло-вины своей первоначальной величины, определится из соотношения

R I 1 L
I = I e L t , если в нем положить = , откуда t = ln 2 . Скорость убы-
I R

вания определяется постоянной времени цепи: τ= R L . Величина τ есть

время, в течение которого сила тока уменьшается в e раз (е = 2,72 – осно-вание натурального логарифма).

R t ε R t ε t
I = I e L = e L = e τ . (3.5.8)
R R

Существование токов размыкания позволило обнаружить явле-ние сверхпроводимости. При сверхпроводимости R → 0 и ток по-сле выключения э. д. с. будет продолжаться в контуре сколь угодно долго, не ослабевая. Опыты Каммерлинг − Оннеса, приведшие к от-

крытию сверхпроводимости, производились следующим образом: соленоид, концы которого были соединены друг с другом, поме-щался между полюсами электромагнита, после чего охлаждался жидким гелием до температуры, при которой материал его провода становился сверхпроводящим. Затем магнитное поле электромагни-та выключалось. При этом в соленоиде возникал индукционный ток. При обычных условиях этот ток прекратился бы через весьма малый промежуток времени. При наличии же сверхпроводимости он про-должал идти по соленоиду в течение многих часов, не обнаруживая заметного ослабления.

Дата добавления: 2017-01-08 ; просмотров: 3031 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник