Меню

Что такое временные диаграммы токов



2. Временная диаграмма

Временная диаграмма представляет графическое изображение синусоидальной величины в заданном масштабе в зависимости от времени (рис. 2.1).

3. Графоаналитический способ

Рис. 2.2

Графически синусоидальные величины изображаются в виде вращающегося вектора (рис. 2.2). Предполагается вращение против часовой стрелки с частотой вращения ω. Величина вектора в заданном масштабе представляет амплитудное значение. Проекция на вертикальную ось есть мгновенное значение величины.

Совокупность векторов, изображающих синусоидальные величины (ток, напряжение, ЭДС) одной и той же частоты называют векторной диаграммой.

Векторные величины отмечаются точкой над соответствующими переменными.

Использование векторных диаграмм позволяет существенно упросить анализ цепей переменного тока, сделать его простым и наглядным.

В основе графоаналитического способа анализа цепей переменного тока лежит построение векторных диаграмм.

Пример (рис. 2.3)

Рис. 2.3

Первый закон Кирхгофа выполняется для мгновенных значений токов:

Приравниваем проекции на вертикальную и горизонтальные оси (рис. 2.4):

Рис. 2.4

Из равенств (2.4 – 2.5) получаем

; .

4. Аналитический метод с использованием комплексных чисел

Рис. 2.5

Синусоидальный ток i(t) = Im sin(ωt + ψ) можно представить комплексным числом Ím на комплексной плоскости (рис. 2.5)

где амплитуда тока Im – модуль, а угол ψ, являющийся начальной фазой, – аргумент комплексного тока.

Использование комплексной формы представления позволяет заменить геометрические операции над векторами алгебраическими операциями над комплексными числами. В результате этого к анализу цепей переменного тока могут быть применены все методы анализа цепей постоянного тока. Подробнее этот метод будет рассмотрен ниже.

2.2. Действующее значение переменного тока и напряжения

Для сравнения действий постоянного и переменного токов вводят понятие действующее значение переменного тока.

Действующее значение переменного тока численно равно такому постоянному току, при котором за время равное одному периоду в проводнике с сопротивлением R выделяется такое же количество тепловой энергии, как и при переменном токе.

Читайте также:  Сила тока для микромира

Определим количество энергии, выделяемой за период в проводнике с сопротивлением R для каждого из токов и приравняем их.

Для любой из синусоидальных величин получаем

; .

Условились, что все измерительные приборы показывают действующие значения. Например, 220 В – действующее значение, тогда .

2.3. Элементы электрической цепи синусоидального тока

Индуктивность

Вокруг всякого проводника с током образуется магнитное поле, которое характеризуется вектором магнитной индукции В и магнитным потоком Ф:

.

Если поле образуют несколько (w) проводников с одинаковым током, то используют понятие потокосцепления ψ

Отношение потокосцепления к току, который его создает называют индуктивностью катушки

При изменении во времени потокосцепления согласно закону Фарадея возникает ЭДС самоиндукции

С учетом соотношения (2.8) для eL получаем

Эта ЭДС всегда препятствует изменению тока (закон Ленца). Поэтому, чтобы через проводники все время тек ток, необходимо к проводникам прикладывать компенсирующее напряжение

Сопоставляя уравнения (2.9) и (2.10) получаем

Это соотношение является аналогом закона Ома для индуктивности. Конструктивно индуктивность выполняется в виде катушки с проводом.

Условное обозначение индуктивности

Катушка с проводом кроме свойства создавать магнитное поле обладает активным сопротивлением R.

Условное обозначение реальной индуктивности.

Единицей измерения индуктивности является Генри (Гн). Часто используют дробные единицы

1 мкГн = 10 –6 Гн; 1 мкГн = 10 –3 Гн.

Все проводники с электрическим зарядом создают электрическое поле. Характеристикой этого поля является разность потенциалов (напряжение). Электрическую емкость определяют отношением заряда проводника к напряжению

С учетом соотношения

получаем формулу связи тока с напряжением

Для удобства ее интегрируют и получают

uC = 1 / C · ∫ i dt.

Это соотношение является аналогом закона Ома для емкости.

Конструктивно емкость выполняется в виде двух проводников разделенных слоем диэлектрика. Форма проводников может быть плоской, трубчатой, шарообразной и др.

Читайте также:  Магнитный поток взаимосвязь с индукционным током

Единицей измерения емкости является фарада:

1Ф = 1Кл / 1В = 1Кулон / 1Вольт.

Оказалось, что фарада является большой единицей, например, емкость земного шара равна ≈ 0,7 Ф. Поэтому чаще всего используют дробные значения

1 пФ = 10 –12 Ф, (пФ – пикофарада); 1 нФ = 10 –9 Ф, (нФ – нанофарада); 1 мкФ = 10 –6 Ф, (мкФ – микрофарада).

Условным обозначением емкости является символ

Источник

Что такое векторная диаграмма токов и напряжений? Как построить график

Использование векторных диаграмм при анализе, расчете цепей переменного тока делает возможным рассмотреть более доступно и наглядно происходящие процессы, а также в некоторых случаях значительно упростить выполняемые расчеты.

Векторной диаграммой принято называть геометрическое представление изменяющихся по синусоидальному (либо косинусоидальному) закону направленных отрезков — векторов, отображающих параметры и величины действующих синусоидальных токов, напряжений либо их амплитудных величин.

Широкое применение векторные диаграммы нашли в электротехнике, теории колебаний, акустике, оптике и т.д.

Различают 2-х вида векторных диаграмм:

  • точные;
  • качественные.

Интересное видео о векторных диаграммах смотрите ниже:

Точные изображаются по результатам численных расчетов при условии соответствия масштабов действующих значений. При их построении можно геометрически определить фазы и амплитудные значения искомых величин.

Васильев Дмитрий Петрович

Они являются одним из основных средств анализа электрических цепей, позволяя наглядно иллюстрировать и качественно контролировать ход решения задачи и легко установить квадрант, в котором располагается искомый вектор.

Векторная диаграмма токов и напряжений 1

Для удобства при построении диаграмм анализируют неподвижные векторы для определенного момента времени, который выбирается таким образом, чтобы диаграмма имела удобный для понимания вид. Ось OХ соответствует величинам действительных чисел, ось OY — оси мнимых чисел (мнимая единица). Синусоида отображает движение конца проекции на ось OY. Каждому напряжению и току соответствует собственный вектор на плоскости в полярных координатах. Его длина отображает амплитудное значение величины тока, при этом угол равен фазе.

Читайте также:  Источник тока служит для обнаружения в проводнике движения электронов

Векторы, изображаемые на такой диаграмме, характеризуются равновеликой угловой частотой ω. В виду чего при вращении их взаимное расположение не изменяется.

Ещё одно полезное видео о векторных диаграммах:

Поэтому при изображении векторных диаграмм один вектор можно направить произвольным образом (например, по оси ОХ).

А остальные — изображать по отношению к исходному под различными углами, соответственно равными углам сдвига фаз.

Векторная диаграмма токов и напряжений 3

Таким образом, векторная диаграмма дает отчетливое представление об опережении либо отставании различных электрических величин.
Допустим у нас есть ток, величина которого изменяется по некоторому закону:

i = Im sin (ω t + φ).

С начала координат 0 под углом φ проведем вектор Im, величина которого соответствует Im. Его направление выбирается так, чтобы с положительным направлением оси OX вектор составлял угол — соответствующий фазе φ.

Абрамян Евгений Павлович

В основном векторные диаграммы изображают для действующих значений, а не амплитудных. Векторы действующих значений количественно отличаются от амплитудных значений — масштабом, поскольку:

I = Im /√2.

Векторная диаграмма токов и напряжений 4

Основным преимуществом векторных диаграмм называют возможность простого и быстрого сложения и вычитания 2-х параметров при расчете электроцепей.

Источник