Что такое ток утечки при испытании кабеля

Содержание
  1. Утечка тока
  2. Подписка на рассылку
  3. ПУЭ-7 п.1.8.40 Нормы приемо-сдаточных испытаний. Силовые кабельные линии
  4. Таблица 1.8.39 Испытательное напряжение выпрямленного тока для силовых кабелей
  5. Таблица 1.8.40 Токи утечки и коэффициенты асимметрии для силовых кабелей
  6. Таблица 1.8.41 Нормы на показатели качества масел марок С-220, МН-3 и МН-4 и изоляционной жидкости марки ПМС
  7. Таблица 1.8.42 Тангенс угла диэлектрических потерь масла и изоляционной жидкости (при 100, %, не более, для кабелей на напряжение, кВ)
  8. Когда проводится проверка кабельных линий лабораторией?
  9. Определяемые характеристики.
  10. Порядок проведения испытаний и измерений.
  11. Методы испытаний.
  12. Измерение сопротивления изоляции.
  13. Испытание повышенным напряжением выпрямленного тока.
  14. Допустимые токи утечки и значения коэффициента ассиметрии для силовых кабелей.
  15. Периодичность испытаний в процессе эксплуатации.
  16. Измерение распределения тока по одножильным кабелям
  17. Испытание кабеля повышенным напряжением
  18. Подготовка к испытанию
  19. Причины и физика испытания
  20. Схемы испытаний
  21. Нормы испытаний
  22. Аппараты для испытаний
  23. Методика испытания кабеля повышенным напряжением
  24. Периодичность
  25. Оформление результатов испытаний в виде протокола (пример)
  26. Интересное видео

Утечка тока

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Утечка тока

По одному из определений из открытых источников утечка тока – это ток между находящейся под напряжением фазой и землей вследствие снижения сопротивления изоляции. Или, проще говоря, это ток, который протекает по нежелательным проводящим путям в нормальных условиях эксплуатации.

Почему проверка тока утечки становится актуальной необходимостью, а в некоторых случаях и неизбежностью разберемся далее.

Вообще ток возникает там, где создается для его протекания замкнутая цепь. Замкнутая через заземленные конструкции, через тело человека, через материалы и вещества в различном физическом состоянии, способные проводить ток, который тем больше, чем меньше омическое сопротивление на участке цепи и ниже сопротивление изоляции токоведущих частей под напряжением.

Утечку тока можно обнаружить случайно, например, по расходу электроэнергии, зафиксированному прибором учета при выключенных электроприборах, по непонятным пощипываниям при прикосновении к корпусам электроприборов, по срабатыванию устройства дифференциального тока.

Поскольку режим этот не нормальный, как определились выше, то, как найти утечку тока? Для этого существует несколько доступных способов.

как найти утечку тока

Косвенно для приближенной оценки ситуации в домашних условиях подойдет индикаторная отвёртка, которая при контакте с корпусом «подозреваемого» бытового устройства известит световой индикацией о наличии потенциала. Например, при повреждении изоляции стиральной машины, напряжение может появиться даже на смесителе, который вовлекается в цепочку за счёт общего водопровода. В этом случае стоит обязательно проверить надежность защитного заземления с заземляющим контактом вилки машинки.

Для точных измерений можно воспользоваться мультиметром в режиме измерения тока. Желательно перед этим в проверяемых цепях вытащить вилки электроприборов, а работу производить в щите. Чтобы не отсоединять провода, проще всего приложить щупы мультиметра к верхнему и нижнему контакту автоматического выключателя проверяемой цепи, а только потом отключить автомат. Мультиметр утечку тока определит, но единственный минус – на минимальное время цепь останется без защиты. Потом автомат включается обратно, после чего можно убрать щупы.

Мультиметр утечку тока

Значительно проще воспользоваться токоизмерительными клещами. Устройством можно измерить ток утечки в начале линии в щитке, обхватив разъемным магнитопроводом одновременно фазный и нулевой проводники. При таком способе при отключенных потребителях оценивается величина тока утечки в проводке. Сами клещи должны иметь для таких измерений подходящую чувствительность либо быть специальных типов под эти задачи.

Далее можно подобное измерение произвести непосредственно в месте подключения к сети в рабочем режиме конкретного электроприбора, правда, для этого придется сделать переходник с выделенными жилами фазы и ноля.

При этом следует понимать, что даже в исправной проводке и оборудовании токи утечки так или иначе есть, но их суммарная величина в линии не должна превышать допустимых значений.

Источник

ПУЭ-7 п.1.8.40 Нормы приемо-сдаточных испытаний. Силовые кабельные линии

Силовые кабельные линии

Силовые кабельные линии напряжением до 1 кВ испытываются по пп.1, 2, 7, 13, напряжением выше 1 кВ и до 35 кВ — по пп.1-3, 6, 7, 11, 13, напряжением 110 кВ и выше — в полном объеме, предусмотренном настоящим параграфом.

1. Проверка целостности и фазировки жил кабеля. Проверяются целостность и совпадение обозначений фаз подключаемых жил кабеля.

2. Измерение сопротивления изоляции. Производится мегаомметром на напряжение 2,5 кВ. Для силовых кабелей до 1 кВ сопротивление изоляции должно быть не менее 0,5 МОм. Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется. Измерение следует производить до и после испытания кабеля повышенным напряжением.

3. Испытание повышенным напряжением выпрямленного тока.

Испытательное напряжение принимается в соответствии с табл.1.8.39.

Таблица 1.8.39 Испытательное напряжение выпрямленного тока для силовых кабелей

Кабели с бумажной изоляцией на напряжение, кВ

Кабели с пластмассовой изоляцией на напряжение, кВ

Кабели с резиновой изоляцией на напряжение, кВ

* Испытания выпрямленным напряжением одножильных кабелей с пластмассовой изоляцией без брони (экранов), проложенных на воздухе, не производятся.

Для кабелей на напряжение до 35 кВ с бумажной и пластмассовой изоляцией длительность приложения полного испытательного напряжения составляет 10 мин.

Для кабелей с резиновой изоляцией на напряжение 3-10 кВ длительность приложения полного испытательного напряжения составляет 5 мин. Кабели с резиновой изоляцией на напряжение до 1 кВ испытаниям повышенным напряжением не подвергаются.

Для кабелей на напряжение 110-500 кВ длительность приложения полного испытательного напряжения составляет 15 мин.

Допустимые токи утечки в зависимости от испытательного напряжения и допустимые значения коэффициента асимметрии при измерении тока утечки приведены в табл.1.8.40. Абсолютное значение тока утечки не является браковочным показателем. Кабельные линии с удовлетворительной изоляцией должны иметь стабильные значения токов утечки. При проведении испытания ток утечки должен уменьшаться. Если не происходит уменьшения значения тока утечки, а также при его увеличении или нестабильности тока испытание производить до выявления дефекта, но не более чем 15 мин.

Таблица 1.8.40 Токи утечки и коэффициенты асимметрии для силовых кабелей

Кабели напряжением, кВ Испытательное напряжение, кВ Допустимые значения токов утечки, мА Допустимые значения коэффициента асимметрии ()
6 36 0.2 8
10 60 0.5 8
20 100 1.5 10
35 175 2.5 10
110 285 Не нормируется Не нормируется
150 347 То же То же
220 610 « «
330 670 « «
500 865 « «

При смешанной прокладке кабелей в качестве испытательного напряжения для всей кабельной линии принимать наименьшее из испытательных напряжений по табл.1.8.39.

4. Испытание напряжением переменного тока частоты 50 Гц.

Такое испытание допускается для кабельных линий на напряжение 110-500 кВ взамен испытания выпрямленным напряжением.

Испытание производится напряжением (1,00-1,73) . Допускается производить испытания путем включения кабельной линии на номинальное напряжение . Длительность испытания — согласно указаниям завода-изготовителя.

5. Определение активного сопротивления жил. Производится для линий 20 кВ и выше. Активное сопротивление жил кабельной линии постоянному току, приведенное к 1 мм сечения, 1 м длины и температуре +20 °С, должно быть не более 0,0179 Ом для медной жилы и не более 0,0294 Ом для алюминиевой жилы. Измеренное сопротивление (приведенное к удельному значению) может отличаться от указанных значений не более чем на 5%.

6. Определение электрической рабочей емкости жил.

Производится для линий 20 кВ и выше. Измеренная емкость не должна отличаться от результатов заводских испытаний более чем на 5%.

7. Проверка защиты от блуждающих токов.

Производится проверка действия установленных катодных защит.

8. Испытание на наличие нерастворенного воздуха (пропиточное испытание).

Производится для маслонаполненных кабельных линий 110-500 кВ. Содержание нерастворенного воздуха в масле должно быть не более 0,1%.

9. Испытание подпитывающих агрегатов и автоматического подогрева концевых муфт.

Производится для маслонаполненных кабельных линий 110-500 кВ.

10. Проверка антикоррозийных защит.

При приемке линий в эксплуатацию и в процессе эксплуатации проверяется работа антикоррозионных защит для:

— кабелей с металлической оболочкой, проложенных в грунтах со средней и низкой коррозионной активностью (удельное сопротивление грунта выше 20 Ом/м), при среднесуточной плотности тока утечки в землю выше 0,15 мА/дм;

Читайте также:  Как открыть биполярный транзистор током или напряжением

— кабелей с металлической оболочкой, проложенных в грунтах с высокой коррозионной активностью (удельное сопротивление грунта менее 20 Ом/м) при любой среднесуточной плотности тока в землю;

— кабелей с незащищенной оболочкой и разрушенными броней и защитными покровами;

— стального трубопровода кабелей высокого давления независимо от агрессивности грунта и видов изоляционных покрытий.

При проверке измеряются потенциалы и токи в оболочках кабелей и параметры электрозащиты (ток и напряжение катодной станции, ток дренажа) в соответствии с руководящими указаниями по электрохимической защите подземных энергетических сооружений от коррозии.

Оценку коррозионной активности грунтов и естественных вод следует производить в соответствии с требованиями ГОСТ 9.602-89.

11. Определение характеристик масла и изоляционной жидкости.

Определение производится для всех элементов маслонаполненных кабельных линий на напряжение 110-500 кВ и для концевых муфт (вводов в трансформаторы и КРУЭ) кабелей с пластмассовой изоляцией на напряжение 110 кВ.

Пробы масел марок С-220, МН-3 и МН-4 и изоляционной жидкости марки ПМС должны удовлетворять требованиям норм табл.1.8.41 и 1.8.42.

Таблица 1.8.41 Нормы на показатели качества масел марок С-220, МН-3 и МН-4 и изоляционной жидкости марки ПМС

Для вновь вводимой линии

Пробивное напряжение в стандартном сосуде, кВ, не менее

Степень дегазации (растворенный газ), не более

Примечание. Испытания масел, не указанных в табл.1.8.39, производить в соответствии с требованием изготовителя.

Таблица 1.8.42 Тангенс угла диэлектрических потерь масла и изоляционной жидкости (при 100, %, не более, для кабелей на напряжение, кВ)

110 150-220 330-500
0,5/0,8* 0,5/0,8* 0,5/-

* В числителе указано значение для масел марок С-220, в знаменателе — для МН-3, МН-4 и ПМС

Если значения электрической прочности и степени дегазации масла МН-4 соответствуют нормам, а значения tg δ, измеренные по методике ГОСТ 6581-75, превышают указанные в табл.1.8.42, пробу масла дополнительно выдерживают при температуре 100 °С в течение 2 ч, периодически измеряя . При уменьшении значения tg δ проба масла выдерживается при температуре 100 °С до получения установившегося значения, которое принимается за контрольное значение.

12. Измерение сопротивления заземления.

Производится на линиях всех напряжений для концевых заделок, а на линиях 110-500 кВ, кроме того, для металлических конструкций кабельных колодцев и подпиточных пунктов.

Источник

Когда проводится проверка кабельных линий лабораторией?

Испытания кабельных линий проводятся со следующей периодичностью:

  • ежегодно — для силовых питающих и распределительных линий с резиновой изоляцией, обслуживающих объекты жизнеобеспечения населенных пунктов и других важных потребителей;
  • каждые 3 года — для основных питающих линий 6–35 кВ;
  • каждые 5 лет — для резервных линий.
  • Внеочередные – при аварийном отключении электрооборудования.

Испытание кабеля повышенным напряжением проводится для оценки соответствия величины сопротивления, коэффициента абсорбции и других параметров изолирующей оболочки установленным нормам. В процессе испытательных мероприятий выявляются дефекты, способные спровоцировать аварию и выход из строя дорогостоящего электрооборудования.

Определяемые характеристики.

  • Проверка целостности и фазировки жил кабеля;
  • Измерение сопротивления изоляции;
  • Испытание повышенным напряжением выпрямленного тока;
  • Испытание повышенным напряжением переменного тока частотой 50Гц.
  • Измерение распределения тока по одножильным кабелям;

Порядок проведения испытаний и измерений.

  • Изучение проектной документации.
  • Ознакомление с паспортами проверяемого оборудования.
  • Выполнение организационных и технических мероприятий при проведение измерений в действующих электроустановках.
  • Проверка работоспособности измерительных приборов в соответствие с инструкциями по эксплуатации.
  • Проведение испытаний в объеме требований главы 1.8 ПУЭ.

Методы испытаний.

1. Проверка целости и фазировки жил кабеля.

Определение целости жил и фазировка КЛ производится после окончания монтажа, перемонтажа муфт или отсоединения жил кабеля в процессе эксплуатации.

Определение целости жил кабелей напряжением до 10кВ производится мегаомметром. После включения КЛ под напряжение производится проверка правильности ее фазировки.

Сущность фазировки под напряжением заключается в определении соответствия фазы кабеля, находящейся под напряжением от распределительного устройства с противоположного конца кабеля, предполагаемой одноименной фазе шин распределительного устройства, где производится фазировка. Для фазировки КЛ 6 и 10 кВ под напряжением применяются указатели напряжения 10 кВ в комплекте с добавочным сопротивлением рисунок №1. Целость и совпадение обозначений фаз подключаемых жил кабеля должна соответствовать.

Рис. №1 Фазировка кабельных линий под напряжением.

а – соответствие фаз кабеля и шин; б – разные фазы шин и кабеля в месте присоединения последнего; 1 – указатель напряжения; 2 – трубка сопротивления; 3 – провод; 4 – шина; 5 – концевая заделка; 6 – кабель; 7 – разъем спуска шин.

Измерение сопротивления изоляции.

Измерение сопротивления изоляции высоковольтных кабелей проводят на полностью отключенном кабеле.

Перед проверкой необходимо проверить надёжность заземления кабельных воронок, брони и подключить к переносному заземлению со специальными зажимами (крокодилами). Второй конец кабеля остаётся свободным, жилы должны быть разведены на достаточное расстояние (примерно 150 — 200 мм).

В случае невозможности обеспечить требуемое расстояние между жилами и жил кабеля до заземлённых частей оборудования, на жилы надеваются изолирующие колпаки или накладки.

Перед началом измерений необходимо убедиться, что на испытываемом объекте нет

напряжения, тщательно очистить изоляцию от пыли. Измерения следует производить при устойчивом положении стрелки прибора; для этого нужно быстро, но равномерно, вращать ручку генератора (120 об/мин) в течение 60 сек. Сопротивление изоляции определяется показанием стрелки прибора мегаомметра. Для присоединения мегаомметра к испытываемому аппарату или линии следует применять раздельные провода с большим сопротивлением изоляции (не менее 100 мОм).

Мегаомметром поочерёдно измеряется сопротивление жил, при этом на свободные от измерения жилы устанавливается переносное заземление. Схема для измерения сопротивления изоляции силовых кабельных линий изображена на рисунке №2

Рис. №2 Схема измерения сопротивления изоляции силового кабеля.

Измерение сопротивления изоляции силовых и контрольных кабелей напряжением до 1000В проводят аналогично, при этом измерения производятся между каждыми двумя проводами (между фазами, между фазными жилами и нулем, между фазными жилами и защитным проводником и между нулевым и защитным проводником). При измерении разрешается объединять нулевой рабочий и нулевой защитный проводники. У четырехжильных кабелей измерение сопротивления изоляции нулевого проводника производится относительно заземленных частей электрооборудования.

Перед первыми или повторными измерениями КЛ должна быть разряжена путем соединения всех металлических элементов между собой и землей не менее чем на 2 мин. Сопротивление изоляции кабелей до 1 кВ должно быть не менее 0,5 МОм. Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется. Измерение следует производить до и после испытания кабеля повышенным напряжением.

Испытание повышенным напряжением выпрямленного тока.

Испытание изоляции кабельных линий повышенным напряжением выпрямленного тока производится с целью выявления местных сосредоточенных дефектов, которые не обнаруживаются при измерении мегаомметром, путем доведения их в процессе испытания до пробоя. Такое испытание повышенным напряжением выпрямленного тока производится от специальной установки типа: АИД-70, СКАТ-70 и т.п.

Напряжение от установки прикладывается поочередно к каждой фазе кабеля, при заземлении двух других фаз и оболочки кабеля (аналогично проведению измерения изоляции мегаомметром). Схема испытания кабеля повышенным напряжением выпрямленного тока изображена на рисунке №3.

Рис. №3 Испытание кабеля повышенным напряжением выпрямленного тока.

Изоляция одножильных кабелей без металлического экрана (оболочки, брони),

проложенных на воздухе, не испытываются. Изоляция одножильных кабелей с металлическим экраном (оболочкой, броней) испытываются между жилой и экраном. Изоляция многожильных кабелей без металлического экрана (оболочки, брони) испытываются между каждой жилой и остальными жилами, соединенными между собой и землей.

Изоляция многожильных кабелей с общим металлическим экраном (оболочкой, броней) испытывается между каждой жилой и остальными жилами, соединенными между собой и экраном (оболочкой, броней). При всех указанных выше видах испытаний металлические экраны (оболочки, броня) должны быть заземлены. Пластмассовые оболочки (шланги) кабелей, проложенных в земле, испытываются между отсоединенными от земли экранами (оболочками) и землей. Пластмассовые оболочки (шланги) кабелей, проложенных на воздухе не испытываются. Значение испытательного напряжения принимается в соответствии с таблицей №2

Читайте также:  Как рассчитывать схемы с источниками тока

Испытательное напряжение кВ, для силовых кабелей.

Вид испытаний Испытательное напряжение (кВ) для кабельных линий
Кабели с бумажной изоляцией
До 1кВ 6кВ 10кВ
П 6 36 60
К 2,5 36 60
М 36 60
Вид испытаний Кабели с пластмассовой изоляцией
До 1кВ* 6кВ 10кВ
П 3,5 36 60
К 36 60
М 36 60
Вид испытаний Кабели с резиновой изоляцией
До 3кВ 6кВ 10кВ
П 6 12 20
К 6 12 20
М 6** 12** 20**

* — испытание повышенным напряжением одножильных кабелей с пластмассовой изоляцией без брони (экранов), проложенных в воздухе, не производится.

** — после ремонтов, не связанных с перемонтажом кабеля, изоляция проверяется мегаомметром на напряжение 2500В, а испытание повышенным выпрямленным напряжением не производится.

Для кабелей на напряжение до 10кВ с бумажной и пластмассовой изоляцией длительность приложения полного испытательного напряжения при приёмосдаточных испытаниях 10 минут, в эксплуатации 5 минут. Для кабелей с резиновой изоляцией на напряжение 6-10кВ длительность приложения полного испытательного напряжения 5 минут.

Допустимые токи утечки в зависимости от испытательного напряжения и допустимые значения коэффициента асимметрии при измерении тока утечки приведены в таблице №3. абсолютное значение тока утечки не является браковочным показателем. Кабельные линии с удовлетворительной изоляцией должны иметь стабильные значения токов утечки. При проведении испытаний ток утечки должен уменьшаться. Если не происходит уменьшения тока утечки, а также при его увеличении или нестабильности, испытание производится до выявления дефекта, но не более чем 15 минут.

Допустимые токи утечки и значения коэффициента ассиметрии для силовых кабелей.

Кабели напряжением (кВ) Испытательное напряжение (кВ) Допустимые значения токов утечки (мА) Допустимые значения коэфф. ассиметрии
6 36 0,2 8
10 45 0,3 8
50 0,5 8
60 0,5 8

Разрешается техническому руководителю предприятия в процессе эксплуатации (М) исходя их местных условий как исключение уменьшать уровень испытательного напряжения для кабельных линий напряжением 6-10кВ до 0,4Uн.

Периодичность испытаний в процессе эксплуатации.

Кабели напряжением 2-35кВ:

а) 1 раз в год – для кабельных линий в течение первых 2 лет после ввода в эксплуатацию, а в дальнейшем:

  • 1 раз в 2 года – для кабельных линий, у которых в течение первых 2 лет не наблюдалось аварийных пробоев и пробоев при профилактических испытаниях, 1 раз в год для кабельных линий, на трассах которых производились строительные и ремонтные работы и на которых систематически происходят аварийные пробои изоляции;
  • 1 раз в 3 года – для кабельных линий на закрытых территориях (подстанции, заводы и т.д.);во время капитальных ремонтов оборудования для кабельных линий, присоединённых к агрегатам, кабельных перемычек 6-10кв между сборными шинами и трансформаторами в ТП и РП;

б) Допускается не проводить испытание:

  • Для кабельных линий длиной до 100 метров, которые являются выводами из РУ и ТП на воздушные линии и состоящих из двух параллельных кабелей;
  • Для кабельных линий со сроком эксплуатации более 15 лет, на которых удельное число отказов из-за электрического пробоя составляет 30 и более отказов на 100 километров в год;
  • Для кабельных линий, подлежащих реконструкции или выводу из работы в ближайшие 5 лет;

в) Допускается распоряжением технического руководителя предприятия устанавливать

другие значения периодичности испытаний и испытательных напряжений:

  • Для питающих кабельных линий на напряжение 6-10кВ со сроком эксплуатации более 15 лет при числе соединительных муфт более 10 на 1 километр длины;
  • Для питающих кабельных линий на напряжение 6-10кВ со сроком эксплуатации более 15 лет, на которых смонтированы концевые заделки только типов КВВ и КВБ и соединительные муфты местного изготовления, при значении испытательного напряжения не менее 4Uн и периодичности не реже 1 раза в 5 лет.
  • Для кабельных линий напряжением 20-35кВ в течение первых 15 лет испытательное напряжение должно составлять 5Uн, а в дальнейшем 4Uн.

6.3.8 Кабели на напряжение 3-10кВ с резиновой изоляцией:

  • в стационарных установках – 1 раз в год;
  • в сезонных установках – перед наступлением сезона;
  • после капитального ремонта агрегата, к которому присоединен кабель.

Измерение распределения тока по одножильным кабелям

На силовом кабеле измеряются токи, протекающие как в жилах, так и в металлических оболочках и броне. Измерения производятся токоизмерительными клещами.

В зависимости от материала оболочки, брони и положения кабеля в пространстве токи в них могут достигать 100% по отношению к току жилы и сильно влиять на нагрев кабелей. Одновременно с измерением токов при нагрузках, близких к номинальной, должны быть проведены измерения температуры наружных покровов кабелей, по которой может быть вычислена температура жилы. Эта температура должна измеряться в самом нагретом месте КЛ и не должна превосходить допустимую для данного места измерения. При неравномерности распределения токов более 10%, когда отдельные кабели лимитируют пропускную способность всей группы кабелей, должны быть приняты меры по выравниванию токов по фазам.

Источник

Испытание кабеля повышенным напряжением

Параметры современных электрических систем способны обеспечить необходимый уровень напряжения и его качество для любых потребителей. А за счет масштабной застройки больших городов, близкого расположения промышленных объектов, нагромождения их коммуникаций, большая часть линий выполняются силовыми кабелями. Из-за воздействия внешних факторов изоляция электрооборудования способна утрачивать защитные свойства, что приводит к сбоям и нарушению нормального режима работы. Для предотвращения аварийных ситуаций на кабельных линиях и своевременного выявления дефектов осуществляется испытание кабеля повышенным напряжением.

Подготовка к испытанию

В связи с тем, что повышенное напряжение несет потенциальную угрозу как самому оборудованию, так и персоналу, существует методика испытаний, регламентирующая определенную последовательность действий. Первым этапом является оформление работ, подготовка места работы, оборудования и самого кабеля.

Следует оговориться, что к электрическим испытаниям допускаются лишь те лица, которые достигли совершеннолетия, прошли медосмотр, периодическую проверку знаний по электробезопасности. Испытания, в обязательном порядке, оформляются нарядом, а бригаде проводится инструктаж по охране труда.

По отношению к испытуемой электроустановке предъявляются такие требования:

  • Перед испытанием с кабеля обязательно снимается напряжение, все металлические элементы (экраны, броня), на которые подача напряжения не производится, должны заземляться.
  • Предварительно с кабеля удаляется остаточный заряд, для этого провода и металлические части заземляются на 2 минуты.
  • До подачи повышенного напряжения на жилы кабеля, осмотрите его на наличие загрязнителей на видимых участках или в воронках. При обнаружении таковых поверхность очищается, после чего могут производиться высоковольтные процедуры.
  • При отрицательной температуре испытания не проводятся. Это обусловлено тем, что лед выступает в роли диэлектрика и сопротивление изоляции будет значительно больше реальной величины. Помимо этого, разработка траншеи и откопка кабеля в замерзшем грунте значительно усложняется. В связи с чем, при нулевых или более низких температурах, испытание целесообразно только в случае аварии.
  • До начала испытания посредством мегомметра обязательно проверяется сопротивление от каждой жилы к металлической оболочке кабеля и между фазами.
  • Величину тока утечки, напряжение на киловольтметре можно начинать фиксировать только спустя минуту, с момента установки испытательного напряжения на нужной отметке.

Причины и физика испытания

Профиспытания повышенным напряжением используются для выявления слабых мест в изоляции кабеля. Не зависимо от материала диэлектрика: пластмассовый, резиновый, полиэтиленовый или маслонаполненный кабель воспринимает нагрузку от испытательной установки на одну жилу, а остальные металлические части подключаются к земле. В результате чего изоляция находится под потенциалом, в разы превышающим номинальный.

От подачи на жилы повышенного потенциала в изоляции возникает ионизация, а в местах нахождения каких-либо дефектов, неоднородностей или включений инородных материалов скапливается достаточное для протекания малых токов количество заряженных частиц. Такие включения и дефекты могли образоваться в результате неудовлетворительных условий эксплуатации, аварийных режимов или из-за естественного старения материала.

Все изъяны, из-за малого сопротивления, начинают ионизироваться и пропускать электрический ток все большей величины по микроскопическим каналам в диэлектрике. Из-за этого сопротивление изоляции уменьшается вплоть до пробоя. Если пробой не наступает, а дефект оказывает существенное влияние, его можно зафиксировать по изменению величины тока утечки.

Читайте также:  Пределы измерения тока в ваттметре

Данная методика дает уверенность, что при номинальном токе изоляция кабеля выдержит нагрузку до следующих испытаний.

Схемы испытаний

Для проверки прочности изоляции кабеля могут использоваться различные устройства, обеспечивающие на выходе повышенное напряжение. Но, независимо от конкретной модели, схема измерений и работы строится по такому принципу.

Схема измерений

Рисунок 1. Схема измерений

Посмотрите на схему (рис. 1.), здесь изображено:

1 – обмотки трансформатора с функцией регулировки уровня напряжения (автотрансформатор),

2 – высоковольтный трансформатор для подачи напряжения на испытуемый объект,

3 – панель управления,

4 – испытуемый кабель,

5 – трансформатор питания катодной цепи кенотрона.

На схеме рассматривается метод испытания, когда к одной из жил кабеля подведено повышенное напряжение, а остальные заземлены.

С началом испытаний от автотрансформатора через киловольтметр подается напряжение на первичную обмотку испытательного агрегата. Вторичная обмотка которого заземляется через амперметр, именно он и показывает значение тока утечки. Испытуемая обмотка, помимо амперметра, содержит резистор R для ограничения величины переменного тока, в случае пробоя. Вторым выводом резистор подключается к аноду кенотрона, катод которого запитывается от преобразователя накала.

Нормы испытаний

В ходе испытаний высоковольтный провод получает нагрузку повышенным напряжением, но поднимается оно плавно от нулевой отметки до установленной величины. Продолжительность воздействия составляет 5 минут для периодических и 10 минут во время приемо-сдаточных испытаний для кабелей с пластмассовой и бумажной изоляцией. После каких-либо ремонтных работ или при изменениях в схеме время испытания кабеля составляет 10 – 15 минут. Кабель с резиновой изоляцией испытывается повышенным напряжением 5 минут во всех случаях.

Все данные устанавливаются государственными документами – ПУЭ и ПТЭЭП. В зависимости от параметров сети и технических характеристик кабеля существуют такие пределы подачи повышенного напряжения (см. таблицу ниже):

Тип кабеля Номинальное напряжение кабеля, кВ Испытательное напряжение, кВ Продолжительность испытания, мин
С бумажной изоляцией 3—10 6 Uв 10
20—35 5 Uв 10
110 300 15
220 450 15
С резиновой изоляцией 3 6 15
6 12 5

Посмотрите, в таблице вы можете увидеть значение выпрямленного напряжения, подаваемого непосредственно на сам кабель. Оно отличается от номинального напряжения, выдаваемого испытательным трансформатором и по величине и по роду. UВ обозначает номинальное напряжение кабеля, а цифры указывают во сколько раз испытательное напряжение должно превышать номинальное.

Ток утечки не является параметром для контроля или выбраковки. Но в случае его скачков, колебаний во время испытания повышенным напряжением, можно смело утверждать о наличии дефектов. В таком случае подачу напряжения на кабель необходимо осуществлять до пробоя, но не больше 15 минут. Вместе с током рассчитывают и коэффициент асимметрии, их нормы вы можете увидеть в таблице:

Отклонение от значений, приведенных в таблице, может свидетельствовать о серьезных изменениях в изоляции кабельной линии. В случае, когда не было пробоя, отсутствовали электрические разряды, хлопки, внезапное нарастание или колебания постоянного тока во время испытания, кабель считается годным. В частных случаях, лицо ответственное за электрохозяйство может самостоятельно устанавливать испытательные сроки и параметры в разрез заводских норм.

Аппараты для испытаний

Принципиальная схема ИВК

  • АИИ – 70 – одна из наиболее популярных стационарных установок, применяемых в испытании и фазировке силовых кабелей, вводов, проверке прочности жидких диэлектриков на пробой и т.д. Может обеспечивать как постоянное напряжение на выходе (максимально 70 кВ), так и переменное (50 кВ).
  • АИД-70 – является диодным аналогом предыдущей модели. Наиболее широко применяется для испытания как постоянным, так и переменным напряжением в передвижках или переносных агрегатах, в лабораториях.
  • ИВК-5, АИ-2000, КУ-65 и прочие – установки с диодной схемой. Применяется для продавливания вторичных электрических цепей.

Принципиальная схема ИВК

Как и в других схемах, здесь используется трансформатор (АТ), диодные выпрямители (В), резисторы (Р), трансформатор тока (Т) сигнальные светодиоды и устройства для съема показаний (v, mA). На том же принципе основан ряд других портативных устройств.

Методика испытания кабеля повышенным напряжением

Возьмите кабель с несколькими жилами, и соедините вывод установки с одной из фаз, остальные заземлите, для одножильных кабелей ничего кроме брони или экрана заземлять не нужно. Если к одному проводнику подводится напряжение, а другие заземляются, то оголенные концы разводятся на расстояние не менее 15 см. В случае проведения профилактических испытаний, подключение испытательной установки осуществляется на концевых муфтах. В аварийных ситуациях присоединение может выполняться в местах раздела, как более целесообразных точках для измерений.

Схема подключения кабеля

Схема подключения кабеля

Силовой трансформатор преобразует напряжение и ток промышленной частоты до нужного уровня, затем подает через выпрямитель на кабель. Методика измерений требует плавного наращивания напряжения со скоростью около 1 – 2кВ в течении одной секунды до получения необходимой величины. После того, как стрелка киловольтметра установится в нужную позицию, начинается отсчет времени. По результатам снимаются данные с приборов на установке и фиксируются в соответствующих документах – протоколах и кабельных журналах.

Для завершения измерений ручка автотрансформатора выводится в ноль. Отключается кнопка питания, устанавливается блокировка от случайной подачи напряжения. Обратите внимание, на высоковольтный вывод обязательно завешивается заземление. После чего можно приступать к разборке схемы.

В случае если изоляция выполнена из сшитого полиэтилена, кабель не допускается испытывать выпрямленным током из-за возможности скопления локальных объемных зарядов. По причине дороговизны таких кабелей, их порча чревата большими затратами. Поэтому следует прибегать к принципиально иной технологии проверки.

Кабель с изоляцией из сшитого полиэтилена

Кабель с изоляцией из сшитого полиэтилена

К кабелям таких марок целесообразно подводить переменное напряжение низкой частоты, с целью планомерного и полного рассеивания местных зарядов при переходе синусоиды через ноль. При этом удаляются даже те заряды, которые могли возникнуть в процессе эксплуатации из-за режима питания.

В завершение, для кабелей, продавленных повышенным напряжением, в обязательном порядке выполняется проверка электрической прочности их изоляции. Так как воздействие такого напряжения могло нарушить ее диэлектрические свойства.

Периодичность

Для кабелей, рассчитанных на напряжение от 2 до 35 кВ с пластмассовой и бумажной оболочкой, в течении первых 2 лет с момента запуска в работу устанавливается периодичность испытания повышенным напряжением раз в год. В случае отсутствия аварий, реконструкций, которые могли быть причиной каких-либо изменений, за первые два года, испытания разрешается проводить реже – раз в 2 года. В противном случае, сроки остаются теми же. Если такой кабель эксплуатируется на территориях подстанций, заводов и прочих промышленных объектов, где доступ к ним затруднен, разрешается проводить испытание не реже, чем раз в 3 года.

Кабели, рассчитанные на напряжение 110 — 500кВ подлежат проверке через 3 года с момента их ввода в эксплуатацию. После чего, в случае отсутствия аварийных ситуаций или реконструкций, испытание может производиться с периодичностью раз в 5 лет.

Для кабелей, оснащенных резиновой изоляцией, в случае питания стационарных устройств электроустановок, периодичность высоковольтных испытаний составляет 1 раз в год. Для сезонных электроустановок испытания должны проводиться перед началом сезона. Такую же процедуру необходимо выполнять при пуске в эксплуатацию электроустановок после их длительного отключения.

Допускается не производить испытания кабелей с бумажной и пластмассовой изоляцией в случае если:

  • используется в качестве питающих вводов и длина кабеля менее 100 м;
  • срок их службы уже более 15 лет, а удельное количество отказов не менее 30 раз на 100 км в год;
  • в ближайшие 5 лет планируется их реконструкция или полный демонтаж.

Оформление результатов испытаний в виде протокола (пример)

После проведения испытаний, все данные заполняются в соответствующие графы протокола. Пример заполнения которого можно увидеть на рисунке.

Пример заполнения протокола

Пример заполнения протокола

В графе о лицах, проводивших испытания, ставятся фамилии и подписи работников, участвовавших в соответствующих процедурах. После чего протокол визируется начальником лаборатории и хранится в установленном порядке.

Интересное видео

Источник

Поделиться с друзьями
Блог электрика
Adblock
detector